File size: 7,999 Bytes
dc3d3fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import os
import json
import torch
import logging
import tempfile
import gradio as gr
from datasets import load_dataset
from transformers import AutoTokenizer, GPT2LMHeadModel

# Global logging setup
def setup_logging(output_file="app.log"):
    log_filename = os.path.splitext(output_file)[0] + ".log"
    logging.getLogger().handlers.clear()
    file_handler = logging.FileHandler(log_filename)
    file_handler.setLevel(logging.INFO)
    file_handler.setFormatter(logging.Formatter("%(asctime)s - %(levelname)s - %(message)s"))

    stream_handler = logging.StreamHandler()
    stream_handler.setLevel(logging.INFO)
    stream_handler.setFormatter(logging.Formatter("%(asctime)s - %(levelname)s - %(message)s"))

    logger = logging.getLogger()
    logger.setLevel(logging.INFO)
    logger.addHandler(file_handler)
    logger.addHandler(stream_handler)

# Load model and tokenizer
def load_model_and_tokenizer(model_name):
    logging.info(f"Loading model and tokenizer: {model_name}")
    try:
        tokenizer = AutoTokenizer.from_pretrained(model_name)
        model = GPT2LMHeadModel.from_pretrained(model_name)
        if torch.cuda.is_available():
            logging.info("Moving model to CUDA device.")
            model = model.to("cuda")
        return model, tokenizer
    except Exception as e:
        logging.error(f"Error loading model and tokenizer: {e}")
        raise RuntimeError(f"Failed to load model and tokenizer: {e}")

# Load the dataset
def load_uniprot_dataset(dataset_name, dataset_key):
    try:
        dataset = load_dataset(dataset_name, dataset_key)
        uniprot_to_sequence = {row["UniProt_id"]: row["Sequence"] for row in dataset["uniprot_seq"]}
        logging.info("Dataset loaded and processed successfully.")
        return uniprot_to_sequence
    except Exception as e:
        logging.error(f"Error loading dataset: {e}")
        raise RuntimeError(f"Failed to load dataset: {e}")

# SMILES Generator
class SMILESGenerator:
    def __init__(self, model, tokenizer, uniprot_to_sequence):
        self.model = model
        self.tokenizer = tokenizer
        self.uniprot_to_sequence = uniprot_to_sequence
        self.device = "cuda" if torch.cuda.is_available() else "cpu"
        self.model.to(self.device)
        self.generation_kwargs = {
            "do_sample": True,
            "top_k": 9,
            "max_length": 1024,
            "top_p": 0.9,
            "num_return_sequences": 10,
            "bos_token_id": tokenizer.bos_token_id,
            "eos_token_id": tokenizer.eos_token_id,
            "pad_token_id": tokenizer.pad_token_id
        }

    def generate_smiles(self, sequence, num_generated, progress_callback=None):
        generated_smiles_set = set()
        prompt = f"<|startoftext|><P>{sequence}<L>"
        encoded_prompt = self.tokenizer(prompt, return_tensors="pt")["input_ids"].to(self.device)

        logging.info(f"Generating SMILES for sequence: {sequence[:10]}...")
        retries = 0
        while len(generated_smiles_set) < num_generated:
            if retries >= 30:
                logging.warning("Max retries reached. Returning what has been generated so far.")
                break

            sample_outputs = self.model.generate(encoded_prompt, **self.generation_kwargs)
            for i, sample_output in enumerate(sample_outputs):
                output_decode = self.tokenizer.decode(sample_output, skip_special_tokens=False)
                try:
                    generated_smiles = output_decode.split("<L>")[1].split("<|endoftext|>")[0]
                    if generated_smiles not in generated_smiles_set:
                        generated_smiles_set.add(generated_smiles)
                except (IndexError, AttributeError) as e:
                    logging.warning(f"Failed to parse SMILES due to error: {str(e)}. Skipping.")
            
            if progress_callback:
                progress_callback((retries + 1) / 30)

            retries += 1

        logging.info(f"SMILES generation completed. Generated {len(generated_smiles_set)} SMILES.")
        return list(generated_smiles_set)

# Gradio interface
def generate_smiles_gradio(sequence_input=None, uniprot_id=None, num_generated=10):
    results = {}

    # Process sequence inputs and include UniProt ID if found
    if sequence_input:
        sequences = [seq.strip() for seq in sequence_input.split(",") if seq.strip()]
        for seq in sequences:
            try:
                # Find the corresponding UniProt ID for the sequence
                uniprot_id_for_seq = [uid for uid, s in uniprot_to_sequence.items() if s == seq]
                uniprot_id_for_seq = uniprot_id_for_seq[0] if uniprot_id_for_seq else "N/A"
                
                # Generate SMILES for the sequence
                smiles = generator.generate_smiles(seq, num_generated)
                results[uniprot_id_for_seq] = {
                    "sequence": seq,
                    "smiles": smiles
                }
            except Exception as e:
                results["N/A"] = {"sequence": seq, "error": f"Error generating SMILES: {str(e)}"}

    # Process UniProt ID inputs and include sequence if found
    if uniprot_id:
        uniprot_ids = [uid.strip() for uid in uniprot_id.split(",") if uid.strip()]
        for uid in uniprot_ids:
            sequence = uniprot_to_sequence.get(uid, "N/A")
            try:
                # Generate SMILES for the sequence found
                if sequence != "N/A":
                    smiles = generator.generate_smiles(sequence, num_generated)
                    results[uid] = {
                        "sequence": sequence,
                        "smiles": smiles
                    }
                else:
                    results[uid] = {
                        "sequence": "N/A",
                        "error": f"UniProt ID {uid} not found in the dataset."
                    }
            except Exception as e:
                results[uid] = {"sequence": "N/A", "error": f"Error generating SMILES: {str(e)}"}

    # Check if no results were generated
    if not results:
        return {"error": "No SMILES generated. Please try again with different inputs."}

    # Save results to a file
    file_path = save_smiles_to_file(results)
    return results, file_path


def save_smiles_to_file(results):
    file_path = os.path.join(tempfile.gettempdir(), "generated_smiles.json")
    with open(file_path, "w") as f:
        json.dump(results, f, indent=4)
    return file_path


# Main initialization and Gradio setup
if __name__ == "__main__":
    setup_logging()
    model_name = "alimotahharynia/DrugGen"
    dataset_name = "alimotahharynia/approved_drug_target"
    dataset_key = "uniprot_sequence"

    # Load model, tokenizer, and dataset
    model, tokenizer = load_model_and_tokenizer(model_name)
    uniprot_to_sequence = load_uniprot_dataset(dataset_name, dataset_key)

    # SMILESGenerator
    generator = SMILESGenerator(model, tokenizer, uniprot_to_sequence)

    # Gradio interface
    with gr.Blocks() as iface:
        gr.Markdown("## DrugGen interface")
        with gr.Row():
            sequence_input = gr.Textbox(
                label="Input Protein Sequences",
                placeholder="Enter protein sequences separated by commas..."
            )
            uniprot_id_input = gr.Textbox(
                label="UniProt IDs",
                placeholder="Enter UniProt IDs separated by commas..."
            )
        num_generated_slider = gr.Slider(minimum=1, maximum=100, step=1, value=10, label="Number of Unique SMILES to Generate")
        output = gr.JSON(label="Generated SMILES")
        file_output = gr.File(label="Download output as .json")

        generate_button = gr.Button("Generate SMILES")
        generate_button.click(
            generate_smiles_gradio,
            inputs=[sequence_input, uniprot_id_input, num_generated_slider],
            outputs=[output, file_output]
        )

        iface.launch()