File size: 8,070 Bytes
7a11626
10528ca
 
7a11626
10528ca
7a11626
 
 
 
 
 
 
 
 
 
 
 
10528ca
7a11626
10528ca
 
7a11626
10528ca
7a11626
 
 
 
 
 
 
10528ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a11626
10528ca
7a11626
10528ca
7a11626
10528ca
 
 
 
 
7a11626
10528ca
7a11626
10528ca
 
7a11626
10528ca
 
 
 
7a11626
10528ca
 
 
7a11626
10528ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a11626
10528ca
7a11626
10528ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import numpy as np
import time
from pathlib import Path
import torch
import imageio

from my.utils import tqdm
from my.utils.seed import seed_everything

from run_img_sampling import SD, StableDiffusion
from misc import torch_samps_to_imgs
from pose import PoseConfig

from run_nerf import VoxConfig
from voxnerf.utils import every
from voxnerf.vis import stitch_vis, bad_vis as nerf_vis

from run_sjc import render_one_view, tsr_stats

import gradio as gr
import gc

device_glb = torch.device("cuda")

def vis_routine(y, depth):
    pane = nerf_vis(y, depth, final_H=256)
    im = torch_samps_to_imgs(y)[0]
    depth = depth.cpu().numpy()
    return pane, im, depth

with gr.Blocks(css=".gradio-container {max-width: 512px; margin: auto;}") as demo:
    # title
    gr.Markdown('[Score Jacobian Chaining](https://github.com/pals-ttic/sjc) Lifting Pretrained 2D Diffusion Models for 3D Generation')

    # inputs
    prompt = gr.Textbox(label="Prompt", max_lines=1, value="A high quality photo of a delicious burger")
    iters = gr.Slider(label="Iters", minimum=1000, maximum=20000, value=10000, step=100)
    seed = gr.Slider(label="Seed", minimum=0, maximum=2147483647, step=1, randomize=True)
    button = gr.Button('Generate')

    # outputs
    image = gr.Image(label="image", visible=True)
    depth = gr.Image(label="depth", visible=True)
    video = gr.Video(label="video", visible=False)
    logs = gr.Textbox(label="logging")

    def submit(prompt, iters, seed):
        start_t = time.time()
        seed_everything(seed)
        # cfgs = {'gddpm': {'model': 'm_lsun_256', 'lsun_cat': 'bedroom', 'imgnet_cat': -1}, 'sd': {'variant': 'v1', 'v2_highres': False, 'prompt': 'A high quality photo of a delicious burger', 'scale': 100.0, 'precision': 'autocast'}, 'lr': 0.05, 'n_steps': 10000, 'emptiness_scale': 10, 'emptiness_weight': 10000, 'emptiness_step': 0.5, 'emptiness_multiplier': 20.0, 'depth_weight': 0, 'var_red': True}
        pose = PoseConfig(rend_hw=64, FoV=60.0, R=1.5)
        poser = pose.make()
        sd_model = SD(variant='v1', v2_highres=False, prompt=prompt, scale=100.0, precision='autocast')
        model = sd_model.make()
        vox  = VoxConfig(
                model_type="V_SD", grid_size=100, density_shift=-1.0, c=4,
                blend_bg_texture=True, bg_texture_hw=4,
                bbox_len=1.0)
        vox = vox.make()

        lr = 0.05
        n_steps = iters
        emptiness_scale = 10
        emptiness_weight = 10000
        emptiness_step = 0.5
        emptiness_multiplier = 20.0
        depth_weight = 0
        var_red = True

        assert model.samps_centered()
        _, target_H, target_W = model.data_shape()
        bs = 1
        aabb = vox.aabb.T.cpu().numpy()
        vox = vox.to(device_glb)
        opt = torch.optim.Adamax(vox.opt_params(), lr=lr)

