Spaces:
Sleeping
Sleeping
AlshimaaGamalAlsaied
commited on
Commit
·
b2eb80d
1
Parent(s):
5cdb31f
commit
Browse files
app.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
import gradio as gr
|
2 |
#import torch
|
3 |
-
import
|
4 |
import subprocess
|
5 |
import tempfile
|
6 |
import time
|
@@ -11,10 +11,10 @@ import gradio as gr
|
|
11 |
|
12 |
|
13 |
|
14 |
-
# Images
|
15 |
-
#torch.hub.download_url_to_file('https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg', 'zidane.jpg')
|
16 |
-
#torch.hub.download_url_to_file('https://raw.githubusercontent.com/obss/sahi/main/tests/data/small-vehicles1.jpeg', 'small-vehicles1.jpeg')
|
17 |
-
|
18 |
def image_fn(
|
19 |
image: gr.inputs.Image = None,
|
20 |
model_path: gr.inputs.Dropdown = None,
|
@@ -23,7 +23,7 @@ def image_fn(
|
|
23 |
iou_threshold: gr.inputs.Slider = 0.45,
|
24 |
):
|
25 |
"""
|
26 |
-
|
27 |
Args:
|
28 |
image: Input image
|
29 |
model_path: Path to the model
|
@@ -34,70 +34,24 @@ def image_fn(
|
|
34 |
Rendered image
|
35 |
"""
|
36 |
|
37 |
-
model =
|
38 |
model.conf = conf_threshold
|
39 |
model.iou = iou_threshold
|
40 |
results = model([image], size=image_size)
|
41 |
return results.render()[0]
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
def video_fn(model_path, video_file, conf_thres, iou_thres, start_sec, duration):
|
46 |
-
model = yolov7.load(model_path, device="cpu", hf_model=True, trace=False)
|
47 |
-
start_timestamp = time.strftime("%H:%M:%S", time.gmtime(start_sec))
|
48 |
-
end_timestamp = time.strftime("%H:%M:%S", time.gmtime(start_sec + duration))
|
49 |
-
|
50 |
-
suffix = Path(video_file).suffix
|
51 |
|
52 |
-
clip_temp_file = tempfile.NamedTemporaryFile(suffix=suffix)
|
53 |
-
subprocess.call(
|
54 |
-
f"ffmpeg -y -ss {start_timestamp} -i {video_file} -to {end_timestamp} -c copy {clip_temp_file.name}".split()
|
55 |
-
)
|
56 |
|
57 |
-
|
58 |
-
cap = cv2.VideoCapture(clip_temp_file.name)
|
59 |
-
|
60 |
-
# This is an intermediary temp file where we'll write the video to
|
61 |
-
# Unfortunately, gradio doesn't play too nice with videos rn so we have to do some hackiness
|
62 |
-
# with ffmpeg at the end of the function here.
|
63 |
-
with tempfile.NamedTemporaryFile(suffix=".mp4") as temp_file:
|
64 |
-
out = cv2.VideoWriter(temp_file.name, cv2.VideoWriter_fourcc(*"MP4V"), 30, (1280, 720))
|
65 |
-
|
66 |
-
num_frames = 0
|
67 |
-
max_frames = duration * 30
|
68 |
-
while cap.isOpened():
|
69 |
-
try:
|
70 |
-
ret, frame = cap.read()
|
71 |
-
if not ret:
|
72 |
-
break
|
73 |
-
except Exception as e:
|
74 |
-
print(e)
|
75 |
-
continue
|
76 |
-
print("FRAME DTYPE", type(frame))
|
77 |
-
out.write(model([frame], conf_thres, iou_thres))
|
78 |
-
num_frames += 1
|
79 |
-
print("Processed {} frames".format(num_frames))
|
80 |
-
if num_frames == max_frames:
|
81 |
-
break
|
82 |
-
|
83 |
-
out.release()
|
84 |
-
|
85 |
-
# Aforementioned hackiness
|
86 |
-
out_file = tempfile.NamedTemporaryFile(suffix="out.mp4", delete=False)
|
87 |
-
subprocess.run(f"ffmpeg -y -loglevel quiet -stats -i {temp_file.name} -c:v libx264 {out_file.name}".split())
|
88 |
-
|
89 |
-
