Moore-AnimateAnyone / src /pipelines /pipeline_pose2vid_long.py
xunsong.li
init commit
7ccc423
raw
history blame
21.2 kB
# Adapted from https://github.com/magic-research/magic-animate/blob/main/magicanimate/pipelines/pipeline_animation.py
import inspect
import math
from dataclasses import dataclass
from typing import Callable, List, Optional, Union
import numpy as np
import torch
from diffusers import DiffusionPipeline
from diffusers.image_processor import VaeImageProcessor
from diffusers.schedulers import (
DDIMScheduler,
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
)
from diffusers.utils import BaseOutput, deprecate, is_accelerate_available, logging
from diffusers.utils.torch_utils import randn_tensor
from einops import rearrange
from tqdm import tqdm
from transformers import CLIPImageProcessor
from src.models.mutual_self_attention import ReferenceAttentionControl
from src.pipelines.context import get_context_scheduler
from src.pipelines.utils import get_tensor_interpolation_method
@dataclass
class Pose2VideoPipelineOutput(BaseOutput):
videos: Union[torch.Tensor, np.ndarray]
class Pose2VideoPipeline(DiffusionPipeline):
_optional_components = []
def __init__(
self,
vae,
image_encoder,
reference_unet,
denoising_unet,
pose_guider,
scheduler: Union[
DDIMScheduler,
PNDMScheduler,
LMSDiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
],
image_proj_model=None,
tokenizer=None,
text_encoder=None,
):
super().__init__()
self.register_modules(
vae=vae,
image_encoder=image_encoder,
reference_unet=reference_unet,
denoising_unet=denoising_unet,
pose_guider=pose_guider,
scheduler=scheduler,
image_proj_model=image_proj_model,
tokenizer=tokenizer,
text_encoder=text_encoder,
)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
self.clip_image_processor = CLIPImageProcessor()
self.ref_image_processor = VaeImageProcessor(
vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True
)
self.cond_image_processor = VaeImageProcessor(
vae_scale_factor=self.vae_scale_factor,
do_convert_rgb=True,
do_normalize=False,
)
def enable_vae_slicing(self):
self.vae.enable_slicing()
def disable_vae_slicing(self):
self.vae.disable_slicing()
def enable_sequential_cpu_offload(self, gpu_id=0):
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError("Please install accelerate via `pip install accelerate`")
device = torch.device(f"cuda:{gpu_id}")
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]:
if cpu_offloaded_model is not None:
cpu_offload(cpu_offloaded_model, device)
@property
def _execution_device(self):
if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"):
return self.device
for module in self.unet.modules():
if (
hasattr(module, "_hf_hook")
and hasattr(module._hf_hook, "execution_device")
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device)
return self.device
def decode_latents(self, latents):
video_length = latents.shape[2]
latents = 1 / 0.18215 * latents
latents = rearrange(latents, "b c f h w -> (b f) c h w")
# video = self.vae.decode(latents).sample
video = []
for frame_idx in tqdm(range(latents.shape[0])):
video.append(self.vae.decode(latents[frame_idx : frame_idx + 1]).sample)
video = torch.cat(video)
video = rearrange(video, "(b f) c h w -> b c f h w", f=video_length)
video = (video / 2 + 0.5).clamp(0, 1)
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
video = video.cpu().float().numpy()
return video
def prepare_extra_step_kwargs(self, generator, eta):
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
accepts_eta = "eta" in set(
inspect.signature(self.scheduler.step).parameters.keys()
)
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
# check if the scheduler accepts generator
accepts_generator = "generator" in set(
inspect.signature(self.scheduler.step).parameters.keys()
)
if accepts_generator:
extra_step_kwargs["generator"] = generator
return extra_step_kwargs
def prepare_latents(
self,
batch_size,
num_channels_latents,
width,
height,
video_length,
dtype,
device,
generator,
latents=None,
):
shape = (
batch_size,
num_channels_latents,
video_length,
height // self.vae_scale_factor,
width // self.vae_scale_factor,
)
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
if latents is None:
latents = randn_tensor(
shape, generator=generator, device=device, dtype=dtype
)
else:
latents = latents.to(device)
# scale the initial noise by the standard deviation required by the scheduler
latents = latents * self.scheduler.init_noise_sigma
return latents
def _encode_prompt(
self,
prompt,
device,
num_videos_per_prompt,
do_classifier_free_guidance,
negative_prompt,
):
batch_size = len(prompt) if isinstance(prompt, list) else 1
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
untruncated_ids = self.tokenizer(
prompt, padding="longest", return_tensors="pt"
).input_ids
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
text_input_ids, untruncated_ids
):
removed_text = self.tokenizer.batch_decode(
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
)
if (
hasattr(self.text_encoder.config, "use_attention_mask")
and self.text_encoder.config.use_attention_mask
):
attention_mask = text_inputs.attention_mask.to(device)
else:
attention_mask = None
text_embeddings = self.text_encoder(
text_input_ids.to(device),
attention_mask=attention_mask,
)
text_embeddings = text_embeddings[0]
# duplicate text embeddings for each generation per prompt, using mps friendly method
bs_embed, seq_len, _ = text_embeddings.shape
text_embeddings = text_embeddings.repeat(1, num_videos_per_prompt, 1)
text_embeddings = text_embeddings.view(
bs_embed * num_videos_per_prompt, seq_len, -1
)
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance:
uncond_tokens: List[str]
if negative_prompt is None:
uncond_tokens = [""] * batch_size
elif type(prompt) is not type(negative_prompt):
raise TypeError(
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
f" {type(prompt)}."
