File size: 5,708 Bytes
7ccc423
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import argparse
import os
from datetime import datetime
from pathlib import Path
from typing import List

import av
import numpy as np
import torch
import torchvision
from diffusers import AutoencoderKL, DDIMScheduler
from diffusers.pipelines.stable_diffusion import StableDiffusionPipeline
from einops import repeat
from omegaconf import OmegaConf
from PIL import Image
from torchvision import transforms
from transformers import CLIPVisionModelWithProjection

from configs.prompts.test_cases import TestCasesDict
from src.models.pose_guider import PoseGuider
from src.models.unet_2d_condition import UNet2DConditionModel
from src.models.unet_3d import UNet3DConditionModel
from src.pipelines.pipeline_pose2vid_long import Pose2VideoPipeline
from src.utils.util import get_fps, read_frames, save_videos_grid


def parse_args():
    parser = argparse.ArgumentParser()
    parser.add_argument("--config")
    parser.add_argument("-W", type=int, default=512)
    parser.add_argument("-H", type=int, default=784)
    parser.add_argument("-L", type=int, default=24)
    parser.add_argument("--seed", type=int, default=42)
    parser.add_argument("--cfg", type=float, default=3.5)
    parser.add_argument("--steps", type=int, default=30)
    parser.add_argument("--fps", type=int)
    args = parser.parse_args()

    return args


def main():
    args = parse_args()

    config = OmegaConf.load(args.config)

    if config.weight_dtype == "fp16":
        weight_dtype = torch.float16
    else:
        weight_dtype = torch.float32

    vae = AutoencoderKL.from_pretrained(
        config.pretrained_vae_path,
    ).to("cuda", dtype=weight_dtype)

    reference_unet = UNet2DConditionModel.from_pretrained(
        config.pretrained_base_model_path,
        subfolder="unet",
    ).to(dtype=weight_dtype, device="cuda")

    inference_config_path = config.inference_config
    infer_config = OmegaConf.load(inference_config_path)
    denoising_unet = UNet3DConditionModel.from_pretrained_2d(
        config.pretrained_base_model_path,
        config.motion_module_path,
        subfolder="unet",
        unet_additional_kwargs=infer_config.unet_additional_kwargs,
    ).to(dtype=weight_dtype, device="cuda")

    pose_guider = PoseGuider(320, block_out_channels=(16, 32, 96, 256)).to(
        dtype=weight_dtype, device="cuda"
    )

    image_enc = CLIPVisionModelWithProjection.from_pretrained(
        config.image_encoder_path
    ).to(dtype=weight_dtype, device="cuda")

    sched_kwargs = OmegaConf.to_container(infer_config.noise_scheduler_kwargs)
    scheduler = DDIMScheduler(**sched_kwargs)

    generator = torch.manual_seed(args.seed)

    width, height = args.W, args.H

    # load pretrained weights
    denoising_unet.load_state_dict(
        torch.load(config.denoising_unet_path, map_location="cpu"),
        strict=False,
    )
    reference_unet.load_state_dict(
        torch.load(config.reference_unet_path, map_location="cpu"),
    )
    pose_guider.load_state_dict(
        torch.load(config.pose_guider_path, map_location="cpu"),
    )

    pipe = Pose2VideoPipeline(
        vae=vae,
        image_encoder=image_enc,
        reference_unet=reference_unet,
        denoising_unet=denoising_unet,
        pose_guider=pose_guider,
        scheduler=scheduler,
    )
    pipe = pipe.to("cuda", dtype=weight_dtype)

    date_str = datetime.now().strftime("%Y%m%d")
    time_str = datetime.now().strftime("%H%M")
    save_dir_name = f"{time_str}--seed_{args.seed}-{args.W}x{args.H}"

    save_dir = Path(f"output/{date_str}/{save_dir_name}")
    save_dir.mkdir(exist_ok=True, parents=True)

    for ref_image_path in config["test_cases"].keys():
        # Each ref_image may correspond to multiple actions
        for pose_video_path in config["test_cases"][ref_image_path]:
            ref_name = Path(ref_image_path).stem
            pose_name = Path(pose_video_path).stem.replace("_kps", "")

            ref_image_pil = Image.open(ref_image_path).convert("RGB")

            pose_list = []
            pose_tensor_list = []
            pose_images = read_frames(pose_video_path)
            src_fps = get_fps(pose_video_path)
            print(f"pose video has {len(pose_images)} frames, with {src_fps} fps")
            pose_transform = transforms.Compose(
                [transforms.Resize((height, width)), transforms.ToTensor()]
            )
            for pose_image_pil in pose_images[: args.L]:
                pose_tensor_list.append(pose_transform(pose_image_pil))
                pose_list.append(pose_image_pil)

            ref_image_tensor = pose_transform(ref_image_pil)  # (c, h, w)
            ref_image_tensor = ref_image_tensor.unsqueeze(1).unsqueeze(
                0
            )  # (1, c, 1, h, w)
            ref_image_tensor = repeat(
                ref_image_tensor, "b c f h w -> b c (repeat f) h w", repeat=args.L
            )

            pose_tensor = torch.stack(pose_tensor_list, dim=0)  # (f, c, h, w)
            pose_tensor = pose_tensor.transpose(0, 1)
            pose_tensor = pose_tensor.unsqueeze(0)

            video = pipe(
                ref_image_pil,
                pose_list,
                width,
                height,
                args.L,
                args.steps,
                args.cfg,
                generator=generator,
            ).videos

            video = torch.cat([ref_image_tensor, pose_tensor, video], dim=0)
            save_videos_grid(
                video,
                f"{save_dir}/{ref_name}_{pose_name}_{args.H}x{args.W}_{int(args.cfg)}_{time_str}.mp4",
                n_rows=3,
                fps=src_fps if args.fps is None else args.fps,
            )


if __name__ == "__main__":
    main()