diff --git a/.gitattributes b/.gitattributes
index c7d9f3332a950355d5a77d85000f05e6f45435ea..ccd49fada7fcd83326f14a5690b96f71e4180b4d 100644
--- a/.gitattributes
+++ b/.gitattributes
@@ -32,3 +32,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
*.zip filter=lfs diff=lfs merge=lfs -text
*.zst filter=lfs diff=lfs merge=lfs -text
*tfevents* filter=lfs diff=lfs merge=lfs -text
+release/diffusion_ckpts/guided_ddpm/models/lsun_bedroom.pt filter=lfs diff=lfs merge=lfs -text
+release/diffusion_ckpts/guided_ddpm/models/lsun_ffhq.pt filter=lfs diff=lfs merge=lfs -text
+release/diffusion_ckpts/stable_diffusion/sd-v1-5.ckpt filter=lfs diff=lfs merge=lfs -text
diff --git a/.gitignore b/.gitignore
new file mode 100644
index 0000000000000000000000000000000000000000..40097c6e60fb8aa3f2905a015929e7bcd84716f3
--- /dev/null
+++ b/.gitignore
@@ -0,0 +1,150 @@
+*.png
+
+# sd1/
+# sd2/
+
+sde/
+
+notebooks/
+out/
+slurm_outputs/
+
+FID/torch_utils/
+FID/dnnlib/
+
+# Byte-compiled / optimized / DLL files
+__pycache__/
+*.py[cod]
+*$py.class
+
+# C extensions
+*.so
+
+# Distribution / packaging
+.Python
+build/
+develop-eggs/
+dist/
+downloads/
+eggs/
+.eggs/
+lib/
+lib64/
+parts/
+sdist/
+var/
+wheels/
+pip-wheel-metadata/
+share/python-wheels/
+*.egg-info/
+.installed.cfg
+*.egg
+MANIFEST
+
+# PyInstaller
+# Usually these files are written by a python script from a template
+# before PyInstaller builds the exe, so as to inject date/other infos into it.
+*.manifest
+*.spec
+
+# Installer logs
+pip-log.txt
+pip-delete-this-directory.txt
+
+# Unit test / coverage reports
+htmlcov/
+.tox/
+.nox/
+.coverage
+.coverage.*
+.cache
+nosetests.xml
+coverage.xml
+*.cover
+*.py,cover
+.hypothesis/
+.pytest_cache/
+
+# Translations
+*.mo
+*.pot
+
+# Django stuff:
+*.log
+local_settings.py
+db.sqlite3
+db.sqlite3-journal
+
+# Flask stuff:
+instance/
+.webassets-cache
+
+# Scrapy stuff:
+.scrapy
+
+# Sphinx documentation
+docs/_build/
+
+# PyBuilder
+target/
+
+# Jupyter Notebook
+.ipynb_checkpoints
+
+# IPython
+profile_default/
+ipython_config.py
+
+# pyenv
+.python-version
+
+# pipenv
+# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
+# However, in case of collaboration, if having platform-specific dependencies or dependencies
+# having no cross-platform support, pipenv may install dependencies that don't work, or not
+# install all needed dependencies.
+#Pipfile.lock
+
+# PEP 582; used by e.g. github.com/David-OConnor/pyflow
+__pypackages__/
+
+# Celery stuff
+celerybeat-schedule
+celerybeat.pid
+
+# SageMath parsed files
+*.sage.py
+
+# Environments
+.env
+.venv
+env/
+venv/
+ENV/
+env.bak/
+venv.bak/
+
+# Spyder project settings
+.spyderproject
+.spyproject
+
+# Rope project settings
+.ropeproject
+
+# mkdocs documentation
+/site
+
+# mypy
+.mypy_cache/
+.dmypy.json
+dmypy.json
+
+# Pyre type checker
+.pyre/
+
+ckpt/
+depth/
+img/
+test*/
+view/
+vis/
\ No newline at end of file
diff --git a/LICENSE b/LICENSE
new file mode 100644
index 0000000000000000000000000000000000000000..be03be3449caaa8aab5c9d22d9cc447795d14db5
--- /dev/null
+++ b/LICENSE
@@ -0,0 +1,82 @@
+Copyright (c) 2022 Score Jacobian Chaining authors
+
+CreativeML Open RAIL-M
+dated August 22, 2022
+
+Section I: PREAMBLE
+
+Multimodal generative models are being widely adopted and used, and have the potential to transform the way artists, among other individuals, conceive and benefit from AI or ML technologies as a tool for content creation.
+
+Notwithstanding the current and potential benefits that these artifacts can bring to society at large, there are also concerns about potential misuses of them, either due to their technical limitations or ethical considerations.
+
+In short, this license strives for both the open and responsible downstream use of the accompanying model. When it comes to the open character, we took inspiration from open source permissive licenses regarding the grant of IP rights. Referring to the downstream responsible use, we added use-based restrictions not permitting the use of the Model in very specific scenarios, in order for the licensor to be able to enforce the license in case potential misuses of the Model may occur. At the same time, we strive to promote open and responsible research on generative models for art and content generation.
+
+Even though downstream derivative versions of the model could be released under different licensing terms, the latter will always have to include - at minimum - the same use-based restrictions as the ones in the original license (this license). We believe in the intersection between open and responsible AI development; thus, this License aims to strike a balance between both in order to enable responsible open-science in the field of AI.
+
+This License governs the use of the model (and its derivatives) and is informed by the model card associated with the model.
+
+NOW THEREFORE, You and Licensor agree as follows:
+
+1. Definitions
+
+- "License" means the terms and conditions for use, reproduction, and Distribution as defined in this document.
+- "Data" means a collection of information and/or content extracted from the dataset used with the Model, including to train, pretrain, or otherwise evaluate the Model. The Data is not licensed under this License.
+- "Output" means the results of operating a Model as embodied in informational content resulting therefrom.
+- "Model" means any accompanying machine-learning based assemblies (including checkpoints), consisting of learnt weights, parameters (including optimizer states), corresponding to the model architecture as embodied in the Complementary Material, that have been trained or tuned, in whole or in part on the Data, using the Complementary Material.
+- "Derivatives of the Model" means all modifications to the Model, works based on the Model, or any other model which is created or initialized by transfer of patterns of the weights, parameters, activations or output of the Model, to the other model, in order to cause the other model to perform similarly to the Model, including - but not limited to - distillation methods entailing the use of intermediate data representations or methods based on the generation of synthetic data by the Model for training the other model.
+- "Complementary Material" means the accompanying source code and scripts used to define, run, load, benchmark or evaluate the Model, and used to prepare data for training or evaluation, if any. This includes any accompanying documentation, tutorials, examples, etc, if any.
+- "Distribution" means any transmission, reproduction, publication or other sharing of the Model or Derivatives of the Model to a third party, including providing the Model as a hosted service made available by electronic or other remote means - e.g. API-based or web access.
+- "Licensor" means the copyright owner or entity authorized by the copyright owner that is granting the License, including the persons or entities that may have rights in the Model and/or distributing the Model.
+- "You" (or "Your") means an individual or Legal Entity exercising permissions granted by this License and/or making use of the Model for whichever purpose and in any field of use, including usage of the Model in an end-use application - e.g. chatbot, translator, image generator.
+- "Third Parties" means individuals or legal entities that are not under common control with Licensor or You.
+- "Contribution" means any work of authorship, including the original version of the Model and any modifications or additions to that Model or Derivatives of the Model thereof, that is intentionally submitted to Licensor for inclusion in the Model by the copyright owner or by an individual or Legal Entity authorized to submit on behalf of the copyright owner. For the purposes of this definition, "submitted" means any form of electronic, verbal, or written communication sent to the Licensor or its representatives, including but not limited to communication on electronic mailing lists, source code control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the purpose of discussing and improving the Model, but excluding communication that is conspicuously marked or otherwise designated in writing by the copyright owner as "Not a Contribution."
+- "Contributor" means Licensor and any individual or Legal Entity on behalf of whom a Contribution has been received by Licensor and subsequently incorporated within the Model.
+
+Section II: INTELLECTUAL PROPERTY RIGHTS
+
+Both copyright and patent grants apply to the Model, Derivatives of the Model and Complementary Material. The Model and Derivatives of the Model are subject to additional terms as described in Section III.
+
+2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare, publicly display, publicly perform, sublicense, and distribute the Complementary Material, the Model, and Derivatives of the Model.
+3. Grant of Patent License. Subject to the terms and conditions of this License and where and as applicable, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this paragraph) patent license to make, have made, use, offer to sell, sell, import, and otherwise transfer the Model and the Complementary Material, where such license applies only to those patent claims licensable by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination of their Contribution(s) with the Model to which such Contribution(s) was submitted. If You institute patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Model and/or Complementary Material or a Contribution incorporated within the Model and/or Complementary Material constitutes direct or contributory patent infringement, then any patent licenses granted to You under this License for the Model and/or Work shall terminate as of the date such litigation is asserted or filed.
+
+Section III: CONDITIONS OF USAGE, DISTRIBUTION AND REDISTRIBUTION
+
+4. Distribution and Redistribution. You may host for Third Party remote access purposes (e.g. software-as-a-service), reproduce and distribute copies of the Model or Derivatives of the Model thereof in any medium, with or without modifications, provided that You meet the following conditions:
+Use-based restrictions as referenced in paragraph 5 MUST be included as an enforceable provision by You in any type of legal agreement (e.g. a license) governing the use and/or distribution of the Model or Derivatives of the Model, and You shall give notice to subsequent users You Distribute to, that the Model or Derivatives of the Model are subject to paragraph 5. This provision does not apply to the use of Complementary Material.
+You must give any Third Party recipients of the Model or Derivatives of the Model a copy of this License;
+You must cause any modified files to carry prominent notices stating that You changed the files;
+You must retain all copyright, patent, trademark, and attribution notices excluding those notices that do not pertain to any part of the Model, Derivatives of the Model.
+You may add Your own copyright statement to Your modifications and may provide additional or different license terms and conditions - respecting paragraph 4.a. - for use, reproduction, or Distribution of Your modifications, or for any such Derivatives of the Model as a whole, provided Your use, reproduction, and Distribution of the Model otherwise complies with the conditions stated in this License.
+5. Use-based restrictions. The restrictions set forth in Attachment A are considered Use-based restrictions. Therefore You cannot use the Model and the Derivatives of the Model for the specified restricted uses. You may use the Model subject to this License, including only for lawful purposes and in accordance with the License. Use may include creating any content with, finetuning, updating, running, training, evaluating and/or reparametrizing the Model. You shall require all of Your users who use the Model or a Derivative of the Model to comply with the terms of this paragraph (paragraph 5).
+6. The Output You Generate. Except as set forth herein, Licensor claims no rights in the Output You generate using the Model. You are accountable for the Output you generate and its subsequent uses. No use of the output can contravene any provision as stated in the License.
+
+Section IV: OTHER PROVISIONS
+
+7. Updates and Runtime Restrictions. To the maximum extent permitted by law, Licensor reserves the right to restrict (remotely or otherwise) usage of the Model in violation of this License, update the Model through electronic means, or modify the Output of the Model based on updates. You shall undertake reasonable efforts to use the latest version of the Model.
+8. Trademarks and related. Nothing in this License permits You to make use of Licensors’ trademarks, trade names, logos or to otherwise suggest endorsement or misrepresent the relationship between the parties; and any rights not expressly granted herein are reserved by the Licensors.
+9. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor provides the Model and the Complementary Material (and each Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or redistributing the Model, Derivatives of the Model, and the Complementary Material and assume any risks associated with Your exercise of permissions under this License.
+10. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor be liable to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising as a result of this License or out of the use or inability to use the Model and the Complementary Material (including but not limited to damages for loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial damages or losses), even if such Contributor has been advised of the possibility of such damages.
+11. Accepting Warranty or Additional Liability. While redistributing the Model, Derivatives of the Model and the Complementary Material thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity, or other liability obligations and/or rights consistent with this License. However, in accepting such obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf of any other Contributor, and only if You agree to indemnify, defend, and hold each Contributor harmless for any liability incurred by, or claims asserted against, such Contributor by reason of your accepting any such warranty or additional liability.
+12. If any provision of this License is held to be invalid, illegal or unenforceable, the remaining provisions shall be unaffected thereby and remain valid as if such provision had not been set forth herein.
+
+END OF TERMS AND CONDITIONS
+
+
+
+
+Attachment A
+
+Use Restrictions
+
+You agree not to use the Model or Derivatives of the Model:
+- In any way that violates any applicable national, federal, state, local or international law or regulation;
+- For the purpose of exploiting, harming or attempting to exploit or harm minors in any way;
+- To generate or disseminate verifiably false information and/or content with the purpose of harming others;
+- To generate or disseminate personal identifiable information that can be used to harm an individual;
+- To defame, disparage or otherwise harass others;
+- For fully automated decision making that adversely impacts an individual’s legal rights or otherwise creates or modifies a binding, enforceable obligation;
+- For any use intended to or which has the effect of discriminating against or harming individuals or groups based on online or offline social behavior or known or predicted personal or personality characteristics;
+- To exploit any of the vulnerabilities of a specific group of persons based on their age, social, physical or mental characteristics, in order to materially distort the behavior of a person pertaining to that group in a manner that causes or is likely to cause that person or another person physical or psychological harm;
+- For any use intended to or which has the effect of discriminating against individuals or groups based on legally protected characteristics or categories;
+- To provide medical advice and medical results interpretation;
+- To generate or disseminate information for the purpose to be used for administration of justice, law enforcement, immigration or asylum processes, such as predicting an individual will commit fraud/crime commitment (e.g. by text profiling, drawing causal relationships between assertions made in documents, indiscriminate and arbitrarily-targeted use).
diff --git a/README-orig.md b/README-orig.md
new file mode 100644
index 0000000000000000000000000000000000000000..697b40d11e8e4d16201234ce3baebaac488f5a53
--- /dev/null
+++ b/README-orig.md
@@ -0,0 +1,220 @@
+# Score Jacobian Chaining: Lifting Pretrained 2D Diffusion Models for 3D Generation
+
+[Haochen Wang*](https://whc.is/),
+[Xiaodan Du*](https://github.com/duxiaodan),
+[Jiahao Li*](https://www.linkedin.com/in/jiahaoli95/),
+[Raymond A. Yeh†](https://raymond-yeh.com),
+[Greg Shakhnarovich](https://home.ttic.edu/~gregory/)
+(* indicates equal contribution)
+
+TTI-Chicago, †Purdue University
+
+The repository contains Pytorch implementation of Score Jacobian Chaining: Lifting Pretrained 2D Diffusion Models for 3D Generation.
+
+> We introduce a method that converts a pretrained 2D diffusion generative model on images into a 3D generative model of radiance fields, without requiring access to any 3D data. The key insight is to interpret diffusion models as learned predictors of a gradient field, often referred to as the score function of the data log-likelihood. We apply the chain rule on the estimated score, hence the name Score Jacobian Chaining (SJC).
+
+
+
+
+
+
+
+Many thanks to [dvschultz](https://github.com/dvschultz) for the colab.
+
+## License
+Since we use Stable Diffusion, we are releasing under their OpenRAIL license. Otherwise we do not
+identify any components or upstream code that carry restrictive licensing requirements.
+
+## Structure
+In addition to SJC, the repo also contains an implementation of [Karras sampler](https://arxiv.org/abs/2206.00364),
+and a customized, simple voxel nerf. We provide the abstract parent class based on Karras et. al. and include
+a few types of diffusion model here. See adapt.py.
+
+## Installation
+
+Install Pytorch according to your CUDA version, for example:
+```bash
+pip3 install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu116
+```
+
+Install other dependencies by `pip install -r requirements.txt`.
+
+Install `taming-transformers` manually
+```bash
+git clone --depth 1 git@github.com:CompVis/taming-transformers.git && pip install -e taming-transformers
+```
+
+## Downloading checkpoints
+We have bundled a minimal set of things you need to download (SD v1.5 ckpt, gddpm ckpt for LSUN and FFHQ)
+in a tar file, made available at our download server [here](https://dl.ttic.edu/pals/sjc/release.tar).
+It is a single file of 12GB, and you can use wget or curl.