        H, W = poser.H, poser.W
        Ks, poses, prompt_prefixes = poser.sample_train(n_steps)

        ts = model.us[30:-10]

        same_noise = torch.randn(1, 4, H, W, device=model.device).repeat(bs, 1, 1, 1)

        with tqdm(total=n_steps) as pbar:
            for i in range(n_steps):

                p = f"{prompt_prefixes[i]} {model.prompt}"
                score_conds = model.prompts_emb([p])

                y, depth, ws = render_one_view(vox, aabb, H, W, Ks[i], poses[i], return_w=True)

                if isinstance(model, StableDiffusion):
                    pass
                else:
                    y = torch.nn.functional.interpolate(y, (target_H, target_W), mode='bilinear')

                opt.zero_grad()

                with torch.no_grad():
                    chosen_σs = np.random.choice(ts, bs, replace=False)
                    chosen_σs = chosen_σs.reshape(-1, 1, 1, 1)
                    chosen_σs = torch.as_tensor(chosen_σs, device=model.device, dtype=torch.float32)
                    # chosen_σs = us[i]

                    noise = torch.randn(bs, *y.shape[1:], device=model.device)

                    zs = y + chosen_σs * noise
                    Ds = model.denoise(zs, chosen_σs, **score_conds)

                    if var_red:
                        grad = (Ds - y) / chosen_σs
                    else:
                        grad = (Ds - zs) / chosen_σs

                    grad = grad.mean(0, keepdim=True)

                y.backward(-grad, retain_graph=True)

                if depth_weight > 0:
                    center_depth = depth[7:-7, 7:-7]
                    border_depth_mean = (depth.sum() - center_depth.sum()) / (64*64-50*50)
                    center_depth_mean = center_depth.mean()
                    depth_diff = center_depth_mean - border_depth_mean
                    depth_loss = - torch.log(depth_diff + 1e-12)
                    depth_loss = depth_weight * depth_loss
                    depth_loss.backward(retain_graph=True)

                emptiness_loss = torch.log(1 + emptiness_scale * ws).mean()
                emptiness_loss = emptiness_weight * emptiness_loss
                if emptiness_step * n_steps <= i:
                    emptiness_loss *= emptiness_multiplier
                emptiness_loss.backward()

                opt.step()


                # metric.put_scalars()

                if every(pbar, percent=1):
                    with torch.no_grad():
                        if isinstance(model, StableDiffusion):
                            y = model.decode(y)
                        pane, img, depth = vis_routine(y, depth)

                # TODO: Output pane, img and depth to Gradio

                pbar.update()
                pbar.set_description(p)

                yield {
                    image: gr.update(value=img, visible=True),
                    depth: gr.update(value=depth, visible=True),
                    video: gr.update(visible=False),
                    logs: str(tsr_stats(y)),
                }

            # TODO: Save Checkpoint
            ckpt = vox.state_dict()
            H, W = poser.H, poser.W
            vox.eval()
            K, poses = poser.sample_test(100)

            aabb = vox.aabb.T.cpu().numpy()
            vox = vox.to(device_glb)

            num_imgs = len(poses)

            for i in (pbar := tqdm(range(num_imgs))):

                pose = poses[i]
                y, depth = render_one_view(vox, aabb, H, W, K, pose)
                if isinstance(model, StableDiffusion):
                    y = model.decode(y)
                pane, img, depth = vis_routine(y, depth)

                # Save img to output
                img.save(f"output/{i}.png")

                yield {
                    image: gr.update(value=img, visible=True),
                    depth: gr.update(value=depth, visible=True),
                    video: gr.update(visible=False),
                    logs: str(tsr_stats(y)),
                }

            output_video = "view_seq.mp4"

            def export_movie(seqs, fname, fps=30):
                fname = Path(fname)
                if fname.suffix == "":
                    fname = fname.with_suffix(".mp4")
                writer = imageio.get_writer(fname, fps=fps)
                for img in seqs:
                    writer.append_data(img)
                writer.close()

            def stitch_vis(save_fn, img_fnames, fps=10):
                figs = [imageio.imread(fn) for fn in img_fnames]
                export_movie(figs, save_fn, fps)

            stitch_vis(output_video, [f"output/{i}.png" for i in range(num_imgs)])

            end_t = time.time()

            yield {
                image: gr.update(value=img, visible=False),
                depth: gr.update(value=depth, visible=False),
                video: gr.update(value=output_video, visible=True),
                logs: f"Generation Finished in {(end_t - start_t)/ 60:.4f} minutes!",
            }

    button.click(
            submit,
            [prompt, iters, seed],
            [image, depth, video, logs]
    )

# concurrency_count: only allow ONE running progress, else GPU will OOM.
demo.queue(concurrency_count=1)
demo.launch()