return out_file.name
|
90 |
-
|
91 |
-
image_interface = gr.Interface(
|
92 |
fn=image_fn,
|
93 |
inputs=[
|
94 |
gr.inputs.Image(type="pil", label="Input Image"),
|
95 |
gr.inputs.Dropdown(
|
96 |
choices=[
|
97 |
-
"alshimaa/
|
98 |
#"kadirnar/yolov7-v0.1",
|
99 |
],
|
100 |
-
default="alshimaa/
|
101 |
label="Model",
|
102 |
)
|
103 |
#gr.inputs.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size")
|
@@ -105,39 +59,140 @@ image_interface = gr.Interface(
|
|
105 |
#gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold")
|
106 |
],
|
107 |
outputs=gr.outputs.Image(type="filepath", label="Output Image"),
|
108 |
-
title="
|
109 |
-
examples=[['
|
110 |
cache_examples=True,
|
|
|
111 |
theme='huggingface',
|
112 |
)
|
|
|
113 |
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
|
137 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
|
139 |
-
|
140 |
-
gr.TabbedInterface(
|
141 |
-
[image_interface, video_interface],
|
142 |
-
["Run on Images", "Run on Videos"],
|
143 |
-
).launch()
|
|
|
1 |
import gradio as gr
|
2 |
#import torch
|
3 |
+
import yolov5
|
4 |
import subprocess
|
5 |
import tempfile
|
6 |
import time
|
|
|
11 |
|
12 |
|
13 |
|
14 |
+
# # Images
|
15 |
+
# #torch.hub.download_url_to_file('https://github.com/ultralytics/yolov5/raw/master/data/images/zidane.jpg', 'zidane.jpg')
|
16 |
+
# #torch.hub.download_url_to_file('https://raw.githubusercontent.com/obss/sahi/main/tests/data/small-vehicles1.jpeg', 'small-vehicles1.jpeg')
|
17 |
+
|
18 |
def image_fn(
|
19 |
image: gr.inputs.Image = None,
|
20 |
model_path: gr.inputs.Dropdown = None,
|
|
|
23 |
iou_threshold: gr.inputs.Slider = 0.45,
|
24 |
):
|
25 |
"""
|
26 |
+
YOLOv5 inference function
|
27 |
Args:
|
28 |
image: Input image
|
29 |
model_path: Path to the model
|
|
|
34 |
Rendered image
|
35 |
"""
|
36 |
|
37 |
+
model = yolov5.load(model_path, device="cpu", hf_model=True, trace=False)
|
38 |
model.conf = conf_threshold
|
39 |
model.iou = iou_threshold
|
40 |
results = model([image], size=image_size)
|
41 |
return results.render()[0]
|
42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
|
|
|
|
|
|
|
|
44 |
|
45 |
+
demo_app = gr.Interface(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
fn=image_fn,
|
47 |
inputs=[
|
48 |
gr.inputs.Image(type="pil", label="Input Image"),
|
49 |
gr.inputs.Dropdown(
|
50 |
choices=[
|
51 |
+
"alshimaa/yolo5_epoch100",
|
52 |
#"kadirnar/yolov7-v0.1",
|
53 |
],
|
54 |
+
default="alshimaa/yolo5_epoch100",
|
55 |
label="Model",
|
56 |
)
|
57 |
#gr.inputs.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size")
|
|
|
59 |
#gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold")
|
60 |
],
|
61 |
outputs=gr.outputs.Image(type="filepath", label="Output Image"),
|
62 |
+
title="Object Detector: Identify People Without Mask",
|
63 |
+
examples=[['img1.png', 'alshimaa/yolo5_epoch100', 640, 0.25, 0.45], ['img2.png', 'alshimaa/yolo5_epoch100', 640, 0.25, 0.45], ['img3.png', 'alshimaa/yolo5_epoch100', 640, 0.25, 0.45]],
|
64 |
cache_examples=True,
|
65 |
+
live=True,
|
66 |
theme='huggingface',
|
67 |
)
|
68 |
+
demo_app.launch(debug=True, enable_queue=True)