+
+Remember to __update__ `env.json` to point at the new checkpoint root where you have uncompressed the files.
+
+## Usage
+Make a new directory to run experiments (the script generates many logging files. Do not run at the root of the code repo, else risk contamination.)
+```bash
+mkdir exp
+cd exp
+```
+Run the following command to generate a new 3D asset. It takes about 25 minutes on a single A5000 GPU for 10000 steps of optimization.
+```bash
+python /path/to/sjc/run_sjc.py \
+--sd.prompt "A zoomed out high quality photo of Temple of Heaven" \
+--n_steps 10000 \
+--lr 0.05 \
+--sd.scale 100.0 \
+--emptiness_weight 10000 \
+--emptiness_step 0.5 \
+--emptiness_multiplier 20.0 \
+--depth_weight 0 \
+--var_red False
+```
+`sd.prompt` is the prompt to the stable diffusion model
+
+`n_steps` is the number of gradient steps
+
+`lr` is the base learning rate of the optimizer
+
+`sd.scale` is the guidance scale for stable diffusion
+
+`emptiness_weight` is the weighting factor of the emptiness loss
+
+`emptiness_step` indicates after `emptiness_step * n_steps` update steps, the `emptiness_weight` is multiplied by `emptiness_multiplier`.
+
+`emptiness_multipler` see above
+
+`depth_weight` the weighting factor of the center depth loss
+
+`var_red` whether to use Eq. 16 vs Eq. 15. For some prompts such as Obama we actually see better results with Eq. 15.
+
+Visualization results are stored in the current directory. In directories named `test_*` there are images (under `view`) and videos (under `view_seq`) rendered at different iterations.
+
+
+## TODOs
+- [ ] add sub-pixel rendering script for high quality visualization such as in the teaser.
+- [ ] add script to reproduce 2D experiments in Fig 4. The Fig might need change once it's tied to seeds. Note that for a simple aligned domain like faces, simple scheduling like using a single σ=1.5 could already generate some nice images. But not so for bedrooms; it's too diverse and annealing seems still needed.
+
+## To Reproduce the Results in the Paper
+First create a clean directory for your experiment, then run one of the following scripts from that folder:
+### Trump
+```
+python /path/to/sjc/run_sjc.py --sd.prompt "Trump figure" --n_steps 30000 --lr 0.05 --sd.scale 100.0 --emptiness_weight 10000 --emptiness_step 0.5 --emptiness_multiplier 20.0 --depth_weight 0
+```
+### Obama
+```
+python /path/to/sjc/run_sjc.py --sd.prompt "Obama figure" --n_steps 30000 --lr 0.05 --sd.scale 100.0 --emptiness_weight 10000 --emptiness_step 0.5 --emptiness_multiplier 20.0 --depth_weight 0
+```
+### Biden
+```
+python /path/to/sjc/run_sjc.py --sd.prompt "Biden figure" --n_steps 10000 --lr 0.05 --sd.scale 100.0 --emptiness_weight 10000 --emptiness_step 0.5 --emptiness_multiplier 20.0 --depth_weight 0
+```
+### Temple of Heaven
+```
+python /path/to/sjc/run_sjc.py --sd.prompt "A zoomed out high quality photo of Temple of Heaven" --n_steps 10000 --lr 0.05 --sd.scale 100.0 --emptiness_weight 10000 --emptiness_step 0.5 --emptiness_multiplier 20.0 --depth_weight 0
+```
+### Burger
+```
+python /path/to/sjc/run_sjc.py --sd.prompt "A high quality photo of a delicious burger" --n_steps 10000 --lr 0.05 --sd.scale 100.0 --emptiness_weight 10000 --emptiness_step 0.5 --emptiness_multiplier 20.0 --depth_weight 0
+```
+### Icecream
+```
+python /path/to/sjc/run_sjc.py --sd.prompt "A high quality photo of a chocolate icecream cone" --n_steps 10000 --lr 0.05 --sd.scale 100.0 --emptiness_weight 10000 --emptiness_step 0.5 --emptiness_multiplier 20.0 --depth_weight 10
+
+```
+### Ficus
+```
+python /path/to/sjc/run_sjc.py --sd.prompt "A ficus planted in a pot" --n_steps 10000 --lr 0.05 --sd.scale 100.0 --emptiness_weight 10000 --emptiness_step 0.5 --emptiness_multiplier 20.0 --depth_weight 100
+```
+### Castle
+```
+python /path/to/sjc/run_sjc.py --sd.prompt "A zoomed out photo a small castle" --n_steps 10000 --lr 0.05 --sd.scale 100.0 --emptiness_weight 10000 --emptiness_step 0.5 --emptiness_multiplier 20.0 --depth_weight 50
+```
+### Sydney Opera House
+```
+python /path/to/sjc/run_sjc.py --sd.prompt "A zoomed out high quality photo of Sydney Opera House" --n_steps 10000 --lr 0.05 --sd.scale 100.0 --emptiness_weight 10000 --emptiness_step 0.5 --emptiness_multiplier 20.0 --depth_weight 0
+```
+### Rose
+```
+python /path/to/sjc/run_sjc.py --sd.prompt "a DSLR photo of a rose" --n_steps 10000 --lr 0.05 --sd.scale 100.0 --emptiness_weight 10000 --emptiness_step 0.5 --emptiness_multiplier 20.0 --depth_weight 50
+```
+### School Bus
+```
+python /path/to/sjc/run_sjc.py --sd.prompt "A high quality photo of a yellow school bus" --n_steps 30000 --lr 0.05 --sd.scale 100.0 --emptiness_weight 10000 --emptiness_step 0.5 --emptiness_multiplier 20.0 --depth_weight 0 --var_red False
+```
+### Rocket
+```
+python /path/to/sjc/run_sjc.py --sd.prompt "A wide angle zoomed out photo of Saturn V rocket from distance" --n_steps 30000 --lr 0.05 --sd.scale 100.0 --emptiness_weight 10000 --emptiness_step 0.5 --emptiness_multiplier 20.0 --depth_weight 0 --var_red False
+```
+### French Fries
+```
+python /path/to/sjc/run_sjc.py --sd.prompt "A high quality photo of french fries from McDonald's" --n_steps 10000 --lr 0.05 --sd.scale 100.0 --emptiness_weight 10000 --emptiness_step 0.5 --emptiness_multiplier 20.0 --depth_weight 10
+```
+### Motorcycle
+```
+python /path/to/sjc/run_sjc.py --sd.prompt "A high quality photo of a toy motorcycle" --n_steps 10000 --lr 0.05 --sd.scale 100.0 --emptiness_weight 10000 --emptiness_step 0.5 --emptiness_multiplier 20.0 --depth_weight 0
+```
+### Car
+```
+python /path/to/sjc/run_sjc.py --sd.prompt "A high quality photo of a classic silver muscle car" --n_steps 10000 --lr 0.05 --sd.scale 100.0 --emptiness_weight 10000 --emptiness_step 0.5 --emptiness_multiplier 20.0 --depth_weight 0
+```
+### Tank
+```
+python /path/to/sjc/run_sjc.py --sd.prompt "A product photo of a toy tank" --n_steps 20000 --lr 0.05 --sd.scale 100.0 --emptiness_weight 10000 --emptiness_step 0.5 --emptiness_multiplier 20.0 --depth_weight 0
+```
+### Chair
+```
+python /path/to/sjc/run_sjc.py --sd.prompt "A high quality photo of a Victorian style wooden chair with velvet upholstery" --n_steps 50000 --lr 0.01 --sd.scale 100.0 --emptiness_weight 7000
+```
+### Duck
+```
+python /path/to/sjc/run_sjc.py --sd.prompt "a DSLR photo of a yellow duck" --n_steps 10000 --lr 0.05 --sd.scale 100.0 --emptiness_weight 10000 --emptiness_step 0.5 --emptiness_multiplier 20.0 --depth_weight 10
+```
+### Horse
+```
+python /path/to/sjc/run_sjc.py --sd.prompt "A photo of a horse walking" --n_steps 10000 --lr 0.05 --sd.scale 100.0 --emptiness_weight 10000 --emptiness_step 0.5 --emptiness_multiplier 20.0 --depth_weight 0
+```
+### Giraffe
+```
+python /path/to/sjc/run_sjc.py --sd.prompt "A wide angle zoomed out photo of a giraffe" --n_steps 10000 --lr 0.05 --sd.scale 100.0 --emptiness_weight 10000 --emptiness_step 0.5 --emptiness_multiplier 20.0 --depth_weight 50
+```
+### Zebra
+```
+python /path/to/sjc/run_sjc.py --sd.prompt "A photo of a zebra walking" --n_steps 10000 --lr 0.02 --sd.scale 100.0 --emptiness_weight 30000 --emptiness_step 0.5 --emptiness_multiplier 20.0 --depth_weight 0 --var_red False
+```
+### Printer
+```
+python /path/to/sjc/run_sjc.py --sd.prompt "A product photo of a Canon home printer" --n_steps 10000 --lr 0.05 --sd.scale 100.0 --emptiness_weight 10000 --emptiness_step 0.5 --emptiness_multiplier 20.0 --depth_weight 0 --var_red False
+```
+### Zelda Link
+```
+python /path/to/sjc/run_sjc.py --sd.prompt "Zelda Link" --n_steps 10000 --lr 0.05 --sd.scale 100.0 --emptiness_weight 10000 --emptiness_step 0.5 --emptiness_multiplier 20.0 --depth_weight 0 --var_red False
+```
+### Pig
+```
+python /path/to/sjc/run_sjc.py --sd.prompt "A pig" --n_steps 10000 --lr 0.05 --sd.scale 100.0 --emptiness_weight 10000 --emptiness_step 0.5 --emptiness_multiplier 20.0 --depth_weight 0
+```
+
+
+## To Test the Voxel NeRF
+```
+python /path/to/sjc/run_nerf.py
+```
+Our bundle contains a tar ball for the lego bulldozer dataset. Untar it and it will work.
+
+## To Sample 2D images with the Karras Sampler
+```
+python /path/to/sjc/run_img_sampling.py
+```
+Use help -h to see the options available. Will expand the details later.
+
+
+## Bib
+```
+@article{sjc,
+ title={Score Jacobian Chaining: Lifting Pretrained 2D Diffusion Models for 3D Generation},
+ author={Wang, Haochen and Du, Xiaodan and Li, Jiahao and Yeh, Raymond A. and Shakhnarovich, Greg},
+ journal={arXiv preprint arXiv:2212.00774},
+ year={2022},
+}
+```
diff --git a/adapt.py b/adapt.py
new file mode 100644
index 0000000000000000000000000000000000000000..418252b461f7c95f948866152f8d82a0bb9c55a1
--- /dev/null
+++ b/adapt.py
@@ -0,0 +1,163 @@
+from pathlib import Path
+import json
+from math import sqrt
+import numpy as np
+import torch
+from abc import ABCMeta, abstractmethod
+
+
+class ScoreAdapter(metaclass=ABCMeta):
+
+ @abstractmethod
+ def denoise(self, xs, σ, **kwargs):
+ pass
+
+ def score(self, xs, σ, **kwargs):
+ Ds = self.denoise(xs, σ, **kwargs)
+ grad_log_p_t = (Ds - xs) / (σ ** 2)
+ return grad_log_p_t
+
+ @abstractmethod
+ def data_shape(self):
+ return (3, 256, 256) # for example
+
+ def samps_centered(self):
+ # if centered, samples expected to be in range [-1, 1], else [0, 1]
+ return True
+
+ @property
+ @abstractmethod
+ def σ_max(self):
+ pass
+
+ @property
+ @abstractmethod
+ def σ_min(self):
+ pass
+
+ def cond_info(self, batch_size):
+ return {}
+
+ @abstractmethod
+ def unet_is_cond(self):
+ return False
+
+ @abstractmethod
+ def use_cls_guidance(self):
+ return False # most models do not use cls guidance
+
+ def classifier_grad(self, xs, σ, ys):
+ raise NotImplementedError()
+
+ @abstractmethod
+ def snap_t_to_nearest_tick(self, t):
+ # need to confirm for each model; continuous time model doesn't need this
+ return t, None
+
+ @property
+ def device(self):
+ return self._device
+
+ def checkpoint_root(self):
+ """the path at which the pretrained checkpoints are stored"""
+ with Path(__file__).resolve().with_name("env.json").open("r") as f:
+ root = json.load(f)['data_root']
+ root = Path(root) / "diffusion_ckpts"
+ return root
+
+
+def karras_t_schedule(ρ=7, N=10, σ_max=80, σ_min=0.002):
+ ts = []
+ for i in range(N):
+
+ t = (
+ σ_max ** (1 / ρ) + (i / (N - 1)) * (σ_min ** (1 / ρ) - σ_max ** (1 / ρ))
+ ) ** ρ
+ ts.append(t)
+ return ts
+
+
+def power_schedule(σ_max, σ_min, num_stages):
+ σs = np.exp(np.linspace(np.log(σ_max), np.log(σ_min), num_stages))
+ return σs
+
+
+class Karras():
+
+ @classmethod
+ @torch.no_grad()
+ def inference(
+ cls, model, batch_size, num_t, *,
+ σ_max=80, cls_scaling=1,
+ init_xs=None, heun=True,
+ langevin=False,
+ S_churn=80, S_min=0.05, S_max=50, S_noise=1.003,
+ ):
+ σ_max = min(σ_max, model.σ_max)
+ σ_min = model.σ_min
+ ts = karras_t_schedule(ρ=7, N=num_t, σ_max=σ_max, σ_min=σ_min)
+ assert len(ts) == num_t
+ ts = [model.snap_t_to_nearest_tick(t)[0] for t in ts]
+ ts.append(0) # 0 is the destination
+ σ_max = ts[0]
+
+ cond_inputs = model.cond_info(batch_size)
+
+ def compute_step(xs, σ):
+ grad_log_p_t = model.score(
+ xs, σ, **(cond_inputs if model.unet_is_cond() else {})
+ )
+ if model.use_cls_guidance():
+ grad_cls = model.classifier_grad(xs, σ, cond_inputs["y"])
+ grad_cls = grad_cls * cls_scaling
+ grad_log_p_t += grad_cls
+ d_i = -1 * σ * grad_log_p_t
+ return d_i
+
+ if init_xs is not None:
+ xs = init_xs.to(model.device)
+ else:
+ xs = σ_max * torch.randn(
+ batch_size, *model.data_shape(), device=model.device
+ )
+
+ yield xs
+
+ for i in range(num_t):
+ t_i = ts[i]
+
+ if langevin and (S_min < t_i and t_i < S_max):
+ xs, t_i = cls.noise_backward_in_time(
+ model, xs, t_i, S_noise, S_churn / num_t
+ )
+
+ Δt = ts[i+1] - t_i
+
+ d_1 = compute_step(xs, σ=t_i)
+ xs_1 = xs + Δt * d_1
+
+ # Heun's 2nd order method; don't apply on the last step
+ if (not heun) or (ts[i+1] == 0):
+ xs = xs_1
+ else:
+ d_2 = compute_step(xs_1, σ=ts[i+1])
+ xs = xs + Δt * (d_1 + d_2) / 2
+
+ yield xs
+
+ @staticmethod
+ def noise_backward_in_time(model, xs, t_i, S_noise, S_churn_i):
+ n = S_noise * torch.randn_like(xs)
+ γ_i = min(sqrt(2)-1, S_churn_i)
+ t_i_hat = t_i * (1 + γ_i)
+ t_i_hat = model.snap_t_to_nearest_tick(t_i_hat)[0]
+ xs = xs + n * sqrt(t_i_hat ** 2 - t_i ** 2)
+ return xs, t_i_hat
+
+
+def test():
+ pass
+
+
+if __name__ == "__main__":
+ test()
diff --git a/adapt_gddpm.py b/adapt_gddpm.py
new file mode 100644
index 0000000000000000000000000000000000000000..f71db9e6f8e3dff6906f690046dec4e33a2e5ea2
--- /dev/null
+++ b/adapt_gddpm.py
@@ -0,0 +1,562 @@
+from pathlib import Path
+from math import sin, pi, sqrt
+from functools import partial
+
+import numpy as np
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+
+from easydict import EasyDict
+from guided_diffusion.script_util import (
+ create_model_and_diffusion,
+ model_and_diffusion_defaults,
+
+ NUM_CLASSES,
+ create_classifier,
+ classifier_defaults,
+
+ sr_create_model_and_diffusion,
+ sr_model_and_diffusion_defaults,
+)
+
+from adapt import ScoreAdapter
+
+from my.registry import Registry
+
+PRETRAINED_REGISTRY = Registry("pretrained")
+
+
+device = torch.device("cuda")
+
+
+def load_ckpt(path, **kwargs):
+ # with bf.BlobFile(path, "rb") as f:
+ # data = f.read()
+ return torch.load(path, **kwargs)
+
+
+def pick_out_cfgs(src, target_ks):
+ return {k: src[k] for k in target_ks}
+
+
+@PRETRAINED_REGISTRY.register()
+def m_imgnet_64():
+ return dict(
+ attention_resolutions="32,16,8",
+ class_cond=True,
+ diffusion_steps=1000,
+ dropout=0.1,
+ image_size=64,
+ learn_sigma=True,
+ noise_schedule="cosine",
+ num_channels=192,
+ num_head_channels=64,
+ num_res_blocks=3,
+ resblock_updown=True,
+ use_new_attention_order=True,
+ use_fp16=True,
+ use_scale_shift_norm=True,
+
+ classifier_depth=4,
+
+ classifier_scale=1.0,
+ model_path="models/64x64_diffusion.pt",
+ classifier_path="models/64x64_classifier.pt",
+ )
+
+