)
elif isinstance(negative_prompt, str):
uncond_tokens = [negative_prompt]
elif batch_size != len(negative_prompt):
raise ValueError(
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
" the batch size of `prompt`."
)
else:
uncond_tokens = negative_prompt
max_length = text_input_ids.shape[-1]
uncond_input = self.tokenizer(
uncond_tokens,
padding="max_length",
max_length=max_length,
truncation=True,
return_tensors="pt",
)
if (
hasattr(self.text_encoder.config, "use_attention_mask")
and self.text_encoder.config.use_attention_mask
):
attention_mask = uncond_input.attention_mask.to(device)
else:
attention_mask = None
uncond_embeddings = self.text_encoder(
uncond_input.input_ids.to(device),
attention_mask=attention_mask,
)
uncond_embeddings = uncond_embeddings[0]
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
seq_len = uncond_embeddings.shape[1]
uncond_embeddings = uncond_embeddings.repeat(1, num_videos_per_prompt, 1)
uncond_embeddings = uncond_embeddings.view(
batch_size * num_videos_per_prompt, seq_len, -1
)
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
return text_embeddings
def interpolate_latents(
self, latents: torch.Tensor, interpolation_factor: int, device
):
if interpolation_factor < 2:
return latents
new_latents = torch.zeros(
(
latents.shape[0],
latents.shape[1],
((latents.shape[2] - 1) * interpolation_factor) + 1,
latents.shape[3],
latents.shape[4],
),
device=latents.device,
dtype=latents.dtype,
)
org_video_length = latents.shape[2]
rate = [i / interpolation_factor for i in range(interpolation_factor)][1:]
new_index = 0
v0 = None
v1 = None
for i0, i1 in zip(range(org_video_length), range(org_video_length)[1:]):
v0 = latents[:, :, i0, :, :]
v1 = latents[:, :, i1, :, :]
new_latents[:, :, new_index, :, :] = v0
new_index += 1
for f in rate:
v = get_tensor_interpolation_method()(
v0.to(device=device), v1.to(device=device), f
)
new_latents[:, :, new_index, :, :] = v.to(latents.device)
new_index += 1
new_latents[:, :, new_index, :, :] = v1
new_index += 1
return new_latents
@torch.no_grad()
def __call__(
self,
ref_image,
pose_images,
width,
height,
video_length,
num_inference_steps,
guidance_scale,
num_images_per_prompt=1,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
output_type: Optional[str] = "tensor",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: Optional[int] = 1,
context_schedule="uniform",
context_frames=24,
context_stride=1,
context_overlap=4,
context_batch_size=1,
interpolation_factor=1,
**kwargs,
):
# Default height and width to unet
height = height or self.unet.config.sample_size * self.vae_scale_factor
width = width or self.unet.config.sample_size * self.vae_scale_factor
device = self._execution_device
do_classifier_free_guidance = guidance_scale > 1.0
# Prepare timesteps
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.scheduler.timesteps
batch_size = 1
# Prepare clip image embeds
clip_image = self.clip_image_processor.preprocess(
ref_image.resize((224, 224)), return_tensors="pt"
).pixel_values
clip_image_embeds = self.image_encoder(
clip_image.to(device, dtype=self.image_encoder.dtype)
).image_embeds
encoder_hidden_states = clip_image_embeds.unsqueeze(1)
uncond_encoder_hidden_states = torch.zeros_like(encoder_hidden_states)
if do_classifier_free_guidance:
encoder_hidden_states = torch.cat(
[uncond_encoder_hidden_states, encoder_hidden_states], dim=0
)
reference_control_writer = ReferenceAttentionControl(
self.reference_unet,
do_classifier_free_guidance=do_classifier_free_guidance,
mode="write",
batch_size=batch_size,
fusion_blocks="full",
)
reference_control_reader = ReferenceAttentionControl(
self.denoising_unet,
do_classifier_free_guidance=do_classifier_free_guidance,
mode="read",
batch_size=batch_size,
fusion_blocks="full",
)
num_channels_latents = self.denoising_unet.in_channels
latents = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
width,
height,
video_length,
clip_image_embeds.dtype,
device,
generator,
)
