File size: 8,933 Bytes
7a11626
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from my.registry import Registry

VOXRF_REGISTRY = Registry("VoxRF")


def to_grid_samp_coords(xyz_sampled, aabb):
    # output range is [-1, 1]
    aabbSize = aabb[1] - aabb[0]
    return (xyz_sampled - aabb[0]) / aabbSize * 2 - 1


def add_non_state_tsr(nn_module, key, val):
    # tsr added here does not appear in module's state_dict;
    nn_module.register_buffer(key, val, persistent=False)


@VOXRF_REGISTRY.register()
class VoxRF(nn.Module):
    def __init__(
        self, aabb, grid_size, step_ratio=0.5,
        density_shift=-10, ray_march_weight_thres=0.0001, c=3,
        blend_bg_texture=True, bg_texture_hw=64
    ):
        assert aabb.shape == (2, 3)
        xyz = grid_size
        del grid_size

        super().__init__()
        add_non_state_tsr(self, "aabb", torch.tensor(aabb, dtype=torch.float32))
        add_non_state_tsr(self, "grid_size", torch.LongTensor(xyz))

        self.density_shift = density_shift
        self.ray_march_weight_thres = ray_march_weight_thres
        self.step_ratio = step_ratio

        zyx = xyz[::-1]
        self.density = torch.nn.Parameter(
            torch.zeros((1, 1, *zyx))
        )
        self.color = torch.nn.Parameter(
            torch.randn((1, c, *zyx))
        )

        self.blend_bg_texture = blend_bg_texture
        self.bg = torch.nn.Parameter(
            torch.randn((1, c, bg_texture_hw, bg_texture_hw))
        )

        self.c = c
        self.alphaMask = None
        self.feats2color = lambda feats: torch.sigmoid(feats)

        self.d_scale = torch.nn.Parameter(torch.tensor(0.0))

    @property
    def device(self):
        return self.density.device

    def compute_density_feats(self, xyz_sampled):
        xyz_sampled = to_grid_samp_coords(xyz_sampled, self.aabb)
        n = xyz_sampled.shape[0]
        xyz_sampled = xyz_sampled.reshape(1, n, 1, 1, 3)
        σ = F.grid_sample(self.density, xyz_sampled).view(n)
        # We notice that DreamFusion also uses an exp scaling on densities.
        # The technique here is developed BEFORE DreamFusion came out,
        # and forms part of our upcoming technical report discussing invariant
        # scaling for volume rendering. The reseach was presented to our
        # funding agency (TRI) on Aug. 25th, and discussed with a few researcher friends
        # during the period.
        σ = σ * torch.exp(self.d_scale)
        σ = F.softplus(σ + self.density_shift)
        return σ

    def compute_app_feats(self, xyz_sampled):
        xyz_sampled = to_grid_samp_coords(xyz_sampled, self.aabb)
        n = xyz_sampled.shape[0]
        xyz_sampled = xyz_sampled.reshape(1, n, 1, 1, 3)
        feats = F.grid_sample(self.color, xyz_sampled).view(self.c, n)
        feats = feats.T
        return feats

    def compute_bg(self, uv):
        n = uv.shape[0]
        uv = uv.reshape(1, n, 1, 2)
        feats = F.grid_sample(self.bg, uv).view(self.c, n)
        feats = feats.T
        return feats

    def get_per_voxel_length(self):
        aabb_size = self.aabb[1] - self.aabb[0]
        # NOTE I am not -1 on grid_size here;
        # I interpret a voxel as a square and val sits at the center; like pixel
        # this is consistent with align_corners=False
        vox_xyz_length = aabb_size / self.grid_size
        return vox_xyz_length

    def get_num_samples(self, max_size=None):
        # funny way to set step size; whatever
        unit = torch.mean(self.get_per_voxel_length())
        step_size = unit * self.step_ratio
        step_size = step_size.item()  # get the float

        if max_size is None:
            aabb_size = self.aabb[1] - self.aabb[0]
            aabb_diag = torch.norm(aabb_size)
            max_size = aabb_diag

        num_samples = int((max_size / step_size).item()) + 1
        return num_samples, step_size

    @torch.no_grad()
    def resample(self, target_xyz: list):
        zyx = target_xyz[::-1]
        self.density = self._resamp_param(self.density, zyx)
        self.color = self._resamp_param(self.color, zyx)
        target_xyz = torch.LongTensor(target_xyz).to(self.aabb.device)
        add_non_state_tsr(self, "grid_size", target_xyz)

    @staticmethod
    def _resamp_param(param, target_size):
        return torch.nn.Parameter(F.interpolate(
            param.data, size=target_size, mode="trilinear"
        ))