+@PRETRAINED_REGISTRY.register()
+def m_imgnet_128():
+ return dict(
+ attention_resolutions="32,16,8",
+ class_cond=True,
+ diffusion_steps=1000,
+ image_size=128,
+ learn_sigma=True,
+ noise_schedule="linear",
+ num_channels=256,
+ num_heads=4,
+ num_res_blocks=2,
+ resblock_updown=True,
+ use_fp16=True,
+ use_scale_shift_norm=True,
+
+ classifier_scale=0.5,
+ model_path="models/128x128_diffusion.pt",
+ classifier_path="models/128x128_classifier.pt",
+ )
+
+
+@PRETRAINED_REGISTRY.register()
+def m_imgnet_256():
+ return dict(
+ attention_resolutions="32,16,8",
+ class_cond=True,
+ diffusion_steps=1000,
+ image_size=256,
+ learn_sigma=True,
+ noise_schedule="linear",
+ num_channels=256,
+ num_head_channels=64,
+ num_res_blocks=2,
+ resblock_updown=True,
+ use_fp16=True,
+ use_scale_shift_norm=True,
+
+ classifier_scale=1.0,
+ model_path="models/256x256_diffusion.pt",
+ classifier_path="models/256x256_classifier.pt"
+ )
+
+
+@PRETRAINED_REGISTRY.register()
+def m_imgnet_256_uncond():
+ return dict(
+ attention_resolutions="32,16,8",
+ class_cond=False,
+ diffusion_steps=1000,
+ image_size=256,
+ learn_sigma=True,
+ noise_schedule="linear",
+ num_channels=256,
+ num_head_channels=64,
+ num_res_blocks=2,
+ resblock_updown=True,
+ use_fp16=True,
+ use_scale_shift_norm=True,
+
+ classifier_scale=10.0,
+ model_path="models/256x256_diffusion_uncond.pt",
+ classifier_path="models/256x256_classifier.pt",
+ )
+
+
+@PRETRAINED_REGISTRY.register()
+def m_imgnet_512():
+ return dict(
+ attention_resolutions="32,16,8",
+ class_cond=True,
+ diffusion_steps=1000,
+ image_size=512,
+ learn_sigma=True,
+ noise_schedule="linear",
+ num_channels=256,
+ num_head_channels=64,
+ num_res_blocks=2,
+ resblock_updown=True,
+ use_fp16=False,
+ use_scale_shift_norm=True,
+
+ classifier_scale=4.0,
+ model_path="models/512x512_diffusion.pt",
+ classifier_path="models/512x512_classifier.pt"
+ )
+
+
+@PRETRAINED_REGISTRY.register()
+def m_imgnet_64_256(base_samples="64_samples.npz"):
+ return dict(
+ attention_resolutions="32,16,8",
+ class_cond=True,
+ diffusion_steps=1000,
+ large_size=256,
+ small_size=64,
+ learn_sigma=True,
+ noise_schedule="linear",
+ num_channels=192,
+ num_heads=4,
+ num_res_blocks=2,
+ resblock_updown=True,
+ use_fp16=True,
+ use_scale_shift_norm=True,
+
+ model_path="models/64_256_upsampler.pt",
+
+ base_samples=base_samples,
+ )
+
+
+@PRETRAINED_REGISTRY.register()
+def m_imgnet_128_512(base_samples="128_samples.npz",):
+ return dict(
+ attention_resolutions="32,16",
+ class_cond=True,
+ diffusion_steps=1000,
+ large_size=512,
+ small_size=128,
+ learn_sigma=True,
+ noise_schedule="linear",
+ num_channels=192,
+ num_head_channels=64,
+ num_res_blocks=2,
+ resblock_updown=True,
+ use_fp16=True,
+ use_scale_shift_norm=True,
+
+ model_path="models/128_512_upsampler.pt",
+
+ base_samples=base_samples,
+ )
+
+
+@PRETRAINED_REGISTRY.register()
+def m_lsun_256(category="bedroom"):
+ return dict(
+ attention_resolutions="32,16,8",
+ class_cond=False,
+ diffusion_steps=1000,
+ dropout=0.1,
+ image_size=256,
+ learn_sigma=True,
+ noise_schedule="linear",
+ num_channels=256,
+ num_head_channels=64,
+ num_res_blocks=2,
+ resblock_updown=True,
+ use_fp16=True,
+ use_scale_shift_norm=True,
+
+ model_path=f"models/lsun_{category}.pt"
+ )
+
+
+def img_gen(specific_cfgs, num_samples=16, batch_size=16, load_only=False, ckpt_root=Path("")):
+ cfgs = EasyDict(
+ clip_denoised=True,
+ num_samples=num_samples,
+ batch_size=batch_size,
+ use_ddim=False,
+ model_path="",
+ classifier_path="",
+ classifier_scale=1.0,
+ )
+ cfgs.update(model_and_diffusion_defaults())
+ cfgs.update(classifier_defaults())
+ cfgs.update(specific_cfgs)
+
+ use_classifier_guidance = bool(cfgs.classifier_path)
+ class_aware = cfgs.class_cond or use_classifier_guidance
+
+ model, diffusion = create_model_and_diffusion(
+ **pick_out_cfgs(cfgs, model_and_diffusion_defaults().keys())
+ )
+ model.load_state_dict(
+ load_ckpt(str(ckpt_root / cfgs.model_path), map_location="cpu")
+ )
+ model.to(device)
+ if cfgs.use_fp16:
+ model.convert_to_fp16()
+ model.eval()
+
+ def model_fn(x, t, y=None):
+ return model(x, t, y if cfgs.class_cond else None)
+
+ classifier = None
+ cond_fn = None
+ if use_classifier_guidance:
+ classifier = create_classifier(
+ **pick_out_cfgs(cfgs, classifier_defaults().keys())
+ )
+ classifier.load_state_dict(
+ load_ckpt(str(ckpt_root / cfgs.classifier_path), map_location="cpu")
+ )
+ classifier.to(device)
+ if cfgs.classifier_use_fp16:
+ classifier.convert_to_fp16()
+ classifier.eval()
+
+ def cond_fn(x, t, y=None):
+ assert y is not None
+ with torch.enable_grad():
+ x_in = x.detach().requires_grad_(True)
+ logits = classifier(x_in, t)
+ log_probs = F.log_softmax(logits, dim=-1)
+ selected = log_probs[range(len(logits)), y.view(-1)]
+ return torch.autograd.grad(selected.sum(), x_in)[0] * cfgs.classifier_scale
+
+ if load_only:
+ return model, classifier
+
+ all_images = []
+ all_labels = []
+
+ while len(all_images) * cfgs.batch_size < cfgs.num_samples:
+ model_kwargs = {}
+
+ if class_aware:
+ classes = torch.randint(
+ low=0, high=NUM_CLASSES, size=(cfgs.batch_size,), device=device
+ )
+ model_kwargs["y"] = classes
+
+ sample_fn = (
+ diffusion.p_sample_loop if not cfgs.use_ddim else diffusion.ddim_sample_loop
+ )
+ sample = sample_fn(
+ model_fn,
+ (cfgs.batch_size, 3, cfgs.image_size, cfgs.image_size),
+ clip_denoised=cfgs.clip_denoised,
+ model_kwargs=model_kwargs,
+ cond_fn=cond_fn,
+ device=device,
+ progress=True
+ )
+ sample = ((sample + 1) * 127.5).clamp(0, 255).to(torch.uint8)
+ sample = sample.permute(0, 2, 3, 1)
+ sample = sample.contiguous()
+
+ all_images.append(sample.cpu().numpy())
+ if class_aware:
+ all_labels.append(classes.cpu().numpy())
+
+ arr = np.concatenate(all_images, axis=0)
+ arr = arr[:cfgs.num_samples]
+
+ if class_aware:
+ all_labels = np.concatenate(all_labels, axis=0)
+ all_labels = all_labels[:cfgs.num_samples]
+
+ shape_str = "x".join([str(x) for x in arr.shape])
+ out_path = Path("./out") / f"samples_{shape_str}.npz"
+ np.savez(out_path, arr, all_labels)
+
+
+def img_upsamp(specific_cfgs, num_samples=16, batch_size=16, load_only=False):
+ """note that here the ckpt root is not configured properly; will break but easy fix"""
+ cfgs = EasyDict(
+ clip_denoised=True,
+ num_samples=num_samples,
+ batch_size=batch_size,
+ use_ddim=False,
+ base_samples="",
+ model_path="",
+ )
+ cfgs.update(sr_model_and_diffusion_defaults())
+ cfgs.update(specific_cfgs)
+
+ model, diffusion = sr_create_model_and_diffusion(
+ **pick_out_cfgs(cfgs, sr_model_and_diffusion_defaults().keys())
+ )
+ model.load_state_dict(load_ckpt(cfgs.model_path, map_location="cpu"))
+ model.to(device)
+ if cfgs.use_fp16:
+ model.convert_to_fp16()
+ model.eval()
+
+ if load_only:
+ return model
+
+ data = load_low_res_samples(
+ cfgs.base_samples, cfgs.batch_size, cfgs.class_cond
+ )
+
+ all_images = []
+ while len(all_images) * cfgs.batch_size < cfgs.num_samples:
+ model_kwargs = next(data)
+ model_kwargs = {k: v.to(device) for k, v in model_kwargs.items()}
+ samples = diffusion.p_sample_loop(
+ model,
+ (cfgs.batch_size, 3, cfgs.large_size, cfgs.large_size),
+ clip_denoised=cfgs.clip_denoised,
+ model_kwargs=model_kwargs,
+ progress=True
+ )
+ samples = ((samples + 1) * 127.5).clamp(0, 255).to(torch.uint8)
+ samples = samples.permute(0, 2, 3, 1)
+ samples = samples.contiguous()
+
+ all_images.append(samples.cpu().numpy())
+
+ arr = np.concatenate(all_images, axis=0)
+ arr = arr[: cfgs.num_samples]
+
+ shape_str = "x".join([str(x) for x in arr.shape])
+ out_path = Path("./out") / f"samples_{shape_str}.npz"
+ np.savez(out_path, arr)
+
+
+def load_low_res_samples(base_samples, batch_size, class_cond):
+ obj = np.load(base_samples)
+ image_arr = obj["arr_0"]
+ if class_cond:
+ label_arr = obj["arr_1"]
+
+ buffer = []
+ label_buffer = []
+ while True:
+ for i in range(len(image_arr)):
+ buffer.append(image_arr[i])
+ if class_cond:
+ label_buffer.append(label_arr[i])
+
+ if len(buffer) == batch_size:
+ batch = torch.from_numpy(np.stack(buffer)).float()
+ batch = batch / 127.5 - 1.0
+ batch = batch.permute(0, 3, 1, 2)
+ res = {}
+ res["low_res"] = batch
+ if class_cond:
+ res["y"] = torch.from_numpy(np.stack(label_buffer))
+ yield res
+ buffer, label_buffer = [], []
+
+
+def class_cond_info(imgnet_cat):
+
+ def rand_cond_fn(batch_size):
+ cats = torch.randint(
+ low=0, high=NUM_CLASSES, size=(batch_size,), device=device
+ )
+ return {"y": cats}
+
+ def class_specific_cond(batch_size):
+ cats = torch.tensor([imgnet_cat, ] * batch_size, device=device)
+ return {"y": cats}
+
+ if imgnet_cat == -1:
+ return rand_cond_fn
+ else:
+ return class_specific_cond
+
+
+def _sqrt(x):
+ if isinstance(x, float):
+ return sqrt(x)
+ else:
+ assert isinstance(x, torch.Tensor)
+ return torch.sqrt(x)
+
+
+class GuidedDDPM(ScoreAdapter):
+ def __init__(self, model, lsun_cat, imgnet_cat):
+ print(PRETRAINED_REGISTRY)
+ cfgs = PRETRAINED_REGISTRY.get(model)(
+ **({"category": lsun_cat} if model.startswith("m_lsun") else {})
+ )
+
+ self.unet, self.classifier = img_gen(
+ cfgs, load_only=True, ckpt_root=self.checkpoint_root() / "guided_ddpm"
+ )
+
+ H, W = cfgs['image_size'], cfgs['image_size']
+ self._data_shape = (3, H, W)
+
+ if cfgs['class_cond'] or (self.classifier is not None):
+ cond_func = class_cond_info(imgnet_cat)
+ else:
+ cond_func = lambda *args, **kwargs: {}
+ self.cond_func = cond_func
+
+ self._unet_is_cond = bool(cfgs['class_cond'])
+
+ noise_schedule = cfgs['noise_schedule']
+ assert noise_schedule in ("linear", "cosine")
+ self.M = 1000
+ if noise_schedule == "linear":
+ self.us = self.linear_us(self.M)
+ self._σ_min = 0.01
+ else:
+ self.us = self.cosine_us(self.M)
+ self._σ_min = 0.0064
+ self.noise_schedule = noise_schedule
+
+ self._device = next(self.unet.parameters()).device
+
+ def data_shape(self):
+ return self._data_shape
+
+ @property
+ def σ_max(self):
+ return self.us[0]
+
+ @property
+ def σ_min(self):
+ return self.us[-1]
+
+ @torch.no_grad()
+ def denoise(self, xs, σ, **model_kwargs):
+ N = xs.shape[0]
+ cond_t, σ = self.time_cond_vec(N, σ)
+ output = self.unet(
+ xs / _sqrt(1 + σ**2), cond_t, **model_kwargs
+ )
+ # not using the var pred
+ n_hat = torch.split(output, xs.shape[1], dim=1)[0]
+ Ds = xs - σ * n_hat
+ return Ds
+
+ def cond_info(self, batch_size):
+ return self.cond_func(batch_size)
+
+ def unet_is_cond(self):
+ return self._unet_is_cond
+
+ def use_cls_guidance(self):
+ return (self.classifier is not None)
+
+ @torch.no_grad()
+ def classifier_grad(self, xs, σ, ys):
+ N = xs.shape[0]
+ cond_t, σ = self.time_cond_vec(N, σ)
+ with torch.enable_grad():
+ x_in = xs.detach().requires_grad_(True)
+ logits = self.classifier(x_in, cond_t)
+ log_probs = F.log_softmax(logits, dim=-1)
+ selected = log_probs[range(len(logits)), ys.view(-1)]
+ grad = torch.autograd.grad(selected.sum(), x_in)[0]
+
+ grad = grad * (1 / sqrt(1 + σ**2))
+ return grad
+
+ def snap_t_to_nearest_tick(self, t):
+ j = np.abs(t - self.us).argmin()
+ return self.us[j], j
+
+ def time_cond_vec(self, N, σ):
+ if isinstance(σ, float):
+ σ, j = self.snap_t_to_nearest_tick(σ) # σ might change due to snapping
+ cond_t = (self.M - 1) - j
+ cond_t = torch.tensor([cond_t] * N, device=self.device)
+ return cond_t, σ
+ else:
+ assert isinstance(σ, torch.Tensor)
+ σ = σ.reshape(-1).cpu().numpy()
+ σs = []
+ js = []
+ for elem in σ:
+ _σ, _j = self.snap_t_to_nearest_tick(elem)
+ σs.append(_σ)
+ js.append((self.M - 1) - _j)
+
+ cond_t = torch.tensor(js, device=self.device)
+ σs = torch.tensor(σs, device=self.device, dtype=torch.float32).reshape(-1, 1, 1, 1)
+ return cond_t, σs
+
+ @staticmethod
+ def cosine_us(M=1000):
+ assert M == 1000
+
+ def α_bar(j):
+ return sin(pi / 2 * j / (M * (0.008 + 1))) ** 2
+
+ us = [0, ]
+ for j in reversed(range(0, M)): # [M-1, 0], inclusive
+ u_j = sqrt(((us[-1] ** 2) + 1) / (max(α_bar(j) / α_bar(j+1), 0.001)) - 1)
+ us.append(u_j)
+
+ us = np.array(us)
+ us = us[1:]
+ us = us[::-1]
+ return us
+
+ @staticmethod
+ def linear_us(M=1000):
+ assert M == 1000
+ β_start = 0.0001
+ β_end = 0.02
+ βs = np.linspace(β_start, β_end, M, dtype=np.float64)
+ αs = np.cumprod(1 - βs)
+ us = np.sqrt((1 - αs) / αs)
+ us = us[::-1]
+ return us
diff --git a/adapt_ncsn.py b/adapt_ncsn.py
new file mode 100644
index 0000000000000000000000000000000000000000..9a3cfda3160a27aa42667b7390a95bd111f134dd
--- /dev/null
+++ b/adapt_ncsn.py
@@ -0,0 +1,101 @@
+from pathlib import Path
+import argparse
+import yaml
+
+import numpy as np
+import torch
+
+from ncsn.ncsnv2 import NCSNv2, NCSNv2Deeper, NCSNv2Deepest, get_sigmas
+from ncsn.ema import EMAHelper
+
+from adapt import ScoreAdapter
+
+device = torch.device("cuda")
+
+
+def get_model(config):
+ if config.data.dataset == 'CIFAR10' or config.data.dataset == 'CELEBA':
+ return NCSNv2(config).to(config.device)
+ elif config.data.dataset == "FFHQ":
+ return NCSNv2Deepest(config).to(config.device)
+ elif config.data.dataset == 'LSUN':
+ return NCSNv2Deeper(config).to(config.device)
+
+
+def dict2namespace(config):
+ namespace = argparse.Namespace()
+ for key, value in config.items():
+ if isinstance(value, dict):
+ new_value = dict2namespace(value)
+ else:
+ new_value = value
+ setattr(namespace, key, new_value)
+ return namespace
+
+
+class NCSN(ScoreAdapter):
+ def __init__(self):
+ config_fname = Path(__file__).resolve().parent / "ncsn" / "bedroom.yml"
+ with config_fname.open("r") as f:
+ config = yaml.safe_load(f)
+ config = dict2namespace(config)
+
+ config.device = device
+
+ states = torch.load(
+ self.checkpoint_root() / "ncsn/exp/logs/bedroom/checkpoint_150000.pth"
+ )
+
+ model = get_model(config)
+ model = torch.nn.DataParallel(model)
+ model.load_state_dict(states[0], strict=True)
+
+ if config.model.ema:
+ ema_helper = EMAHelper(mu=config.model.ema_rate)
+ ema_helper.register(model)
+ ema_helper.load_state_dict(states[-1])
+ # HC: update the model param with history ema.