# Prepare extra step kwargs.
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
# Prepare ref image latents
ref_image_tensor = self.ref_image_processor.preprocess(
ref_image, height=height, width=width
) # (bs, c, width, height)
ref_image_tensor = ref_image_tensor.to(
dtype=self.vae.dtype, device=self.vae.device
)
ref_image_latents = self.vae.encode(ref_image_tensor).latent_dist.mean
ref_image_latents = ref_image_latents * 0.18215 # (b, 4, h, w)
# Prepare a list of pose condition images
pose_cond_tensor_list = []
for pose_image in pose_images:
pose_cond_tensor = self.cond_image_processor.preprocess(
pose_image, height=height, width=width
)
pose_cond_tensor = pose_cond_tensor.unsqueeze(2) # (bs, c, 1, h, w)
pose_cond_tensor_list.append(pose_cond_tensor)
pose_cond_tensor = torch.cat(pose_cond_tensor_list, dim=2) # (bs, c, t, h, w)
pose_cond_tensor = pose_cond_tensor.to(
device=device, dtype=self.pose_guider.dtype
)
pose_fea = self.pose_guider(pose_cond_tensor)
context_scheduler = get_context_scheduler(context_schedule)
# denoising loop
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
noise_pred = torch.zeros(
(
latents.shape[0] * (2 if do_classifier_free_guidance else 1),
*latents.shape[1:],
),
device=latents.device,
dtype=latents.dtype,
)
counter = torch.zeros(
(1, 1, latents.shape[2], 1, 1),
device=latents.device,
dtype=latents.dtype,
)
# 1. Forward reference image
if i == 0:
self.reference_unet(
ref_image_latents.repeat(
(2 if do_classifier_free_guidance else 1), 1, 1, 1
),
torch.zeros_like(t),
# t,
encoder_hidden_states=encoder_hidden_states,
return_dict=False,
)
reference_control_reader.update(reference_control_writer)
context_queue = list(
context_scheduler(
0,
num_inference_steps,
latents.shape[2],
context_frames,
context_stride,
0,
)
)
num_context_batches = math.ceil(len(context_queue) / context_batch_size)
context_queue = list(
context_scheduler(
0,
num_inference_steps,
latents.shape[2],
context_frames,
context_stride,
context_overlap,
)
)
num_context_batches = math.ceil(len(context_queue) / context_batch_size)
global_context = []
for i in range(num_context_batches):
global_context.append(
context_queue[
i * context_batch_size : (i + 1) * context_batch_size
]
)
for context in global_context:
# 3.1 expand the latents if we are doing classifier free guidance
latent_model_input = (
torch.cat([latents[:, :, c] for c in context])
.to(device)
.repeat(2 if do_classifier_free_guidance else 1, 1, 1, 1, 1)
)
latent_model_input = self.scheduler.scale_model_input(
latent_model_input, t
)
b, c, f, h, w = latent_model_input.shape
latent_pose_input = torch.cat(
[pose_fea[:, :, c] for c in context]
).repeat(2 if do_classifier_free_guidance else 1, 1, 1, 1, 1)
pred = self.denoising_unet(
latent_model_input,
t,
encoder_hidden_states=encoder_hidden_states[:b],
pose_cond_fea=latent_pose_input,
return_dict=False,
)[0]
for j, c in enumerate(context):
noise_pred[:, :, c] = noise_pred[:, :, c] + pred
counter[:, :, c] = counter[:, :, c] + 1
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = (noise_pred / counter).chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (
noise_pred_text - noise_pred_uncond
)
latents = self.scheduler.step(
noise_pred, t, latents, **extra_step_kwargs
).prev_sample
if i == len(timesteps) - 1 or (
(i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
):
progress_bar.update()
if callback is not None and i % callback_steps == 0:
step_idx = i // getattr(self.scheduler, "order", 1)
callback(step_idx, t, latents)
reference_control_reader.clear()
reference_control_writer.clear()
if interpolation_factor > 0:
latents = self.interpolate_latents(latents, interpolation_factor, device)
# Post-processing
images = self.decode_latents(latents) # (b, c, f, h, w)
# Convert to tensor
if output_type == "tensor":
images = torch.from_numpy(images)
if not return_dict:
return images
return Pose2VideoPipelineOutput(videos=images)