Spaces:
Build error
Build error
File size: 15,497 Bytes
7a11626 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 |
import os, yaml, pickle, shutil, tarfile, glob
import cv2
import albumentations
import PIL
import numpy as np
import torchvision.transforms.functional as TF
from omegaconf import OmegaConf
from functools import partial
from PIL import Image
from tqdm import tqdm
from torch.utils.data import Dataset, Subset
import taming.data.utils as tdu
from taming.data.imagenet import str_to_indices, give_synsets_from_indices, download, retrieve
from taming.data.imagenet import ImagePaths
from ldm.modules.image_degradation import degradation_fn_bsr, degradation_fn_bsr_light
def synset2idx(path_to_yaml="data/index_synset.yaml"):
with open(path_to_yaml) as f:
di2s = yaml.load(f)
return dict((v,k) for k,v in di2s.items())
class ImageNetBase(Dataset):
def __init__(self, config=None):
self.config = config or OmegaConf.create()
if not type(self.config)==dict:
self.config = OmegaConf.to_container(self.config)
self.keep_orig_class_label = self.config.get("keep_orig_class_label", False)
self.process_images = True # if False we skip loading & processing images and self.data contains filepaths
self._prepare()
self._prepare_synset_to_human()
self._prepare_idx_to_synset()
self._prepare_human_to_integer_label()
self._load()
def __len__(self):
return len(self.data)
def __getitem__(self, i):
return self.data[i]
def _prepare(self):
raise NotImplementedError()
def _filter_relpaths(self, relpaths):
ignore = set([
"n06596364_9591.JPEG",
])
relpaths = [rpath for rpath in relpaths if not rpath.split("/")[-1] in ignore]
if "sub_indices" in self.config:
indices = str_to_indices(self.config["sub_indices"])
synsets = give_synsets_from_indices(indices, path_to_yaml=self.idx2syn) # returns a list of strings
self.synset2idx = synset2idx(path_to_yaml=self.idx2syn)
files = []
for rpath in relpaths:
syn = rpath.split("/")[0]
if syn in synsets:
files.append(rpath)
return files
else:
return relpaths
def _prepare_synset_to_human(self):
SIZE = 2655750
URL = "https://heibox.uni-heidelberg.de/f/9f28e956cd304264bb82/?dl=1"
self.human_dict = os.path.join(self.root, "synset_human.txt")
if (not os.path.exists(self.human_dict) or
not os.path.getsize(self.human_dict)==SIZE):
download(URL, self.human_dict)
def _prepare_idx_to_synset(self):
URL = "https://heibox.uni-heidelberg.de/f/d835d5b6ceda4d3aa910/?dl=1"
self.idx2syn = os.path.join(self.root, "index_synset.yaml")
if (not os.path.exists(self.idx2syn)):
download(URL, self.idx2syn)
def _prepare_human_to_integer_label(self):
URL = "https://heibox.uni-heidelberg.de/f/2362b797d5be43b883f6/?dl=1"
self.human2integer = os.path.join(self.root, "imagenet1000_clsidx_to_labels.txt")
if (not os.path.exists(self.human2integer)):
download(URL, self.human2integer)
with open(self.human2integer, "r") as f:
lines = f.read().splitlines()
assert len(lines) == 1000
self.human2integer_dict = dict()
for line in lines:
value, key = line.split(":")
self.human2integer_dict[key] = int(value)
def _load(self):
with open(self.txt_filelist, "r") as f:
self.relpaths = f.read().splitlines()
l1 = len(self.relpaths)
self.relpaths = self._filter_relpaths(self.relpaths)
print("Removed {} files from filelist during filtering.".format(l1 - len(self.relpaths)))
self.synsets = [p.split("/")[0] for p in self.relpaths]
self.abspaths = [os.path.join(self.datadir, p) for p in self.relpaths]
unique_synsets = np.unique(self.synsets)
class_dict = dict((synset, i) for i, synset in enumerate(unique_synsets))
if not self.keep_orig_class_label:
self.class_labels = [class_dict[s] for s in self.synsets]
else:
self.class_labels = [self.synset2idx[s] for s in self.synsets]
with open(self.human_dict, "r") as f:
human_dict = f.read().splitlines()
human_dict = dict(line.split(maxsplit=1) for line in human_dict)
self.human_labels = [human_dict[s] for s in self.synsets]
labels = {
"relpath": np.array(self.relpaths),
"synsets": np.array(self.synsets),
"class_label": np.array(self.class_labels),
"human_label": np.array(self.human_labels),
}