+ # if don't do this the colors of images become strangely saturated.
+ # this is reported in the paper.
+ ema_helper.ema(model)
+
+ model = model.module # remove DataParallel
+ model.eval()
+ self.model = model
+ self._data_shape = (3, config.data.image_size, config.data.image_size)
+
+ self.σs = model.sigmas.cpu().numpy()
+ self._device = device
+
+ def data_shape(self):
+ return self._data_shape
+
+ def samps_centered(self):
+ return False
+
+ @property
+ def σ_max(self):
+ return self.σs[0]
+
+ @property
+ def σ_min(self):
+ return self.σs[-1]
+
+ @torch.no_grad()
+ def denoise(self, xs, σ):
+ σ, j = self.snap_t_to_nearest_tick(σ)
+ N = xs.shape[0]
+ cond_t = torch.tensor([j] * N, dtype=torch.long, device=self.device)
+ score = self.model(xs, cond_t)
+ Ds = xs + score * (σ ** 2)
+ return Ds
+
+ def unet_is_cond(self):
+ return False
+
+ def use_cls_guidance(self):
+ return False
+
+ def snap_t_to_nearest_tick(self, t):
+ j = np.abs(t - self.σs).argmin()
+ return self.σs[j], j
diff --git a/adapt_sd.py b/adapt_sd.py
new file mode 100644
index 0000000000000000000000000000000000000000..e765cd44e2a36caa15badaada4450a935a91e336
--- /dev/null
+++ b/adapt_sd.py
@@ -0,0 +1,235 @@
+import sys
+from pathlib import Path
+import torch
+import numpy as np
+from omegaconf import OmegaConf
+from einops import rearrange
+
+from torch import autocast
+from contextlib import nullcontext
+from math import sqrt
+from adapt import ScoreAdapter
+
+import warnings
+from transformers import logging
+warnings.filterwarnings("ignore", category=DeprecationWarning)
+logging.set_verbosity_error()
+
+
+device = torch.device("cuda")
+
+
+def curr_dir():
+ return Path(__file__).resolve().parent
+
+
+def add_import_path(dirname):
+ sys.path.append(str(
+ curr_dir() / str(dirname)
+ ))
+
+
+def load_model_from_config(config, ckpt, verbose=False):
+ from ldm.util import instantiate_from_config
+ print(f"Loading model from {ckpt}")
+ pl_sd = torch.load(ckpt, map_location="cpu")
+ if "global_step" in pl_sd:
+ print(f"Global Step: {pl_sd['global_step']}")
+ sd = pl_sd["state_dict"]
+ model = instantiate_from_config(config.model)
+ m, u = model.load_state_dict(sd, strict=False)
+ if len(m) > 0 and verbose:
+ print("missing keys:")
+ print(m)
+ if len(u) > 0 and verbose:
+ print("unexpected keys:")
+ print(u)
+
+ model.to(device)
+ model.eval()
+ return model
+
+
+def load_sd1_model(ckpt_root):
+ ckpt_fname = ckpt_root / "stable_diffusion" / "sd-v1-5.ckpt"
+ cfg_fname = curr_dir() / "sd1" / "configs" / "v1-inference.yaml"
+ H, W = 512, 512
+
+ config = OmegaConf.load(str(cfg_fname))
+ model = load_model_from_config(config, str(ckpt_fname))
+ return model, H, W
+
+
+def load_sd2_model(ckpt_root, v2_highres):
+ if v2_highres:
+ ckpt_fname = ckpt_root / "sd2" / "768-v-ema.ckpt"
+ cfg_fname = curr_dir() / "sd2/configs/stable-diffusion/v2-inference-v.yaml"
+ H, W = 768, 768
+ else:
+ ckpt_fname = ckpt_root / "sd2" / "512-base-ema.ckpt"
+ cfg_fname = curr_dir() / "sd2/configs/stable-diffusion/v2-inference.yaml"
+ H, W = 512, 512
+
+ config = OmegaConf.load(f"{cfg_fname}")
+ model = load_model_from_config(config, str(ckpt_fname))
+ return model, H, W
+
+
+def _sqrt(x):
+ if isinstance(x, float):
+ return sqrt(x)
+ else:
+ assert isinstance(x, torch.Tensor)
+ return torch.sqrt(x)
+
+
+class StableDiffusion(ScoreAdapter):
+ def __init__(self, variant, v2_highres, prompt, scale, precision):
+ if variant == "v1":
+ add_import_path("sd1")
+ self.model, H, W = load_sd1_model(self.checkpoint_root())
+ elif variant == "v2":
+ add_import_path("sd2")
+ self.model, H, W = load_sd2_model(self.checkpoint_root(), v2_highres)
+ else:
+ raise ValueError(f"{variant}")
+
+ ae_resolution_f = 8
+
+ self._device = self.model._device
+
+ self.prompt = prompt
+ self.scale = scale
+ self.precision = precision
+ self.precision_scope = autocast if self.precision == "autocast" else nullcontext
+ self._data_shape = (4, H // ae_resolution_f, W // ae_resolution_f)
+
+ self.cond_func = self.model.get_learned_conditioning
+ self.M = 1000
+ noise_schedule = "linear"
+ self.noise_schedule = noise_schedule
+ self.us = self.linear_us(self.M)
+
+ def data_shape(self):
+ return self._data_shape
+
+ @property
+ def σ_max(self):
+ return self.us[0]
+
+ @property
+ def σ_min(self):
+ return self.us[-1]
+
+ @torch.no_grad()
+ def denoise(self, xs, σ, **model_kwargs):
+ with self.precision_scope("cuda"):
+ with self.model.ema_scope():
+ N = xs.shape[0]
+ c = model_kwargs.pop('c')
+ uc = model_kwargs.pop('uc')
+ cond_t, σ = self.time_cond_vec(N, σ)
+ unscaled_xs = xs
+ xs = xs / _sqrt(1 + σ**2)
+ if uc is None or self.scale == 1.:
+ output = self.model.apply_model(xs, cond_t, c)
+ else:
+ x_in = torch.cat([xs] * 2)
+ t_in = torch.cat([cond_t] * 2)
+ c_in = torch.cat([uc, c])
+ e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
+ output = e_t_uncond + self.scale * (e_t - e_t_uncond)
+
+ if self.model.parameterization == "v":
+ output = self.model.predict_eps_from_z_and_v(xs, cond_t, output)
+ else:
+ output = output
+
+ Ds = unscaled_xs - σ * output
+ return Ds
+
+ def cond_info(self, batch_size):
+ prompts = batch_size * [self.prompt]
+ return self.prompts_emb(prompts)
+
+ @torch.no_grad()
+ def prompts_emb(self, prompts):
+ assert isinstance(prompts, list)
+ batch_size = len(prompts)
+ with self.precision_scope("cuda"):
+ with self.model.ema_scope():
+ cond = {}
+ c = self.cond_func(prompts)
+ cond['c'] = c
+ uc = None
+ if self.scale != 1.0:
+ uc = self.cond_func(batch_size * [""])
+ cond['uc'] = uc
+ return cond
+
+ def unet_is_cond(self):
+ return True
+
+ def use_cls_guidance(self):
+ return False
+
+ def snap_t_to_nearest_tick(self, t):
+ j = np.abs(t - self.us).argmin()
+ return self.us[j], j
+
+ def time_cond_vec(self, N, σ):
+ if isinstance(σ, float):
+ σ, j = self.snap_t_to_nearest_tick(σ) # σ might change due to snapping
+ cond_t = (self.M - 1) - j
+ cond_t = torch.tensor([cond_t] * N, device=self.device)
+ return cond_t, σ
+ else:
+ assert isinstance(σ, torch.Tensor)
+ σ = σ.reshape(-1).cpu().numpy()
+ σs = []
+ js = []
+ for elem in σ:
+ _σ, _j = self.snap_t_to_nearest_tick(elem)
+ σs.append(_σ)
+ js.append((self.M - 1) - _j)
+
+ cond_t = torch.tensor(js, device=self.device)
+ σs = torch.tensor(σs, device=self.device, dtype=torch.float32).reshape(-1, 1, 1, 1)
+ return cond_t, σs
+
+ @staticmethod
+ def linear_us(M=1000):
+ assert M == 1000
+ β_start = 0.00085
+ β_end = 0.0120
+ βs = np.linspace(β_start**0.5, β_end**0.5, M, dtype=np.float64)**2
+ αs = np.cumprod(1 - βs)
+ us = np.sqrt((1 - αs) / αs)
+ us = us[::-1]
+ return us
+
+ @torch.no_grad()
+ def encode(self, xs):
+ model = self.model
+ with self.precision_scope("cuda"):
+ with self.model.ema_scope():
+ zs = model.get_first_stage_encoding(
+ model.encode_first_stage(xs)
+ )
+ return zs
+
+ @torch.no_grad()
+ def decode(self, xs):
+ with self.precision_scope("cuda"):
+ with self.model.ema_scope():
+ xs = self.model.decode_first_stage(xs)
+ return xs
+
+
+def test():
+ sd = StableDiffusion("v2", True, "haha", 10.0, "autocast")
+ print(sd)
+
+
+if __name__ == "__main__":
+ test()
diff --git a/adapt_vesde.py b/adapt_vesde.py
new file mode 100644
index 0000000000000000000000000000000000000000..aeb3dbd5bb914a129599a2bab0cac359c8abcf25
--- /dev/null
+++ b/adapt_vesde.py
@@ -0,0 +1,84 @@
+from pathlib import Path
+import torch
+from ml_collections.config_flags import config_flags
+
+from sde.config import get_config
+from sde import ddpm, ncsnv2, ncsnpp # need to import to trigger its registry
+from sde import utils as mutils
+from sde.ema import ExponentialMovingAverage
+
+from adapt import ScoreAdapter
+
+device = torch.device("cuda")
+
+
+def restore_checkpoint(ckpt_dir, state, device):
+ loaded_state = torch.load(ckpt_dir, map_location=device)
+ # state['optimizer'].load_state_dict(loaded_state['optimizer'])
+ state['model'].load_state_dict(loaded_state['model'], strict=False)
+ state['ema'].load_state_dict(loaded_state['ema'])
+ state['step'] = loaded_state['step']
+ return state
+
+
+def save_checkpoint(ckpt_dir, state):
+ saved_state = {
+ 'optimizer': state['optimizer'].state_dict(),
+ 'model': state['model'].state_dict(),
+ 'ema': state['ema'].state_dict(),
+ 'step': state['step']
+ }
+ torch.save(saved_state, ckpt_dir)
+
+
+class VESDE(ScoreAdapter):
+ def __init__(self):
+ config = get_config()
+ config.device = device
+ ckpt_fname = self.checkpoint_root() / "sde" / 'checkpoint_127.pth'
+
+ score_model = mutils.create_model(config)
+ ema = ExponentialMovingAverage(
+ score_model.parameters(), decay=config.model.ema_rate
+ )
+ state = dict(model=score_model, ema=ema, step=0)
+ self._data_shape = (
+ config.data.num_channels, config.data.image_size, config.data.image_size
+ )
+
+ self._σ_min = float(config.model.sigma_min * 2)
+
+ state = restore_checkpoint(ckpt_fname, state, device=config.device)
+ ema.copy_to(score_model.parameters())
+
+ score_model.eval()
+ score_model = score_model.module # remove DataParallel
+
+ self.model = score_model
+ self._device = device
+
+ def data_shape(self):
+ return self._data_shape
+
+ @property
+ def σ_min(self):
+ return self._σ_min
+
+ @torch.no_grad()
+ def denoise(self, xs, σ):
+ N = xs.shape[0]
+ # see Karras eqn. 212-215 for the 1/2 σ correction
+ cond_t = (0.5 * σ) * torch.ones(N, device=self.device)
+ # note that the forward function the model has been modified; see comments
+ n_hat = self.model(xs, cond_t)
+ Ds = xs + σ * n_hat
+ return Ds
+
+ def unet_is_cond(self):
+ return False
+
+ def use_cls_guidance(self):
+ return False
+
+ def snap_t_to_nearest_tick(self, t):
+ return super().snap_t_to_nearest_tick(t)
diff --git a/app.py b/app.py
new file mode 100644
index 0000000000000000000000000000000000000000..bf69226b1eb5968b242c223b07bdec3c53749530
--- /dev/null
+++ b/app.py
@@ -0,0 +1,155 @@
+import numpy as np
+import torch
+
+from my.utils import tqdm
+from my.utils.seed import seed_everything
+
+from run_img_sampling import SD, StableDiffusion
+from misc import torch_samps_to_imgs
+from pose import PoseConfig
+
+from run_nerf import VoxConfig
+from voxnerf.utils import every
+from voxnerf.vis import stitch_vis, bad_vis as nerf_vis
+
+from run_sjc import render_one_view
+
+device_glb = torch.device("cuda")
+
+@torch.no_grad()
+def evaluate(score_model, vox, poser):
+ H, W = poser.H, poser.W
+ vox.eval()
+ K, poses = poser.sample_test(100)
+
+ aabb = vox.aabb.T.cpu().numpy()
+ vox = vox.to(device_glb)
+
+ num_imgs = len(poses)
+
+ for i in (pbar := tqdm(range(num_imgs))):
+
+ pose = poses[i]
+ y, depth = render_one_view(vox, aabb, H, W, K, pose)
+ if isinstance(score_model, StableDiffusion):
+ y = score_model.decode(y)
+ pane, img, depth = vis_routine(y, depth)
+
+ # metric.put_artifact(
+ # "view_seq", ".mp4",
+ # lambda fn: stitch_vis(fn, read_stats(metric.output_dir, "view")[1])
+ # )
+
+def vis_routine(y, depth):
+ pane = nerf_vis(y, depth, final_H=256)
+ im = torch_samps_to_imgs(y)[0]
+ depth = depth.cpu().numpy()
+ return pane, im, depth
+
+
+if __name__ == "__main__":
+ # cfgs = {'gddpm': {'model': 'm_lsun_256', 'lsun_cat': 'bedroom', 'imgnet_cat': -1}, 'sd': {'variant': 'v1', 'v2_highres': False, 'prompt': 'A high quality photo of a delicious burger', 'scale': 100.0, 'precision': 'autocast'}, 'lr': 0.05, 'n_steps': 10000, 'emptiness_scale': 10, 'emptiness_weight': 10000, 'emptiness_step': 0.5, 'emptiness_multiplier': 20.0, 'depth_weight': 0, 'var_red': True}
+ pose = PoseConfig(rend_hw=64, FoV=60.0, R=1.5)
+ poser = pose.make()
+ sd_model = SD(variant='v1', v2_highres=False, prompt='A high quality photo of a delicious burger', scale=100.0, precision='autocast')
+ model = sd_model.make()
+ vox = VoxConfig(
+ model_type="V_SD", grid_size=100, density_shift=-1.0, c=4,
+ blend_bg_texture=True, bg_texture_hw=4,
+ bbox_len=1.0)
+ vox = vox.make()
+
+ lr = 0.05
+ n_steps = 10000
