File size: 7,999 Bytes
dc3d3fa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
import os
import json
import torch
import logging
import tempfile
import gradio as gr
from datasets import load_dataset
from transformers import AutoTokenizer, GPT2LMHeadModel
# Global logging setup
def setup_logging(output_file="app.log"):
log_filename = os.path.splitext(output_file)[0] + ".log"
logging.getLogger().handlers.clear()
file_handler = logging.FileHandler(log_filename)
file_handler.setLevel(logging.INFO)
file_handler.setFormatter(logging.Formatter("%(asctime)s - %(levelname)s - %(message)s"))
stream_handler = logging.StreamHandler()
stream_handler.setLevel(logging.INFO)
stream_handler.setFormatter(logging.Formatter("%(asctime)s - %(levelname)s - %(message)s"))
logger = logging.getLogger()
logger.setLevel(logging.INFO)
logger.addHandler(file_handler)
logger.addHandler(stream_handler)
# Load model and tokenizer
def load_model_and_tokenizer(model_name):
logging.info(f"Loading model and tokenizer: {model_name}")
try:
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = GPT2LMHeadModel.from_pretrained(model_name)
if torch.cuda.is_available():
logging.info("Moving model to CUDA device.")
model = model.to("cuda")
return model, tokenizer
except Exception as e:
logging.error(f"Error loading model and tokenizer: {e}")
raise RuntimeError(f"Failed to load model and tokenizer: {e}")
# Load the dataset
def load_uniprot_dataset(dataset_name, dataset_key):
try:
dataset = load_dataset(dataset_name, dataset_key)
uniprot_to_sequence = {row["UniProt_id"]: row["Sequence"] for row in dataset["uniprot_seq"]}
logging.info("Dataset loaded and processed successfully.")
return uniprot_to_sequence
except Exception as e:
logging.error(f"Error loading dataset: {e}")
raise RuntimeError(f"Failed to load dataset: {e}")
# SMILES Generator
class SMILESGenerator:
def __init__(self, model, tokenizer, uniprot_to_sequence):
self.model = model
self.tokenizer = tokenizer
self.uniprot_to_sequence = uniprot_to_sequence
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.model.to(self.device)
self.generation_kwargs = {
"do_sample": True,
"top_k": 9,
"max_length": 1024,
"top_p": 0.9,
"num_return_sequences": 10,
"bos_token_id": tokenizer.bos_token_id,
"eos_token_id": tokenizer.eos_token_id,
"pad_token_id": tokenizer.pad_token_id
}
def generate_smiles(self, sequence, num_generated, progress_callback=None):
generated_smiles_set = set()
prompt = f"<|startoftext|><P>{sequence}<L>"
encoded_prompt = self.tokenizer(prompt, return_tensors="pt")["input_ids"].to(self.device)
logging.info(f"Generating SMILES for sequence: {sequence[:10]}...")
retries = 0
while len(generated_smiles_set) < num_generated:
if retries >= 30:
logging.warning("Max retries reached. Returning what has been generated so far.")
break
sample_outputs = self.model.generate(encoded_prompt, **self.generation_kwargs)
for i, sample_output in enumerate(sample_outputs):
output_decode = self.tokenizer.decode(sample_output, skip_special_tokens=False)
try:
generated_smiles = output_decode.split("<L>")[1].split("<|endoftext|>")[0]
if generated_smiles not in generated_smiles_set:
generated_smiles_set.add(generated_smiles)
except (IndexError, AttributeError) as e:
logging.warning(f"Failed to parse SMILES due to error: {str(e)}. Skipping.")
if progress_callback:
progress_callback((retries + 1) / 30)
retries += 1
logging.info(f"SMILES generation completed. Generated {len(generated_smiles_set)} SMILES.")
return list(generated_smiles_set)
# Gradio interface
def generate_smiles_gradio(sequence_input=None, uniprot_id=None, num_generated=10):
results = {}
# Process sequence inputs and include UniProt ID if found
if sequence_input:
sequences = [seq.strip() for seq in sequence_input.split(",") if seq.strip()]
for seq in sequences:
try:
# Find the corresponding UniProt ID for the sequence
uniprot_id_for_seq = [uid for uid, s in uniprot_to_sequence.items() if s == seq]
uniprot_id_for_seq = uniprot_id_for_seq[0] if uniprot_id_for_seq else "N/A"
# Generate SMILES for the sequence
smiles = generator.generate_smiles(seq, num_generated)
results[uniprot_id_for_seq] = {
"sequence": seq,
"smiles": smiles
}
except Exception as e:
results["N/A"] = {"sequence": seq, "error": f"Error generating SMILES: {str(e)}"}
# Process UniProt ID inputs and include sequence if found
if uniprot_id:
uniprot_ids = [uid.strip() for uid in uniprot_id.split(",") if uid.strip()]
for uid in uniprot_ids:
sequence = uniprot_to_sequence.get(uid, "N/A")
try:
# Generate SMILES for the sequence found
if sequence != "N/A":
smiles = generator.generate_smiles(sequence, num_generated)
results[uid] = {
"sequence": sequence,
"smiles": smiles
}
else:
results[uid] = {
"sequence": "N/A",
"error": f"UniProt ID {uid} not found in the dataset."
}
except Exception as e:
results[uid] = {"sequence": "N/A", "error": f"Error generating SMILES: {str(e)}"}
# Check if no results were generated
if not results:
return {"error": "No SMILES generated. Please try again with different inputs."}
# Save results to a file
file_path = save_smiles_to_file(results)
return results, file_path
def save_smiles_to_file(results):
file_path = os.path.join(tempfile.gettempdir(), "generated_smiles.json")
with open(file_path, "w") as f:
json.dump(results, f, indent=4)
return file_path
# Main initialization and Gradio setup
if __name__ == "__main__":
setup_logging()
model_name = "alimotahharynia/DrugGen"
dataset_name = "alimotahharynia/approved_drug_target"
dataset_key = "uniprot_sequence"
# Load model, tokenizer, and dataset
model, tokenizer = load_model_and_tokenizer(model_name)
uniprot_to_sequence = load_uniprot_dataset(dataset_name, dataset_key)
# SMILESGenerator
generator = SMILESGenerator(model, tokenizer, uniprot_to_sequence)
# Gradio interface
with gr.Blocks() as iface:
gr.Markdown("## DrugGen interface")
with gr.Row():
sequence_input = gr.Textbox(
label="Input Protein Sequences",
placeholder="Enter protein sequences separated by commas..."
)
uniprot_id_input = gr.Textbox(
label="UniProt IDs",
placeholder="Enter UniProt IDs separated by commas..."
)
num_generated_slider = gr.Slider(minimum=1, maximum=100, step=1, value=10, label="Number of Unique SMILES to Generate")
output = gr.JSON(label="Generated SMILES")
file_output = gr.File(label="Download output as .json")
generate_button = gr.Button("Generate SMILES")
generate_button.click(
generate_smiles_gradio,
inputs=[sequence_input, uniprot_id_input, num_generated_slider],
outputs=[output, file_output]
)
iface.launch() |