if self.process_images:
self.size = retrieve(self.config, "size", default=256)
self.data = ImagePaths(self.abspaths,
labels=labels,
size=self.size,
random_crop=self.random_crop,
)
else:
self.data = self.abspaths
class ImageNetTrain(ImageNetBase):
NAME = "ILSVRC2012_train"
URL = "http://www.image-net.org/challenges/LSVRC/2012/"
AT_HASH = "a306397ccf9c2ead27155983c254227c0fd938e2"
FILES = [
"ILSVRC2012_img_train.tar",
]
SIZES = [
147897477120,
]
def __init__(self, process_images=True, data_root=None, **kwargs):
self.process_images = process_images
self.data_root = data_root
super().__init__(**kwargs)
def _prepare(self):
if self.data_root:
self.root = os.path.join(self.data_root, self.NAME)
else:
cachedir = os.environ.get("XDG_CACHE_HOME", os.path.expanduser("~/.cache"))
self.root = os.path.join(cachedir, "autoencoders/data", self.NAME)
self.datadir = os.path.join(self.root, "data")
self.txt_filelist = os.path.join(self.root, "filelist.txt")
self.expected_length = 1281167
self.random_crop = retrieve(self.config, "ImageNetTrain/random_crop",
default=True)
if not tdu.is_prepared(self.root):
# prep
print("Preparing dataset {} in {}".format(self.NAME, self.root))
datadir = self.datadir
if not os.path.exists(datadir):
path = os.path.join(self.root, self.FILES[0])
if not os.path.exists(path) or not os.path.getsize(path)==self.SIZES[0]:
import academictorrents as at
atpath = at.get(self.AT_HASH, datastore=self.root)
assert atpath == path
print("Extracting {} to {}".format(path, datadir))
os.makedirs(datadir, exist_ok=True)
with tarfile.open(path, "r:") as tar:
tar.extractall(path=datadir)
print("Extracting sub-tars.")
subpaths = sorted(glob.glob(os.path.join(datadir, "*.tar")))
for subpath in tqdm(subpaths):
subdir = subpath[:-len(".tar")]
os.makedirs(subdir, exist_ok=True)
with tarfile.open(subpath, "r:") as tar:
tar.extractall(path=subdir)
filelist = glob.glob(os.path.join(datadir, "**", "*.JPEG"))
filelist = [os.path.relpath(p, start=datadir) for p in filelist]
filelist = sorted(filelist)
filelist = "\n".join(filelist)+"\n"
with open(self.txt_filelist, "w") as f:
f.write(filelist)
tdu.mark_prepared(self.root)
class ImageNetValidation(ImageNetBase):
NAME = "ILSVRC2012_validation"
URL = "http://www.image-net.org/challenges/LSVRC/2012/"
AT_HASH = "5d6d0df7ed81efd49ca99ea4737e0ae5e3a5f2e5"
VS_URL = "https://heibox.uni-heidelberg.de/f/3e0f6e9c624e45f2bd73/?dl=1"
FILES = [
"ILSVRC2012_img_val.tar",
"validation_synset.txt",
]
SIZES = [
6744924160,
1950000,
]
def __init__(self, process_images=True, data_root=None, **kwargs):
self.data_root = data_root
self.process_images = process_images
super().__init__(**kwargs)
def _prepare(self):
if self.data_root:
self.root = os.path.join(self.data_root, self.NAME)
else:
cachedir = os.environ.get("XDG_CACHE_HOME", os.path.expanduser("~/.cache"))
self.root = os.path.join(cachedir, "autoencoders/data", self.NAME)
self.datadir = os.path.join(self.root, "data")
self.txt_filelist = os.path.join(self.root, "filelist.txt")
self.expected_length = 50000
self.random_crop = retrieve(self.config, "ImageNetValidation/random_crop",
default=False)
if not tdu.is_prepared(self.root):
# prep
print("Preparing dataset {} in {}".format(self.NAME, self.root))
datadir = self.datadir
if not os.path.exists(datadir):
path = os.path.join(self.root, self.FILES[0])
if not os.path.exists(path) or not os.path.getsize(path)==self.SIZES[0]:
import academictorrents as at
atpath = at.get(self.AT_HASH, datastore=self.root)
assert atpath == path
print("Extracting {} to {}".format(path, datadir))
os.makedirs(datadir, exist_ok=True)
with tarfile.open(path, "r:") as tar:
tar.extractall(path=datadir)
vspath = os.path.join(self.root, self.FILES[1])
if not os.path.exists(vspath) or not os.path.getsize(vspath)==self.SIZES[1]:
download(self.VS_URL, vspath)
with open(vspath, "r") as f:
synset_dict = f.read().splitlines()
synset_dict = dict(line.split() for line in synset_dict)
print("Reorganizing into synset folders")
synsets = np.unique(list(synset_dict.values()))
for s in synsets:
os.makedirs(os.path.join(datadir, s), exist_ok=True)