+ emptiness_scale = 10
+ emptiness_weight = 10000
+ emptiness_step = 0.5
+ emptiness_multiplier = 20.0
+ depth_weight = 0
+ var_red = True
+
+ assert model.samps_centered()
+ _, target_H, target_W = model.data_shape()
+ bs = 1
+ aabb = vox.aabb.T.cpu().numpy()
+ vox = vox.to(device_glb)
+ opt = torch.optim.Adamax(vox.opt_params(), lr=lr)
+
+ H, W = poser.H, poser.W
+ Ks, poses, prompt_prefixes = poser.sample_train(n_steps)
+
+ ts = model.us[30:-10]
+
+ same_noise = torch.randn(1, 4, H, W, device=model.device).repeat(bs, 1, 1, 1)
+
+ with tqdm(total=n_steps) as pbar:
+ for i in range(n_steps):
+
+ p = f"{prompt_prefixes[i]} {model.prompt}"
+ score_conds = model.prompts_emb([p])
+
+ y, depth, ws = render_one_view(vox, aabb, H, W, Ks[i], poses[i], return_w=True)
+
+ if isinstance(model, StableDiffusion):
+ pass
+ else:
+ y = torch.nn.functional.interpolate(y, (target_H, target_W), mode='bilinear')
+
+ opt.zero_grad()
+
+ with torch.no_grad():
+ chosen_σs = np.random.choice(ts, bs, replace=False)
+ chosen_σs = chosen_σs.reshape(-1, 1, 1, 1)
+ chosen_σs = torch.as_tensor(chosen_σs, device=model.device, dtype=torch.float32)
+ # chosen_σs = us[i]
+
+ noise = torch.randn(bs, *y.shape[1:], device=model.device)
+
+ zs = y + chosen_σs * noise
+ Ds = model.denoise(zs, chosen_σs, **score_conds)
+
+ if var_red:
+ grad = (Ds - y) / chosen_σs
+ else:
+ grad = (Ds - zs) / chosen_σs
+
+ grad = grad.mean(0, keepdim=True)
+
+ y.backward(-grad, retain_graph=True)
+
+ if depth_weight > 0:
+ center_depth = depth[7:-7, 7:-7]
+ border_depth_mean = (depth.sum() - center_depth.sum()) / (64*64-50*50)
+ center_depth_mean = center_depth.mean()
+ depth_diff = center_depth_mean - border_depth_mean
+ depth_loss = - torch.log(depth_diff + 1e-12)
+ depth_loss = depth_weight * depth_loss
+ depth_loss.backward(retain_graph=True)
+
+ emptiness_loss = torch.log(1 + emptiness_scale * ws).mean()
+ emptiness_loss = emptiness_weight * emptiness_loss
+ if emptiness_step * n_steps <= i:
+ emptiness_loss *= emptiness_multiplier
+ emptiness_loss.backward()
+
+ opt.step()
+
+
+ # metric.put_scalars(**tsr_stats(y))
+
+ if every(pbar, percent=1):
+ with torch.no_grad():
+ if isinstance(model, StableDiffusion):
+ y = model.decode(y)
+ pane, img, depth = vis_routine(y, depth)
+
+ # TODO: Output pane, img and depth to Gradio
+
+ pbar.update()
+ pbar.set_description(p)
+
+ # TODO: Save Checkpoint
+ ckpt = vox.state_dict()
+ # evaluate(model, vox, poser)
+
+ # TODO: Add code to stitch together the images and save them to a video
diff --git a/env.json b/env.json
new file mode 100644
index 0000000000000000000000000000000000000000..10e5bf801033bef3641a4e75397b563200da71e3
--- /dev/null
+++ b/env.json
@@ -0,0 +1,3 @@
+{
+ "data_root": "release"
+}
diff --git a/guided_diffusion/README.md b/guided_diffusion/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..4afc26c63af01a48a86f76a0b08f1c26161747c7
--- /dev/null
+++ b/guided_diffusion/README.md
@@ -0,0 +1,5 @@
+Selected modules from OpenAI's [guided diffusion](https://github.com/openai/guided-diffusion), retrieved at commit `22e0df8183507e13a7813f8d38d51b072ca1e67c`
+
+It's a bare minimum set of files needed to run their pretrained models. You can download these model checkpoints following the instructions in their repository README
+
+Some modifications are made to remove the distributed processing utilities in order to reduce code complexity.
diff --git a/guided_diffusion/__init__.py b/guided_diffusion/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..9665a0d63f695eab303318d824dad14041c7cde9
--- /dev/null
+++ b/guided_diffusion/__init__.py
@@ -0,0 +1,3 @@
+"""
+Codebase for "Improved Denoising Diffusion Probabilistic Models".
+"""
diff --git a/guided_diffusion/fp16_util.py b/guided_diffusion/fp16_util.py
new file mode 100644
index 0000000000000000000000000000000000000000..d599568f3197bcc236e9ae617829fa060640795f
--- /dev/null
+++ b/guided_diffusion/fp16_util.py
@@ -0,0 +1,237 @@
+"""
+Helpers to train with 16-bit precision.
+"""
+
+import numpy as np
+import torch as th
+import torch.nn as nn
+from torch._utils import _flatten_dense_tensors, _unflatten_dense_tensors
+
+# from . import logger
+
+INITIAL_LOG_LOSS_SCALE = 20.0
+
+
+def convert_module_to_f16(l):
+ """
+ Convert primitive modules to float16.
+ """
+ if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Conv3d)):
+ l.weight.data = l.weight.data.half()
+ if l.bias is not None:
+ l.bias.data = l.bias.data.half()
+
+
+def convert_module_to_f32(l):
+ """
+ Convert primitive modules to float32, undoing convert_module_to_f16().
+ """
+ if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Conv3d)):
+ l.weight.data = l.weight.data.float()
+ if l.bias is not None:
+ l.bias.data = l.bias.data.float()
+
+
+def make_master_params(param_groups_and_shapes):
+ """
+ Copy model parameters into a (differently-shaped) list of full-precision
+ parameters.
+ """
+ master_params = []
+ for param_group, shape in param_groups_and_shapes:
+ master_param = nn.Parameter(
+ _flatten_dense_tensors(
+ [param.detach().float() for (_, param) in param_group]
+ ).view(shape)
+ )
+ master_param.requires_grad = True
+ master_params.append(master_param)
+ return master_params
+
+
+def model_grads_to_master_grads(param_groups_and_shapes, master_params):
+ """
+ Copy the gradients from the model parameters into the master parameters
+ from make_master_params().
+ """
+ for master_param, (param_group, shape) in zip(
+ master_params, param_groups_and_shapes
+ ):
+ master_param.grad = _flatten_dense_tensors(
+ [param_grad_or_zeros(param) for (_, param) in param_group]
+ ).view(shape)
+
+
+def master_params_to_model_params(param_groups_and_shapes, master_params):
+ """
+ Copy the master parameter data back into the model parameters.
+ """
+ # Without copying to a list, if a generator is passed, this will
+ # silently not copy any parameters.
+ for master_param, (param_group, _) in zip(master_params, param_groups_and_shapes):
+ for (_, param), unflat_master_param in zip(
+ param_group, unflatten_master_params(param_group, master_param.view(-1))
+ ):
+ param.detach().copy_(unflat_master_param)
+
+
+def unflatten_master_params(param_group, master_param):
+ return _unflatten_dense_tensors(master_param, [param for (_, param) in param_group])
+
+
+def get_param_groups_and_shapes(named_model_params):
+ named_model_params = list(named_model_params)
+ scalar_vector_named_params = (
+ [(n, p) for (n, p) in named_model_params if p.ndim <= 1],
+ (-1),
+ )
+ matrix_named_params = (
+ [(n, p) for (n, p) in named_model_params if p.ndim > 1],
+ (1, -1),
+ )
+ return [scalar_vector_named_params, matrix_named_params]
+
+
+def master_params_to_state_dict(
+ model, param_groups_and_shapes, master_params, use_fp16
+):
+ if use_fp16:
+ state_dict = model.state_dict()
+ for master_param, (param_group, _) in zip(
+ master_params, param_groups_and_shapes
+ ):
+ for (name, _), unflat_master_param in zip(
+ param_group, unflatten_master_params(param_group, master_param.view(-1))
+ ):
+ assert name in state_dict
+ state_dict[name] = unflat_master_param
+ else:
+ state_dict = model.state_dict()
+ for i, (name, _value) in enumerate(model.named_parameters()):
+ assert name in state_dict
+ state_dict[name] = master_params[i]
+ return state_dict
+
+
+def state_dict_to_master_params(model, state_dict, use_fp16):
+ if use_fp16:
+ named_model_params = [
+ (name, state_dict[name]) for name, _ in model.named_parameters()
+ ]
+ param_groups_and_shapes = get_param_groups_and_shapes(named_model_params)
+ master_params = make_master_params(param_groups_and_shapes)
+ else:
+ master_params = [state_dict[name] for name, _ in model.named_parameters()]
+ return master_params
+
+
+def zero_master_grads(master_params):
+ for param in master_params:
+ param.grad = None
+
+
+def zero_grad(model_params):
+ for param in model_params:
+ # Taken from https://pytorch.org/docs/stable/_modules/torch/optim/optimizer.html#Optimizer.add_param_group
+ if param.grad is not None:
+ param.grad.detach_()
+ param.grad.zero_()
+
+
+def param_grad_or_zeros(param):
+ if param.grad is not None:
+ return param.grad.data.detach()
+ else:
+ return th.zeros_like(param)
+
+
+class MixedPrecisionTrainer:
+ def __init__(
+ self,
+ *,
+ model,
+ use_fp16=False,
+ fp16_scale_growth=1e-3,
+ initial_lg_loss_scale=INITIAL_LOG_LOSS_SCALE,
+ ):
+ self.model = model
+ self.use_fp16 = use_fp16
+ self.fp16_scale_growth = fp16_scale_growth
+
+ self.model_params = list(self.model.parameters())
+ self.master_params = self.model_params
+ self.param_groups_and_shapes = None
+ self.lg_loss_scale = initial_lg_loss_scale
+
+ if self.use_fp16:
+ self.param_groups_and_shapes = get_param_groups_and_shapes(
+ self.model.named_parameters()
+ )
+ self.master_params = make_master_params(self.param_groups_and_shapes)
+ self.model.convert_to_fp16()
+
+ def zero_grad(self):
+ zero_grad(self.model_params)
+
+ def backward(self, loss: th.Tensor):
+ if self.use_fp16:
+ loss_scale = 2 ** self.lg_loss_scale
+ (loss * loss_scale).backward()
+ else:
+ loss.backward()
+
+ def optimize(self, opt: th.optim.Optimizer):
+ if self.use_fp16:
+ return self._optimize_fp16(opt)
+ else:
+ return self._optimize_normal(opt)
+
+ def _optimize_fp16(self, opt: th.optim.Optimizer):
+ logger.logkv_mean("lg_loss_scale", self.lg_loss_scale)
+ model_grads_to_master_grads(self.param_groups_and_shapes, self.master_params)
+ grad_norm, param_norm = self._compute_norms(grad_scale=2 ** self.lg_loss_scale)
+ if check_overflow(grad_norm):
+ self.lg_loss_scale -= 1
+ logger.log(f"Found NaN, decreased lg_loss_scale to {self.lg_loss_scale}")
+ zero_master_grads(self.master_params)
+ return False
+
+ logger.logkv_mean("grad_norm", grad_norm)
+ logger.logkv_mean("param_norm", param_norm)
+
+ for p in self.master_params:
+ p.grad.mul_(1.0 / (2 ** self.lg_loss_scale))
+ opt.step()
+ zero_master_grads(self.master_params)
+ master_params_to_model_params(self.param_groups_and_shapes, self.master_params)
+ self.lg_loss_scale += self.fp16_scale_growth
+ return True
+
+ def _optimize_normal(self, opt: th.optim.Optimizer):
+ grad_norm, param_norm = self._compute_norms()
+ logger.logkv_mean("grad_norm", grad_norm)
+ logger.logkv_mean("param_norm", param_norm)
+ opt.step()
+ return True
+
+ def _compute_norms(self, grad_scale=1.0):
+ grad_norm = 0.0
+ param_norm = 0.0
+ for p in self.master_params:
+ with th.no_grad():
+ param_norm += th.norm(p, p=2, dtype=th.float32).item() ** 2
+ if p.grad is not None:
+ grad_norm += th.norm(p.grad, p=2, dtype=th.float32).item() ** 2
+ return np.sqrt(grad_norm) / grad_scale, np.sqrt(param_norm)
+
+ def master_params_to_state_dict(self, master_params):
+ return master_params_to_state_dict(
+ self.model, self.param_groups_and_shapes, master_params, self.use_fp16
+ )
+
+ def state_dict_to_master_params(self, state_dict):
+ return state_dict_to_master_params(self.model, state_dict, self.use_fp16)
+
+
+def check_overflow(value):
+ return (value == float("inf")) or (value == -float("inf")) or (value != value)
diff --git a/guided_diffusion/gaussian_diffusion.py b/guided_diffusion/gaussian_diffusion.py
new file mode 100644
index 0000000000000000000000000000000000000000..2fe0779f73677aa3a94e8c476e51c1860ee896c8
--- /dev/null
+++ b/guided_diffusion/gaussian_diffusion.py
@@ -0,0 +1,908 @@
+"""
+This code started out as a PyTorch port of Ho et al's diffusion models:
+https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/diffusion_utils_2.py
+
+Docstrings have been added, as well as DDIM sampling and a new collection of beta schedules.
+"""
+
+import enum
+import math
+
+import numpy as np
+import torch as th
+
+from .nn import mean_flat
+from .losses import normal_kl, discretized_gaussian_log_likelihood
+
+
+def get_named_beta_schedule(schedule_name, num_diffusion_timesteps):
+ """
+ Get a pre-defined beta schedule for the given name.