|
69 |
|
70 |
+
|
71 |
+
# def image_fn(
|
72 |
+
# image: gr.inputs.Image = None,
|
73 |
+
# model_path: gr.inputs.Dropdown = None,
|
74 |
+
# image_size: gr.inputs.Slider = 640,
|
75 |
+
# conf_threshold: gr.inputs.Slider = 0.25,
|
76 |
+
# iou_threshold: gr.inputs.Slider = 0.45,
|
77 |
+
# ):
|
78 |
+
# """
|
79 |
+
# YOLOv5 inference function
|
80 |
+
# Args:
|
81 |
+
# image: Input image
|
82 |
+
# model_path: Path to the model
|
83 |
+
# image_size: Image size
|
84 |
+
# conf_threshold: Confidence threshold
|
85 |
+
# iou_threshold: IOU threshold
|
86 |
+
# Returns:
|
87 |
+
# Rendered image
|
88 |
+
# """
|
89 |
+
|
90 |
+
# model = yolov5.load(model_path, device="cpu", hf_model=True, trace=False)
|
91 |
+
# model.conf = conf_threshold
|
92 |
+
# model.iou = iou_threshold
|
93 |
+
# results = model([image], size=image_size)
|
94 |
+
# return results.render()[0]
|
95 |
+
|
96 |
+
|
97 |
+
|
98 |
+
# def video_fn(model_path, video_file, conf_thres, iou_thres, start_sec, duration):
|
99 |
+
# model = yolov5.load(model_path, device="cpu", hf_model=True, trace=False)
|
100 |
+
# start_timestamp = time.strftime("%H:%M:%S", time.gmtime(start_sec))
|
101 |
+
# end_timestamp = time.strftime("%H:%M:%S", time.gmtime(start_sec + duration))
|
102 |
+
|
103 |
+
# suffix = Path(video_file).suffix
|
104 |
+
|
105 |
+
# clip_temp_file = tempfile.NamedTemporaryFile(suffix=suffix)
|
106 |
+
# subprocess.call(
|
107 |
+
# f"ffmpeg -y -ss {start_timestamp} -i {video_file} -to {end_timestamp} -c copy {clip_temp_file.name}".split()
|
108 |
+
# )
|
109 |
+
|
110 |
+
# # Reader of clip file
|
111 |
+
# cap = cv2.VideoCapture(clip_temp_file.name)
|
112 |
+
|
113 |
+
# # This is an intermediary temp file where we'll write the video to
|
114 |
+
# # Unfortunately, gradio doesn't play too nice with videos rn so we have to do some hackiness
|
115 |
+
# # with ffmpeg at the end of the function here.
|
116 |
+
# with tempfile.NamedTemporaryFile(suffix=".mp4") as temp_file:
|
117 |
+
# out = cv2.VideoWriter(temp_file.name, cv2.VideoWriter_fourcc(*"MP4V"), 30, (1280, 720))
|
118 |
+
|
119 |
+
# num_frames = 0
|
120 |
+
# max_frames = duration * 30
|
121 |
+
# while cap.isOpened():
|
122 |
+
# try:
|
123 |
+
# ret, frame = cap.read()
|
124 |
+
# if not ret:
|
125 |
+
# break
|
126 |
+
# except Exception as e:
|
127 |
+
# print(e)
|
128 |
+
# continue
|
129 |
+
# print("FRAME DTYPE", type(frame))
|
130 |
+
# out.write(model([frame], conf_thres, iou_thres))
|
131 |
+
# num_frames += 1
|
132 |
+
# print("Processed {} frames".format(num_frames))
|
133 |
+
# if num_frames == max_frames:
|
134 |
+
# break
|
135 |
+
|
136 |
+
# out.release()
|
137 |
+
|
138 |
+
# # Aforementioned hackiness
|
139 |
+
# out_file = tempfile.NamedTemporaryFile(suffix="out.mp4", delete=False)
|
140 |
+
# subprocess.run(f"ffmpeg -y -loglevel quiet -stats -i {temp_file.name} -c:v libx264 {out_file.name}".split())
|
141 |
+
|
142 |
+
# return out_file.name
|
143 |
+
|
144 |
+
# image_interface = gr.Interface(
|
145 |
+
# fn=image_fn,
|
146 |
+
# inputs=[
|
147 |
+
# gr.inputs.Image(type="pil", label="Input Image"),
|
148 |
+
# gr.inputs.Dropdown(
|
149 |
+
# choices=[
|
150 |
+
# "alshimaa/SEE_model_yolo7",
|
151 |
+
# #"kadirnar/yolov7-v0.1",
|
152 |
+
# ],
|
153 |
+
# default="alshimaa/SEE_model_yolo7",
|
154 |
+
# label="Model",
|
155 |
+
# )
|
156 |
+
# #gr.inputs.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size")
|
157 |
+
# #gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.25, step=0.05, label="Confidence Threshold"),
|
158 |
+
# #gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold")
|
159 |
+
# ],
|
160 |
+
# outputs=gr.outputs.Image(type="filepath", label="Output Image"),
|
161 |
+
# title="Smart Environmental Eye (SEE)",
|
162 |
+
# examples=[['image1.jpg', 'alshimaa/SEE_model_yolo7', 640, 0.25, 0.45], ['image2.jpg', 'alshimaa/SEE_model_yolo7', 640, 0.25, 0.45], ['image3.jpg', 'alshimaa/SEE_model_yolo7', 640, 0.25, 0.45]],
|
163 |
+
# cache_examples=True,
|
164 |
+
# theme='huggingface',
|
165 |
+
# )
|
166 |
+
|
167 |
+
|
168 |
+
# video_interface = gr.Interface(
|
169 |
+
# fn=video_fn,
|
170 |
+
# inputs=[
|
171 |
+
# gr.inputs.Video(source = "upload", type = "mp4", label = "Input Video"),
|
172 |
+
# gr.inputs.Dropdown(
|
173 |
+
# choices=[
|
174 |
+
# "alshimaa/SEE_model_yolo7",
|
175 |
+
# #"kadirnar/yolov7-v0.1",
|
176 |
+
# ],
|
177 |
+
# default="alshimaa/SEE_model_yolo7",
|
178 |
+
# label="Model",
|
179 |
+
# ),
|
180 |
+
# ],
|
181 |
+
# outputs=gr.outputs.Video(type = "mp4", label = "Output Video"),
|
182 |
+
# # examples=[
|
183 |
+
# # ["video.mp4", 0.25, 0.45, 0, 2],
|
184 |
|
185 |
+
# # ],
|
186 |
+
# title="Smart Environmental Eye (SEE)",
|
187 |
+
# cache_examples=True,
|
188 |
+
# theme='huggingface',
|
189 |
|
190 |
+
# )
|
191 |
+
|
192 |
+
# if __name__ == "__main__":
|
193 |
+
# gr.TabbedInterface(
|
194 |
+
# [image_interface, video_interface],
|
195 |
+
# ["Run on Images", "Run on Videos"],
|
196 |
+
# ).launch()
|
197 |
|
198 |
+
|
|
|
|
|
|
|
|