for k, v in synset_dict.items():
src = os.path.join(datadir, k)
dst = os.path.join(datadir, v)
shutil.move(src, dst)
filelist = glob.glob(os.path.join(datadir, "**", "*.JPEG"))
filelist = [os.path.relpath(p, start=datadir) for p in filelist]
filelist = sorted(filelist)
filelist = "\n".join(filelist)+"\n"
with open(self.txt_filelist, "w") as f:
f.write(filelist)
tdu.mark_prepared(self.root)
class ImageNetSR(Dataset):
def __init__(self, size=None,
degradation=None, downscale_f=4, min_crop_f=0.5, max_crop_f=1.,
random_crop=True):
"""
Imagenet Superresolution Dataloader
Performs following ops in order:
1. crops a crop of size s from image either as random or center crop
2. resizes crop to size with cv2.area_interpolation
3. degrades resized crop with degradation_fn
:param size: resizing to size after cropping
:param degradation: degradation_fn, e.g. cv_bicubic or bsrgan_light
:param downscale_f: Low Resolution Downsample factor
:param min_crop_f: determines crop size s,
where s = c * min_img_side_len with c sampled from interval (min_crop_f, max_crop_f)
:param max_crop_f: ""
:param data_root:
:param random_crop:
"""
self.base = self.get_base()
assert size
assert (size / downscale_f).is_integer()
self.size = size
self.LR_size = int(size / downscale_f)
self.min_crop_f = min_crop_f
self.max_crop_f = max_crop_f
assert(max_crop_f <= 1.)
self.center_crop = not random_crop
self.image_rescaler = albumentations.SmallestMaxSize(max_size=size, interpolation=cv2.INTER_AREA)
self.pil_interpolation = False # gets reset later if incase interp_op is from pillow
if degradation == "bsrgan":
self.degradation_process = partial(degradation_fn_bsr, sf=downscale_f)
elif degradation == "bsrgan_light":
self.degradation_process = partial(degradation_fn_bsr_light, sf=downscale_f)
else:
interpolation_fn = {
"cv_nearest": cv2.INTER_NEAREST,
"cv_bilinear": cv2.INTER_LINEAR,
"cv_bicubic": cv2.INTER_CUBIC,
"cv_area": cv2.INTER_AREA,
"cv_lanczos": cv2.INTER_LANCZOS4,
"pil_nearest": PIL.Image.NEAREST,
"pil_bilinear": PIL.Image.BILINEAR,
"pil_bicubic": PIL.Image.BICUBIC,
"pil_box": PIL.Image.BOX,
"pil_hamming": PIL.Image.HAMMING,
"pil_lanczos": PIL.Image.LANCZOS,
}[degradation]
self.pil_interpolation = degradation.startswith("pil_")
if self.pil_interpolation:
self.degradation_process = partial(TF.resize, size=self.LR_size, interpolation=interpolation_fn)
else:
self.degradation_process = albumentations.SmallestMaxSize(max_size=self.LR_size,
interpolation=interpolation_fn)
def __len__(self):
return len(self.base)
def __getitem__(self, i):
example = self.base[i]
image = Image.open(example["file_path_"])
if not image.mode == "RGB":
image = image.convert("RGB")
image = np.array(image).astype(np.uint8)
min_side_len = min(image.shape[:2])
crop_side_len = min_side_len * np.random.uniform(self.min_crop_f, self.max_crop_f, size=None)
crop_side_len = int(crop_side_len)
if self.center_crop:
self.cropper = albumentations.CenterCrop(height=crop_side_len, width=crop_side_len)
else:
self.cropper = albumentations.RandomCrop(height=crop_side_len, width=crop_side_len)
image = self.cropper(image=image)["image"]
image = self.image_rescaler(image=image)["image"]
if self.pil_interpolation:
image_pil = PIL.Image.fromarray(image)
LR_image = self.degradation_process(image_pil)
LR_image = np.array(LR_image).astype(np.uint8)
else:
LR_image = self.degradation_process(image=image)["image"]
example["image"] = (image/127.5 - 1.0).astype(np.float32)
example["LR_image"] = (LR_image/127.5 - 1.0).astype(np.float32)
return example
class ImageNetSRTrain(ImageNetSR):
def __init__(self, **kwargs):
super().__init__(**kwargs)
def get_base(self):
with open("data/imagenet_train_hr_indices.p", "rb") as f:
indices = pickle.load(f)
dset = ImageNetTrain(process_images=False,)
return Subset(dset, indices)
class ImageNetSRValidation(ImageNetSR):
def __init__(self, **kwargs):
super().__init__(**kwargs)
def get_base(self):
with open("data/imagenet_val_hr_indices.p", "rb") as f:
indices = pickle.load(f)
dset = ImageNetValidation(process_images=False,)
return Subset(dset, indices)
|