+
+ The beta schedule library consists of beta schedules which remain similar
+ in the limit of num_diffusion_timesteps.
+ Beta schedules may be added, but should not be removed or changed once
+ they are committed to maintain backwards compatibility.
+ """
+ if schedule_name == "linear":
+ # Linear schedule from Ho et al, extended to work for any number of
+ # diffusion steps.
+ scale = 1000 / num_diffusion_timesteps
+ beta_start = scale * 0.0001
+ beta_end = scale * 0.02
+ return np.linspace(
+ beta_start, beta_end, num_diffusion_timesteps, dtype=np.float64
+ )
+ elif schedule_name == "cosine":
+ return betas_for_alpha_bar(
+ num_diffusion_timesteps,
+ lambda t: math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2,
+ )
+ else:
+ raise NotImplementedError(f"unknown beta schedule: {schedule_name}")
+
+
+def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999):
+ """
+ Create a beta schedule that discretizes the given alpha_t_bar function,
+ which defines the cumulative product of (1-beta) over time from t = [0,1].
+
+ :param num_diffusion_timesteps: the number of betas to produce.
+ :param alpha_bar: a lambda that takes an argument t from 0 to 1 and
+ produces the cumulative product of (1-beta) up to that
+ part of the diffusion process.
+ :param max_beta: the maximum beta to use; use values lower than 1 to
+ prevent singularities.
+ """
+ betas = []
+ for i in range(num_diffusion_timesteps):
+ t1 = i / num_diffusion_timesteps
+ t2 = (i + 1) / num_diffusion_timesteps
+ betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
+ return np.array(betas)
+
+
+class ModelMeanType(enum.Enum):
+ """
+ Which type of output the model predicts.
+ """
+
+ PREVIOUS_X = enum.auto() # the model predicts x_{t-1}
+ START_X = enum.auto() # the model predicts x_0
+ EPSILON = enum.auto() # the model predicts epsilon
+
+
+class ModelVarType(enum.Enum):
+ """
+ What is used as the model's output variance.
+
+ The LEARNED_RANGE option has been added to allow the model to predict
+ values between FIXED_SMALL and FIXED_LARGE, making its job easier.
+ """
+
+ LEARNED = enum.auto()
+ FIXED_SMALL = enum.auto()
+ FIXED_LARGE = enum.auto()
+ LEARNED_RANGE = enum.auto()
+
+
+class LossType(enum.Enum):
+ MSE = enum.auto() # use raw MSE loss (and KL when learning variances)
+ RESCALED_MSE = (
+ enum.auto()
+ ) # use raw MSE loss (with RESCALED_KL when learning variances)
+ KL = enum.auto() # use the variational lower-bound
+ RESCALED_KL = enum.auto() # like KL, but rescale to estimate the full VLB
+
+ def is_vb(self):
+ return self == LossType.KL or self == LossType.RESCALED_KL
+
+
+class GaussianDiffusion:
+ """
+ Utilities for training and sampling diffusion models.
+
+ Ported directly from here, and then adapted over time to further experimentation.
+ https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/diffusion_utils_2.py#L42
+
+ :param betas: a 1-D numpy array of betas for each diffusion timestep,
+ starting at T and going to 1.
+ :param model_mean_type: a ModelMeanType determining what the model outputs.
+ :param model_var_type: a ModelVarType determining how variance is output.
+ :param loss_type: a LossType determining the loss function to use.
+ :param rescale_timesteps: if True, pass floating point timesteps into the
+ model so that they are always scaled like in the
+ original paper (0 to 1000).
+ """
+
+ def __init__(
+ self,
+ *,
+ betas,
+ model_mean_type,
+ model_var_type,
+ loss_type,
+ rescale_timesteps=False,
+ ):
+ self.model_mean_type = model_mean_type
+ self.model_var_type = model_var_type
+ self.loss_type = loss_type
+ self.rescale_timesteps = rescale_timesteps
+
+ # Use float64 for accuracy.
+ betas = np.array(betas, dtype=np.float64)
+ self.betas = betas
+ assert len(betas.shape) == 1, "betas must be 1-D"
+ assert (betas > 0).all() and (betas <= 1).all()
+
+ self.num_timesteps = int(betas.shape[0])
+
+ alphas = 1.0 - betas
+ self.alphas_cumprod = np.cumprod(alphas, axis=0)
+ self.alphas_cumprod_prev = np.append(1.0, self.alphas_cumprod[:-1])
+ self.alphas_cumprod_next = np.append(self.alphas_cumprod[1:], 0.0)
+ assert self.alphas_cumprod_prev.shape == (self.num_timesteps,)
+
+ # calculations for diffusion q(x_t | x_{t-1}) and others
+ self.sqrt_alphas_cumprod = np.sqrt(self.alphas_cumprod)
+ self.sqrt_one_minus_alphas_cumprod = np.sqrt(1.0 - self.alphas_cumprod)
+ self.log_one_minus_alphas_cumprod = np.log(1.0 - self.alphas_cumprod)
+ self.sqrt_recip_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod)
+ self.sqrt_recipm1_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod - 1)
+
+ # calculations for posterior q(x_{t-1} | x_t, x_0)
+ self.posterior_variance = (
+ betas * (1.0 - self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod)
+ )
+ # log calculation clipped because the posterior variance is 0 at the
+ # beginning of the diffusion chain.
+ self.posterior_log_variance_clipped = np.log(
+ np.append(self.posterior_variance[1], self.posterior_variance[1:])
+ )
+ self.posterior_mean_coef1 = (
+ betas * np.sqrt(self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod)
+ )
+ self.posterior_mean_coef2 = (
+ (1.0 - self.alphas_cumprod_prev)
+ * np.sqrt(alphas)
+ / (1.0 - self.alphas_cumprod)
+ )
+
+ def q_mean_variance(self, x_start, t):
+ """
+ Get the distribution q(x_t | x_0).
+
+ :param x_start: the [N x C x ...] tensor of noiseless inputs.
+ :param t: the number of diffusion steps (minus 1). Here, 0 means one step.
+ :return: A tuple (mean, variance, log_variance), all of x_start's shape.
+ """
+ mean = (
+ _extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
+ )
+ variance = _extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape)
+ log_variance = _extract_into_tensor(
+ self.log_one_minus_alphas_cumprod, t, x_start.shape
+ )
+ return mean, variance, log_variance
+
+ def q_sample(self, x_start, t, noise=None):
+ """
+ Diffuse the data for a given number of diffusion steps.
+
+ In other words, sample from q(x_t | x_0).
+
+ :param x_start: the initial data batch.
+ :param t: the number of diffusion steps (minus 1). Here, 0 means one step.
+ :param noise: if specified, the split-out normal noise.
+ :return: A noisy version of x_start.
+ """
+ if noise is None:
+ noise = th.randn_like(x_start)
+ assert noise.shape == x_start.shape
+ return (
+ _extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
+ + _extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape)
+ * noise
+ )
+
+ def q_posterior_mean_variance(self, x_start, x_t, t):
+ """
+ Compute the mean and variance of the diffusion posterior:
+
+ q(x_{t-1} | x_t, x_0)
+
+ """
+ assert x_start.shape == x_t.shape
+ posterior_mean = (
+ _extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start
+ + _extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t
+ )
+ posterior_variance = _extract_into_tensor(self.posterior_variance, t, x_t.shape)
+ posterior_log_variance_clipped = _extract_into_tensor(
+ self.posterior_log_variance_clipped, t, x_t.shape
+ )
+ assert (
+ posterior_mean.shape[0]
+ == posterior_variance.shape[0]
+ == posterior_log_variance_clipped.shape[0]
+ == x_start.shape[0]
+ )
+ return posterior_mean, posterior_variance, posterior_log_variance_clipped
+
+ def p_mean_variance(
+ self, model, x, t, clip_denoised=True, denoised_fn=None, model_kwargs=None
+ ):
+ """
+ Apply the model to get p(x_{t-1} | x_t), as well as a prediction of
+ the initial x, x_0.
+
+ :param model: the model, which takes a signal and a batch of timesteps
+ as input.
+ :param x: the [N x C x ...] tensor at time t.
+ :param t: a 1-D Tensor of timesteps.
+ :param clip_denoised: if True, clip the denoised signal into [-1, 1].
+ :param denoised_fn: if not None, a function which applies to the
+ x_start prediction before it is used to sample. Applies before
+ clip_denoised.
+ :param model_kwargs: if not None, a dict of extra keyword arguments to
+ pass to the model. This can be used for conditioning.
+ :return: a dict with the following keys:
+ - 'mean': the model mean output.
+ - 'variance': the model variance output.
+ - 'log_variance': the log of 'variance'.
+ - 'pred_xstart': the prediction for x_0.
+ """
+ if model_kwargs is None:
+ model_kwargs = {}
+
+ B, C = x.shape[:2]
+ assert t.shape == (B,)
+ model_output = model(x, self._scale_timesteps(t), **model_kwargs)
+
+ if self.model_var_type in [ModelVarType.LEARNED, ModelVarType.LEARNED_RANGE]:
+ assert model_output.shape == (B, C * 2, *x.shape[2:])
+ model_output, model_var_values = th.split(model_output, C, dim=1)
+ if self.model_var_type == ModelVarType.LEARNED:
+ model_log_variance = model_var_values
+ model_variance = th.exp(model_log_variance)
+ else:
+ min_log = _extract_into_tensor(
+ self.posterior_log_variance_clipped, t, x.shape
+ )
+ max_log = _extract_into_tensor(np.log(self.betas), t, x.shape)
+ # The model_var_values is [-1, 1] for [min_var, max_var].
+ frac = (model_var_values + 1) / 2
+ model_log_variance = frac * max_log + (1 - frac) * min_log
+ model_variance = th.exp(model_log_variance)
+ else:
+ model_variance, model_log_variance = {
+ # for fixedlarge, we set the initial (log-)variance like so
+ # to get a better decoder log likelihood.
+ ModelVarType.FIXED_LARGE: (
+ np.append(self.posterior_variance[1], self.betas[1:]),
+ np.log(np.append(self.posterior_variance[1], self.betas[1:])),
+ ),
+ ModelVarType.FIXED_SMALL: (
+ self.posterior_variance,
+ self.posterior_log_variance_clipped,
+ ),
+ }[self.model_var_type]
+ model_variance = _extract_into_tensor(model_variance, t, x.shape)
+ model_log_variance = _extract_into_tensor(model_log_variance, t, x.shape)
+
+ def process_xstart(x):
+ if denoised_fn is not None:
+ x = denoised_fn(x)
+ if clip_denoised:
+ return x.clamp(-1, 1)
+ return x
+
+ if self.model_mean_type == ModelMeanType.PREVIOUS_X:
+ pred_xstart = process_xstart(
+ self._predict_xstart_from_xprev(x_t=x, t=t, xprev=model_output)
+ )
+ model_mean = model_output
+ elif self.model_mean_type in [ModelMeanType.START_X, ModelMeanType.EPSILON]:
+ if self.model_mean_type == ModelMeanType.START_X:
+ pred_xstart = process_xstart(model_output)
+ else:
+ pred_xstart = process_xstart(
+ self._predict_xstart_from_eps(x_t=x, t=t, eps=model_output)
+ )
+ model_mean, _, _ = self.q_posterior_mean_variance(
+ x_start=pred_xstart, x_t=x, t=t
+ )
+ else:
+ raise NotImplementedError(self.model_mean_type)
+
+ assert (
+ model_mean.shape == model_log_variance.shape == pred_xstart.shape == x.shape
+ )
+ return {
+ "mean": model_mean,
+ "variance": model_variance,
+ "log_variance": model_log_variance,
+ "pred_xstart": pred_xstart,
+ }
+
+ def _predict_xstart_from_eps(self, x_t, t, eps):
+ assert x_t.shape == eps.shape
+ return (
+ _extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t
+ - _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * eps
+ )
+
+ def _predict_xstart_from_xprev(self, x_t, t, xprev):
+ assert x_t.shape == xprev.shape
+ return ( # (xprev - coef2*x_t) / coef1
+ _extract_into_tensor(1.0 / self.posterior_mean_coef1, t, x_t.shape) * xprev
+ - _extract_into_tensor(
+ self.posterior_mean_coef2 / self.posterior_mean_coef1, t, x_t.shape
+ )
+ * x_t
+ )
+
+ def _predict_eps_from_xstart(self, x_t, t, pred_xstart):
+ return (
+ _extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t
+ - pred_xstart
+ ) / _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
+
+ def _scale_timesteps(self, t):
+ if self.rescale_timesteps:
+ return t.float() * (1000.0 / self.num_timesteps)
+ return t
+
+ def condition_mean(self, cond_fn, p_mean_var, x, t, model_kwargs=None):
+ """
+ Compute the mean for the previous step, given a function cond_fn that
+ computes the gradient of a conditional log probability with respect to
+ x. In particular, cond_fn computes grad(log(p(y|x))), and we want to
+ condition on y.
+
+ This uses the conditioning strategy from Sohl-Dickstein et al. (2015).
+ """
+ gradient = cond_fn(x, self._scale_timesteps(t), **model_kwargs)
+ new_mean = (
+ p_mean_var["mean"].float() + p_mean_var["variance"] * gradient.float()
+ )
+ return new_mean
+
+ def condition_score(self, cond_fn, p_mean_var, x, t, model_kwargs=None):
+ """
+ Compute what the p_mean_variance output would have been, should the
+ model's score function be conditioned by cond_fn.
+
+ See condition_mean() for details on cond_fn.
+
+ Unlike condition_mean(), this instead uses the conditioning strategy
+ from Song et al (2020).
+ """
+ alpha_bar = _extract_into_tensor(self.alphas_cumprod, t, x.shape)
+
+ eps = self._predict_eps_from_xstart(x, t, p_mean_var["pred_xstart"])
+ eps = eps - (1 - alpha_bar).sqrt() * cond_fn(
+ x, self._scale_timesteps(t), **model_kwargs
+ )
+
+ out = p_mean_var.copy()
+ out["pred_xstart"] = self._predict_xstart_from_eps(x, t, eps)
+ out["mean"], _, _ = self.q_posterior_mean_variance(
+ x_start=out["pred_xstart"], x_t=x, t=t
+ )
+ return out
+
+ def p_sample(
+ self,
+ model,
+ x,
+ t,
+ clip_denoised=True,
+ denoised_fn=None,
+ cond_fn=None,
+ model_kwargs=None,
+ ):
+ """
+ Sample x_{t-1} from the model at the given timestep.
+
+ :param model: the model to sample from.
+ :param x: the current tensor at x_{t-1}.
+ :param t: the value of t, starting at 0 for the first diffusion step.
+ :param clip_denoised: if True, clip the x_start prediction to [-1, 1].
+ :param denoised_fn: if not None, a function which applies to the
+ x_start prediction before it is used to sample.
+ :param cond_fn: if not None, this is a gradient function that acts
+ similarly to the model.
+ :param model_kwargs: if not None, a dict of extra keyword arguments to
+ pass to the model. This can be used for conditioning.
+ :return: a dict containing the following keys:
+ - 'sample': a random sample from the model.
+ - 'pred_xstart': a prediction of x_0.
+ """
+ out = self.p_mean_variance(
+ model,
+ x,
+ t,
+ clip_denoised=clip_denoised,
+ denoised_fn=denoised_fn,
+ model_kwargs=model_kwargs,
+ )
+ noise = th.randn_like(x)
+ nonzero_mask = (
+ (t != 0).float().view(-1, *([1] * (len(x.shape) - 1)))
+ ) # no noise when t == 0
+ if cond_fn is not None:
+ out["mean"] = self.condition_mean(
+ cond_fn, out, x, t, model_kwargs=model_kwargs
+ )
+ sample = out["mean"] + nonzero_mask * th.exp(0.5 * out["log_variance"]) * noise
+ return {"sample": sample, "pred_xstart": out["pred_xstart"]}
+
+ def p_sample_loop(
+ self,
+ model,
+ shape,
+ noise=None,
+ clip_denoised=True,
+ denoised_fn=None,
+ cond_fn=None,
+ model_kwargs=None,
+ device=None,
+ progress=False,
+ ):
+ """
+ Generate samples from the model.