    @torch.no_grad()
    def compute_volume_alpha(self):
        xyz = self.grid_size.tolist()
        unit_xyz = self.get_per_voxel_length()
        xs, ys, zs = torch.meshgrid(
            *[torch.arange(nd) for nd in xyz], indexing="ij"
        )
        pts = torch.stack([xs, ys, zs], dim=-1).to(unit_xyz.device)  # [nx, ny, nz, 3]
        pts = self.aabb[0] + (pts + 0.5) * unit_xyz
        pts = pts.reshape(-1, 3)
        # could potentially filter with alpha mask itself if exists
        σ = self.compute_density_feats(pts)
        d = torch.mean(unit_xyz)
        α = 1 - torch.exp(-σ * d)
        α = rearrange(α.view(xyz), "x y z -> 1 1 z y x")
        α = α.contiguous()
        return α

    @torch.no_grad()
    def make_alpha_mask(self):
        α = self.compute_volume_alpha()
        ks = 3
        α = F.max_pool3d(α, kernel_size=ks, padding=ks // 2, stride=1)
        α = (α > 0.08).float()
        vol_mask = AlphaMask(self.aabb, α)
        self.alphaMask = vol_mask

    def state_dict(self, *args, **kwargs):
        state = super().state_dict(*args, **kwargs)
        if self.alphaMask is not None:
            state['alpha_mask'] = self.alphaMask.export_state()
        return state

    def load_state_dict(self, state_dict):
        if 'alpha_mask' in state_dict.keys():
            state = state_dict.pop("alpha_mask")
            self.alphaMask = AlphaMask.from_state(state)
        return super().load_state_dict(state_dict, strict=True)


@VOXRF_REGISTRY.register()
class V_SJC(VoxRF):
    """
    For SJC, when sampling density σ, add a gaussian ball offset
    """
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        # rendering color in [-1, 1] range, since score models all operate on centered img
        self.feats2color = lambda feats: torch.sigmoid(feats) * 2 - 1

    def opt_params(self):
        groups = []
        for name, param in self.named_parameters():
            # print(f"{name} {param.shape}")
            grp = {"params": param}
            if name in ["bg"]:
                grp["lr"] = 0.0001
            if name in ["density"]:
                # grp["lr"] = 0.
                pass
            groups.append(grp)
        return groups

    def annealed_opt_params(self, base_lr, σ):
        groups = []
        for name, param in self.named_parameters():
            # print(f"{name} {param.shape}")
            grp = {"params": param, "lr": base_lr * σ}
            if name in ["density"]:
                grp["lr"] = base_lr * σ
            if name in ["d_scale"]:
                grp["lr"] = 0.
            if name in ["color"]:
                grp["lr"] = base_lr * σ
            if name in ["bg"]:
                grp["lr"] = 0.01
            groups.append(grp)
        return groups


@VOXRF_REGISTRY.register()
class V_SD(V_SJC):
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        # rendering in feature space; no sigmoid thresholding
        self.feats2color = lambda feats: feats


class AlphaMask(nn.Module):
    def __init__(self, aabb, alphas):
        super().__init__()
        zyx = list(alphas.shape[-3:])
        add_non_state_tsr(self, "alphas", alphas.view(1, 1, *zyx))
        xyz = zyx[::-1]
        add_non_state_tsr(self, "grid_size", torch.LongTensor(xyz))
        add_non_state_tsr(self, "aabb", aabb)

    def sample_alpha(self, xyz_pts):
        xyz_pts = to_grid_samp_coords(xyz_pts, self.aabb)
        xyz_pts = xyz_pts.view(1, -1, 1, 1, 3)
        α = F.grid_sample(self.alphas, xyz_pts).view(-1)
        return α

    def export_state(self):
        state = {}
        alphas = self.alphas.bool().cpu().numpy()
        state['shape'] = alphas.shape
        state['mask'] = np.packbits(alphas.reshape(-1))
        state['aabb'] = self.aabb.cpu()
        return state

    @classmethod
    def from_state(cls, state):
        shape = state['shape']
        mask = state['mask']
        aabb = state['aabb']

        length = np.prod(shape)
        alphas = torch.from_numpy(
            np.unpackbits(mask)[:length].reshape(shape)
        )
        amask = cls(aabb, alphas.float())
        return amask


def test():
    device = torch.device("cuda:1")

    aabb = 1.5 * np.array([
        [-1, -1, -1],
        [1, 1, 1]
    ])
    model = VoxRF(aabb, [10, 20, 30])
    model.to(device)
    print(model.density.shape)
    print(model.grid_size)

    return


if __name__ == "__main__":
    test()