+
+ :param model: the model module.
+ :param shape: the shape of the samples, (N, C, H, W).
+ :param noise: if specified, the noise from the encoder to sample.
+ Should be of the same shape as `shape`.
+ :param clip_denoised: if True, clip x_start predictions to [-1, 1].
+ :param denoised_fn: if not None, a function which applies to the
+ x_start prediction before it is used to sample.
+ :param cond_fn: if not None, this is a gradient function that acts
+ similarly to the model.
+ :param model_kwargs: if not None, a dict of extra keyword arguments to
+ pass to the model. This can be used for conditioning.
+ :param device: if specified, the device to create the samples on.
+ If not specified, use a model parameter's device.
+ :param progress: if True, show a tqdm progress bar.
+ :return: a non-differentiable batch of samples.
+ """
+ final = None
+ for sample in self.p_sample_loop_progressive(
+ model,
+ shape,
+ noise=noise,
+ clip_denoised=clip_denoised,
+ denoised_fn=denoised_fn,
+ cond_fn=cond_fn,
+ model_kwargs=model_kwargs,
+ device=device,
+ progress=progress,
+ ):
+ final = sample
+ return final["sample"]
+
+ def p_sample_loop_progressive(
+ self,
+ model,
+ shape,
+ noise=None,
+ clip_denoised=True,
+ denoised_fn=None,
+ cond_fn=None,
+ model_kwargs=None,
+ device=None,
+ progress=False,
+ ):
+ """
+ Generate samples from the model and yield intermediate samples from
+ each timestep of diffusion.
+
+ Arguments are the same as p_sample_loop().
+ Returns a generator over dicts, where each dict is the return value of
+ p_sample().
+ """
+ if device is None:
+ device = next(model.parameters()).device
+ assert isinstance(shape, (tuple, list))
+ if noise is not None:
+ img = noise
+ else:
+ img = th.randn(*shape, device=device)
+ indices = list(range(self.num_timesteps))[::-1]
+
+ if progress:
+ # Lazy import so that we don't depend on tqdm.
+ from tqdm.auto import tqdm
+
+ indices = tqdm(indices)
+
+ for i in indices:
+ t = th.tensor([i] * shape[0], device=device)
+ with th.no_grad():
+ out = self.p_sample(
+ model,
+ img,
+ t,
+ clip_denoised=clip_denoised,
+ denoised_fn=denoised_fn,
+ cond_fn=cond_fn,
+ model_kwargs=model_kwargs,
+ )
+ yield out
+ img = out["sample"]
+
+ def ddim_sample(
+ self,
+ model,
+ x,
+ t,
+ clip_denoised=True,
+ denoised_fn=None,
+ cond_fn=None,
+ model_kwargs=None,
+ eta=0.0,
+ ):
+ """
+ Sample x_{t-1} from the model using DDIM.
+
+ Same usage as p_sample().
+ """
+ out = self.p_mean_variance(
+ model,
+ x,
+ t,
+ clip_denoised=clip_denoised,
+ denoised_fn=denoised_fn,
+ model_kwargs=model_kwargs,
+ )
+ if cond_fn is not None:
+ out = self.condition_score(cond_fn, out, x, t, model_kwargs=model_kwargs)
+
+ # Usually our model outputs epsilon, but we re-derive it
+ # in case we used x_start or x_prev prediction.
+ eps = self._predict_eps_from_xstart(x, t, out["pred_xstart"])
+
+ alpha_bar = _extract_into_tensor(self.alphas_cumprod, t, x.shape)
+ alpha_bar_prev = _extract_into_tensor(self.alphas_cumprod_prev, t, x.shape)
+ sigma = (
+ eta
+ * th.sqrt((1 - alpha_bar_prev) / (1 - alpha_bar))
+ * th.sqrt(1 - alpha_bar / alpha_bar_prev)
+ )
+ # Equation 12.
+ noise = th.randn_like(x)
+ mean_pred = (
+ out["pred_xstart"] * th.sqrt(alpha_bar_prev)
+ + th.sqrt(1 - alpha_bar_prev - sigma ** 2) * eps
+ )
+ nonzero_mask = (
+ (t != 0).float().view(-1, *([1] * (len(x.shape) - 1)))
+ ) # no noise when t == 0
+ sample = mean_pred + nonzero_mask * sigma * noise
+ return {"sample": sample, "pred_xstart": out["pred_xstart"]}
+
+ def ddim_reverse_sample(
+ self,
+ model,
+ x,
+ t,
+ clip_denoised=True,
+ denoised_fn=None,
+ model_kwargs=None,
+ eta=0.0,
+ ):
+ """
+ Sample x_{t+1} from the model using DDIM reverse ODE.
+ """
+ assert eta == 0.0, "Reverse ODE only for deterministic path"
+ out = self.p_mean_variance(
+ model,
+ x,
+ t,
+ clip_denoised=clip_denoised,
+ denoised_fn=denoised_fn,
+ model_kwargs=model_kwargs,
+ )
+ # Usually our model outputs epsilon, but we re-derive it
+ # in case we used x_start or x_prev prediction.
+ eps = (
+ _extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x.shape) * x
+ - out["pred_xstart"]
+ ) / _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x.shape)
+ alpha_bar_next = _extract_into_tensor(self.alphas_cumprod_next, t, x.shape)
+
+ # Equation 12. reversed
+ mean_pred = (
+ out["pred_xstart"] * th.sqrt(alpha_bar_next)
+ + th.sqrt(1 - alpha_bar_next) * eps
+ )
+
+ return {"sample": mean_pred, "pred_xstart": out["pred_xstart"]}
+
+ def ddim_sample_loop(
+ self,
+ model,
+ shape,
+ noise=None,
+ clip_denoised=True,
+ denoised_fn=None,
+ cond_fn=None,
+ model_kwargs=None,
+ device=None,
+ progress=False,
+ eta=0.0,
+ ):
+ """
+ Generate samples from the model using DDIM.
+
+ Same usage as p_sample_loop().
+ """
+ final = None
+ for sample in self.ddim_sample_loop_progressive(
+ model,
+ shape,
+ noise=noise,
+ clip_denoised=clip_denoised,
+ denoised_fn=denoised_fn,
+ cond_fn=cond_fn,
+ model_kwargs=model_kwargs,
+ device=device,
+ progress=progress,
+ eta=eta,
+ ):
+ final = sample
+ return final["sample"]
+
+ def ddim_sample_loop_progressive(
+ self,
+ model,
+ shape,
+ noise=None,
+ clip_denoised=True,
+ denoised_fn=None,
+ cond_fn=None,
+ model_kwargs=None,
+ device=None,
+ progress=False,
+ eta=0.0,
+ ):
+ """
+ Use DDIM to sample from the model and yield intermediate samples from
+ each timestep of DDIM.
+
+ Same usage as p_sample_loop_progressive().
+ """
+ if device is None:
+ device = next(model.parameters()).device
+ assert isinstance(shape, (tuple, list))
+ if noise is not None:
+ img = noise
+ else:
+ img = th.randn(*shape, device=device)
+ indices = list(range(self.num_timesteps))[::-1]
+
+ if progress:
+ # Lazy import so that we don't depend on tqdm.
+ from tqdm.auto import tqdm
+
+ indices = tqdm(indices)
+
+ for i in indices:
+ t = th.tensor([i] * shape[0], device=device)
+ with th.no_grad():
+ out = self.ddim_sample(
+ model,
+ img,
+ t,
+ clip_denoised=clip_denoised,
+ denoised_fn=denoised_fn,
+ cond_fn=cond_fn,
+ model_kwargs=model_kwargs,
+ eta=eta,
+ )
+ yield out
+ img = out["sample"]
+
+ def _vb_terms_bpd(
+ self, model, x_start, x_t, t, clip_denoised=True, model_kwargs=None
+ ):
+ """
+ Get a term for the variational lower-bound.
+
+ The resulting units are bits (rather than nats, as one might expect).
+ This allows for comparison to other papers.
+
+ :return: a dict with the following keys:
+ - 'output': a shape [N] tensor of NLLs or KLs.
+ - 'pred_xstart': the x_0 predictions.
+ """
+ true_mean, _, true_log_variance_clipped = self.q_posterior_mean_variance(
+ x_start=x_start, x_t=x_t, t=t
+ )
+ out = self.p_mean_variance(
+ model, x_t, t, clip_denoised=clip_denoised, model_kwargs=model_kwargs
+ )
+ kl = normal_kl(
+ true_mean, true_log_variance_clipped, out["mean"], out["log_variance"]
+ )
+ kl = mean_flat(kl) / np.log(2.0)
+
+ decoder_nll = -discretized_gaussian_log_likelihood(
+ x_start, means=out["mean"], log_scales=0.5 * out["log_variance"]
+ )
+ assert decoder_nll.shape == x_start.shape
+ decoder_nll = mean_flat(decoder_nll) / np.log(2.0)
+
+ # At the first timestep return the decoder NLL,
+ # otherwise return KL(q(x_{t-1}|x_t,x_0) || p(x_{t-1}|x_t))
+ output = th.where((t == 0), decoder_nll, kl)
+ return {"output": output, "pred_xstart": out["pred_xstart"]}
+
+ def training_losses(self, model, x_start, t, model_kwargs=None, noise=None):
+ """
+ Compute training losses for a single timestep.
+
+ :param model: the model to evaluate loss on.
+ :param x_start: the [N x C x ...] tensor of inputs.
+ :param t: a batch of timestep indices.
+ :param model_kwargs: if not None, a dict of extra keyword arguments to
+ pass to the model. This can be used for conditioning.
+ :param noise: if specified, the specific Gaussian noise to try to remove.
+ :return: a dict with the key "loss" containing a tensor of shape [N].
+ Some mean or variance settings may also have other keys.
+ """
+ if model_kwargs is None:
+ model_kwargs = {}
+ if noise is None:
+ noise = th.randn_like(x_start)
+ x_t = self.q_sample(x_start, t, noise=noise)
+
+ terms = {}
+
+ if self.loss_type == LossType.KL or self.loss_type == LossType.RESCALED_KL:
+ terms["loss"] = self._vb_terms_bpd(
+ model=model,
+ x_start=x_start,
+ x_t=x_t,
+ t=t,
+ clip_denoised=False,
+ model_kwargs=model_kwargs,
+ )["output"]
+ if self.loss_type == LossType.RESCALED_KL:
+ terms["loss"] *= self.num_timesteps
+ elif self.loss_type == LossType.MSE or self.loss_type == LossType.RESCALED_MSE:
+ model_output = model(x_t, self._scale_timesteps(t), **model_kwargs)
+
+ if self.model_var_type in [
+ ModelVarType.LEARNED,
+ ModelVarType.LEARNED_RANGE,
+ ]:
+ B, C = x_t.shape[:2]
+ assert model_output.shape == (B, C * 2, *x_t.shape[2:])
+ model_output, model_var_values = th.split(model_output, C, dim=1)
+ # Learn the variance using the variational bound, but don't let
+ # it affect our mean prediction.
+ frozen_out = th.cat([model_output.detach(), model_var_values], dim=1)
+ terms["vb"] = self._vb_terms_bpd(
+ model=lambda *args, r=frozen_out: r,
+ x_start=x_start,
+ x_t=x_t,
+ t=t,
+ clip_denoised=False,
+ )["output"]
+ if self.loss_type == LossType.RESCALED_MSE:
+ # Divide by 1000 for equivalence with initial implementation.
+ # Without a factor of 1/1000, the VB term hurts the MSE term.
+ terms["vb"] *= self.num_timesteps / 1000.0
+
+ target = {
+ ModelMeanType.PREVIOUS_X: self.q_posterior_mean_variance(
+ x_start=x_start, x_t=x_t, t=t
+ )[0],
+ ModelMeanType.START_X: x_start,
+ ModelMeanType.EPSILON: noise,
+ }[self.model_mean_type]
+ assert model_output.shape == target.shape == x_start.shape
+ terms["mse"] = mean_flat((target - model_output) ** 2)
+ if "vb" in terms:
+ terms["loss"] = terms["mse"] + terms["vb"]
+ else:
+ terms["loss"] = terms["mse"]
+ else:
+ raise NotImplementedError(self.loss_type)
+
+ return terms
+
+ def _prior_bpd(self, x_start):
+ """
+ Get the prior KL term for the variational lower-bound, measured in
+ bits-per-dim.
+
+ This term can't be optimized, as it only depends on the encoder.
+
+ :param x_start: the [N x C x ...] tensor of inputs.
+ :return: a batch of [N] KL values (in bits), one per batch element.
+ """
+ batch_size = x_start.shape[0]
+ t = th.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device)
+ qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t)
+ kl_prior = normal_kl(
+ mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0
+ )
+ return mean_flat(kl_prior) / np.log(2.0)
+
+ def calc_bpd_loop(self, model, x_start, clip_denoised=True, model_kwargs=None):
+ """
+ Compute the entire variational lower-bound, measured in bits-per-dim,
+ as well as other related quantities.
+
+ :param model: the model to evaluate loss on.
+ :param x_start: the [N x C x ...] tensor of inputs.
+ :param clip_denoised: if True, clip denoised samples.
+ :param model_kwargs: if not None, a dict of extra keyword arguments to
+ pass to the model. This can be used for conditioning.
+
+ :return: a dict containing the following keys:
+ - total_bpd: the total variational lower-bound, per batch element.
+ - prior_bpd: the prior term in the lower-bound.
+ - vb: an [N x T] tensor of terms in the lower-bound.
+ - xstart_mse: an [N x T] tensor of x_0 MSEs for each timestep.
+ - mse: an [N x T] tensor of epsilon MSEs for each timestep.
+ """
+ device = x_start.device
+ batch_size = x_start.shape[0]
+
+ vb = []
+ xstart_mse = []
+ mse = []
+ for t in list(range(self.num_timesteps))[::-1]:
+ t_batch = th.tensor([t] * batch_size, device=device)
+ noise = th.randn_like(x_start)
+ x_t = self.q_sample(x_start=x_start, t=t_batch, noise=noise)
+ # Calculate VLB term at the current timestep
+ with th.no_grad():
+ out = self._vb_terms_bpd(
+ model,
+ x_start=x_start,
+ x_t=x_t,
+ t=t_batch,
+ clip_denoised=clip_denoised,
+ model_kwargs=model_kwargs,
+ )
+ vb.append(out["output"])
+ xstart_mse.append(mean_flat((out["pred_xstart"] - x_start) ** 2))
+ eps = self._predict_eps_from_xstart(x_t, t_batch, out["pred_xstart"])
+ mse.append(mean_flat((eps - noise) ** 2))
+
+ vb = th.stack(vb, dim=1)
+ xstart_mse = th.stack(xstart_mse, dim=1)
+ mse = th.stack(mse, dim=1)
+
+ prior_bpd = self._prior_bpd(x_start)
+ total_bpd = vb.sum(dim=1) + prior_bpd
+ return {
+ "total_bpd": total_bpd,
+ "prior_bpd": prior_bpd,
+ "vb": vb,
+ "xstart_mse": xstart_mse,
+ "mse": mse,
+ }
+
+
+def _extract_into_tensor(arr, timesteps, broadcast_shape):
+ """
+ Extract values from a 1-D numpy array for a batch of indices.
+
+ :param arr: the 1-D numpy array.
+ :param timesteps: a tensor of indices into the array to extract.
+ :param broadcast_shape: a larger shape of K dimensions with the batch
+ dimension equal to the length of timesteps.
+ :return: a tensor of shape [batch_size, 1, ...] where the shape has K dims.
+ """
+ res = th.from_numpy(arr).to(device=timesteps.device)[timesteps].float()
+ while len(res.shape) < len(broadcast_shape):
+ res = res[..., None]
+ return res.expand(broadcast_shape)
diff --git a/guided_diffusion/losses.py b/guided_diffusion/losses.py
new file mode 100644
index 0000000000000000000000000000000000000000..251e42e4f36a31bb5e1aeda874b3a45d722000a2
--- /dev/null
+++ b/guided_diffusion/losses.py
@@ -0,0 +1,77 @@
+"""
+Helpers for various likelihood-based losses. These are ported from the original
+Ho et al. diffusion models codebase:
+https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/utils.py
+"""
+
+import numpy as np
+
+import torch as th
+
+
+def normal_kl(mean1, logvar1, mean2, logvar2):
+ """
+ Compute the KL divergence between two gaussians.
+
+ Shapes are automatically broadcasted, so batches can be compared to
+ scalars, among other use cases.
+ """
+ tensor = None
+ for obj in (mean1, logvar1, mean2, logvar2):
+ if isinstance(obj, th.Tensor):
+ tensor = obj
+ break
+ assert tensor is not None, "at least one argument must be a Tensor"
+
+ # Force variances to be Tensors. Broadcasting helps convert scalars to
+ # Tensors, but it does not work for th.exp().
+ logvar1, logvar2 = [
+ x if isinstance(x, th.Tensor) else th.tensor(x).to(tensor)
+ for x in (logvar1, logvar2)
+ ]
+
+ return 0.5 * (
+ -1.0
+ + logvar2
+ - logvar1
+ + th.exp(logvar1 - logvar2)
+ + ((mean1 - mean2) ** 2) * th.exp(-logvar2)
+ )
+
+
+def approx_standard_normal_cdf(x):
+ """
+ A fast approximation of the cumulative distribution function of the
+ standard normal.
+ """
+ return 0.5 * (1.0 + th.tanh(np.sqrt(2.0 / np.pi) * (x + 0.044715 * th.pow(x, 3))))
+
+
+def discretized_gaussian_log_likelihood(x, *, means, log_scales):
+ """
+ Compute the log-likelihood of a Gaussian distribution discretizing to a
+ given image.
+
+ :param x: the target images. It is assumed that this was uint8 values,
+ rescaled to the range [-1, 1].
+ :param means: the Gaussian mean Tensor.
+ :param log_scales: the Gaussian log stddev Tensor.
+ :return: a tensor like x of log probabilities (in nats).
+ """
+ assert x.shape == means.shape == log_scales.shape
+ centered_x = x - means
+ inv_stdv = th.exp(-log_scales)
+ plus_in = inv_stdv * (centered_x + 1.0 / 255.0)
+ cdf_plus = approx_standard_normal_cdf(plus_in)
+ min_in = inv_stdv * (centered_x - 1.0 / 255.0)
+ cdf_min = approx_standard_normal_cdf(min_in)
+ log_cdf_plus = th.log(cdf_plus.clamp(min=1e-12))
+ log_one_minus_cdf_min = th.log((1.0 - cdf_min).clamp(min=1e-12))
+ cdf_delta = cdf_plus - cdf_min
+ log_probs = th.where(
+ x < -0.999,
+ log_cdf_plus,
+ th.where(x > 0.999, log_one_minus_cdf_min, th.log(cdf_delta.clamp(min=1e-12))),
+ )
+ assert log_probs.shape == x.shape
+ return log_probs
diff --git a/guided_diffusion/nn.py b/guided_diffusion/nn.py
new file mode 100644
index 0000000000000000000000000000000000000000..a4cd59c2324b003626b8cf4c7581effd334908d3
--- /dev/null
+++ b/guided_diffusion/nn.py
@@ -0,0 +1,170 @@
+"""
+Various utilities for neural networks.
+"""
+
+import math
+
+import torch as th
+import torch.nn as nn
+
+
+# PyTorch 1.7 has SiLU, but we support PyTorch 1.5.
+class SiLU(nn.Module):
+ def forward(self, x):
+ return x * th.sigmoid(x)
+
+
+class GroupNorm32(nn.GroupNorm):
+ def forward(self, x):
+ return super().forward(x.float()).type(x.dtype)
+
+
+def conv_nd(dims, *args, **kwargs):
+ """
+ Create a 1D, 2D, or 3D convolution module.
+ """
+ if dims == 1:
+ return nn.Conv1d(*args, **kwargs)
+ elif dims == 2:
+ return nn.Conv2d(*args, **kwargs)
+ elif dims == 3:
+ return nn.Conv3d(*args, **kwargs)
+ raise ValueError(f"unsupported dimensions: {dims}")
+
+
+def linear(*args, **kwargs):
+ """
+ Create a linear module.
+ """
+ return nn.Linear(*args, **kwargs)
+
+
+def avg_pool_nd(dims, *args, **kwargs):
+ """
+ Create a 1D, 2D, or 3D average pooling module.
+ """
+ if dims == 1:
+ return nn.AvgPool1d(*args, **kwargs)
+ elif dims == 2:
+ return nn.AvgPool2d(*args, **kwargs)
+ elif dims == 3:
+ return nn.AvgPool3d(*args, **kwargs)
+ raise ValueError(f"unsupported dimensions: {dims}")
+
+
+def update_ema(target_params, source_params, rate=0.99):
+ """
+ Update target parameters to be closer to those of source parameters using
+ an exponential moving average.
+
+ :param target_params: the target parameter sequence.
+ :param source_params: the source parameter sequence.
+ :param rate: the EMA rate (closer to 1 means slower).
+ """
+ for targ, src in zip(target_params, source_params):
+ targ.detach().mul_(rate).add_(src, alpha=1 - rate)
+
+
+def zero_module(module):
+ """
+ Zero out the parameters of a module and return it.
+ """
+ for p in module.parameters():
+ p.detach().zero_()
+ return module
+
+
+def scale_module(module, scale):
+ """
+ Scale the parameters of a module and return it.
+ """
+ for p in module.parameters():
+ p.detach().mul_(scale)
+ return module
+
+
+def mean_flat(tensor):
+ """
+ Take the mean over all non-batch dimensions.
+ """
+ return tensor.mean(dim=list(range(1, len(tensor.shape))))
+
+
+def normalization(channels):
+ """
+ Make a standard normalization layer.
+
+ :param channels: number of input channels.
+ :return: an nn.Module for normalization.
+ """
+ return GroupNorm32(32, channels)
+
+
+def timestep_embedding(timesteps, dim, max_period=10000):
+ """
+ Create sinusoidal timestep embeddings.
+
+ :param timesteps: a 1-D Tensor of N indices, one per batch element.
+ These may be fractional.
+ :param dim: the dimension of the output.
+ :param max_period: controls the minimum frequency of the embeddings.
+ :return: an [N x dim] Tensor of positional embeddings.
+ """
+ half = dim // 2
+ freqs = th.exp(
+ -math.log(max_period) * th.arange(start=0, end=half, dtype=th.float32) / half
+ ).to(device=timesteps.device)
+ args = timesteps[:, None].float() * freqs[None]
+ embedding = th.cat([th.cos(args), th.sin(args)], dim=-1)
+ if dim % 2:
+ embedding = th.cat([embedding, th.zeros_like(embedding[:, :1])], dim=-1)
+ return embedding
+
+
+def checkpoint(func, inputs, params, flag):
+ """
+ Evaluate a function without caching intermediate activations, allowing for
+ reduced memory at the expense of extra compute in the backward pass.
+
+ :param func: the function to evaluate.
+ :param inputs: the argument sequence to pass to `func`.
+ :param params: a sequence of parameters `func` depends on but does not
+ explicitly take as arguments.
+ :param flag: if False, disable gradient checkpointing.
+ """
+ if flag:
+ args = tuple(inputs) + tuple(params)
+ return CheckpointFunction.apply(func, len(inputs), *args)
+ else:
+ return func(*inputs)
+
+
+class CheckpointFunction(th.autograd.Function):
+ @staticmethod
+ def forward(ctx, run_function, length, *args):
+ ctx.run_function = run_function
+ ctx.input_tensors = list(args[:length])
+ ctx.input_params = list(args[length:])
+ with th.no_grad():
+ output_tensors = ctx.run_function(*ctx.input_tensors)
+ return output_tensors
+
+ @staticmethod
+ def backward(ctx, *output_grads):
+ ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors]
+ with th.enable_grad():
+ # Fixes a bug where the first op in run_function modifies the
+ # Tensor storage in place, which is not allowed for detach()'d
+ # Tensors.
+ shallow_copies = [x.view_as(x) for x in ctx.input_tensors]
+ output_tensors = ctx.run_function(*shallow_copies)
+ input_grads = th.autograd.grad(
+ output_tensors,
+ ctx.input_tensors + ctx.input_params,
+ output_grads,
+ allow_unused=True,
+ )
+ del ctx.input_tensors
+ del ctx.input_params
+ del output_tensors
+ return (None, None) + input_grads
diff --git a/guided_diffusion/respace.py b/guided_diffusion/respace.py
new file mode 100644
index 0000000000000000000000000000000000000000..b568817e1258e4bda5a5da11630794d4a9e6bdcd
--- /dev/null
+++ b/guided_diffusion/respace.py
@@ -0,0 +1,128 @@
+import numpy as np
+import torch as th
+
+from .gaussian_diffusion import GaussianDiffusion
+
+
+def space_timesteps(num_timesteps, section_counts):
+ """
+ Create a list of timesteps to use from an original diffusion process,
+ given the number of timesteps we want to take from equally-sized portions
+ of the original process.
+
+ For example, if there's 300 timesteps and the section counts are [10,15,20]
+ then the first 100 timesteps are strided to be 10 timesteps, the second 100
+ are strided to be 15 timesteps, and the final 100 are strided to be 20.
+
+ If the stride is a string starting with "ddim", then the fixed striding
+ from the DDIM paper is used, and only one section is allowed.
+
+ :param num_timesteps: the number of diffusion steps in the original
+ process to divide up.
+ :param section_counts: either a list of numbers, or a string containing
+ comma-separated numbers, indicating the step count
+ per section. As a special case, use "ddimN" where N
+ is a number of steps to use the striding from the
+ DDIM paper.
+ :return: a set of diffusion steps from the original process to use.
+ """
+ if isinstance(section_counts, str):
+ if section_counts.startswith("ddim"):
+ desired_count = int(section_counts[len("ddim") :])
+ for i in range(1, num_timesteps):
+ if len(range(0, num_timesteps, i)) == desired_count:
+ return set(range(0, num_timesteps, i))
+ raise ValueError(
+ f"cannot create exactly {num_timesteps} steps with an integer stride"
+ )
+ section_counts = [int(x) for x in section_counts.split(",")]
+ size_per = num_timesteps // len(section_counts)
+ extra = num_timesteps % len(section_counts)
+ start_idx = 0
+ all_steps = []
+ for i, section_count in enumerate(section_counts):
+ size = size_per + (1 if i < extra else 0)
+ if size < section_count:
+ raise ValueError(
+ f"cannot divide section of {size} steps into {section_count}"
+ )
+ if section_count <= 1:
+ frac_stride = 1
+ else:
+ frac_stride = (size - 1) / (section_count - 1)
+ cur_idx = 0.0
+ taken_steps = []
+ for _ in range(section_count):
+ taken_steps.append(start_idx + round(cur_idx))
+ cur_idx += frac_stride
+ all_steps += taken_steps
+ start_idx += size
+ return set(all_steps)
+
+
+class SpacedDiffusion(GaussianDiffusion):
+ """
+ A diffusion process which can skip steps in a base diffusion process.
+
+ :param use_timesteps: a collection (sequence or set) of timesteps from the
+ original diffusion process to retain.
+ :param kwargs: the kwargs to create the base diffusion process.
+ """
+
+ def __init__(self, use_timesteps, **kwargs):
+ self.use_timesteps = set(use_timesteps)
+ self.timestep_map = []
+ self.original_num_steps = len(kwargs["betas"])
+
+ base_diffusion = GaussianDiffusion(**kwargs) # pylint: disable=missing-kwoa
+ last_alpha_cumprod = 1.0
+ new_betas = []
+ for i, alpha_cumprod in enumerate(base_diffusion.alphas_cumprod):
+ if i in self.use_timesteps:
+ new_betas.append(1 - alpha_cumprod / last_alpha_cumprod)
+ last_alpha_cumprod = alpha_cumprod
+ self.timestep_map.append(i)
+ kwargs["betas"] = np.array(new_betas)
+ super().__init__(**kwargs)
+
+ def p_mean_variance(
+ self, model, *args, **kwargs
+ ): # pylint: disable=signature-differs
+ return super().p_mean_variance(self._wrap_model(model), *args, **kwargs)
+
+ def training_losses(
+ self, model, *args, **kwargs
+ ): # pylint: disable=signature-differs
+ return super().training_losses(self._wrap_model(model), *args, **kwargs)
+
+ def condition_mean(self, cond_fn, *args, **kwargs):
+ return super().condition_mean(self._wrap_model(cond_fn), *args, **kwargs)
+
+ def condition_score(self, cond_fn, *args, **kwargs):
+ return super().condition_score(self._wrap_model(cond_fn), *args, **kwargs)
+
+ def _wrap_model(self, model):
+ if isinstance(model, _WrappedModel):
+ return model
+ return _WrappedModel(
+ model, self.timestep_map, self.rescale_timesteps, self.original_num_steps
+ )
+
+ def _scale_timesteps(self, t):
+ # Scaling is done by the wrapped model.
+ return t
+
+
+class _WrappedModel:
+ def __init__(self, model, timestep_map, rescale_timesteps, original_num_steps):
+ self.model = model
+ self.timestep_map = timestep_map
+ self.rescale_timesteps = rescale_timesteps
+ self.original_num_steps = original_num_steps
+
+ def __call__(self, x, ts, **kwargs):
+ map_tensor = th.tensor(self.timestep_map, device=ts.device, dtype=ts.dtype)
+ new_ts = map_tensor[ts]
+ if self.rescale_timesteps:
+ new_ts = new_ts.float() * (1000.0 / self.original_num_steps)
+ return self.model(x, new_ts, **kwargs)
diff --git a/guided_diffusion/script_util.py b/guided_diffusion/script_util.py
new file mode 100644
index 0000000000000000000000000000000000000000..2bfdad9fce28193d8abeb439f7400eca90d4f728
--- /dev/null
+++ b/guided_diffusion/script_util.py
@@ -0,0 +1,452 @@
+import argparse
+import inspect
+
+from . import gaussian_diffusion as gd
+from .respace import SpacedDiffusion, space_timesteps
+from .unet import SuperResModel, UNetModel, EncoderUNetModel
+
+NUM_CLASSES = 1000
+
+
+def diffusion_defaults():
+ """
+ Defaults for image and classifier training.
+ """
+ return dict(
+ learn_sigma=False,
+ diffusion_steps=1000,
+ noise_schedule="linear",
+ timestep_respacing="",
+ use_kl=False,
+ predict_xstart=False,
+ rescale_timesteps=False,
+ rescale_learned_sigmas=False,
+ )
+
+
+def classifier_defaults():
+ """
+ Defaults for classifier models.
+ """
+ return dict(
+ image_size=64,
+ classifier_use_fp16=False,
+ classifier_width=128,
+ classifier_depth=2,
+ classifier_attention_resolutions="32,16,8", # 16
+ classifier_use_scale_shift_norm=True, # False
+ classifier_resblock_updown=True, # False
+ classifier_pool="attention",
+ )
+
+
+def model_and_diffusion_defaults():
+ """
+ Defaults for image training.
+ """
+ res = dict(
+ image_size=64,
+ num_channels=128,
+ num_res_blocks=2,
+ num_heads=4,
+ num_heads_upsample=-1,
+ num_head_channels=-1,
+ attention_resolutions="16,8",
+ channel_mult="",
+ dropout=0.0,
+ class_cond=False,
+ use_checkpoint=False,
+ use_scale_shift_norm=True,
+ resblock_updown=False,
+ use_fp16=False,
+ use_new_attention_order=False,
+ )
+ res.update(diffusion_defaults())
+ return res
+
+
+def classifier_and_diffusion_defaults():
+ res = classifier_defaults()
+ res.update(diffusion_defaults())
+ return res
+
+
+def create_model_and_diffusion(
+ image_size,
+ class_cond,
+ learn_sigma,
+ num_channels,
+ num_res_blocks,
+ channel_mult,
+ num_heads,
+ num_head_channels,
+ num_heads_upsample,
+ attention_resolutions,
+ dropout,
+ diffusion_steps,
+ noise_schedule,
+ timestep_respacing,
+ use_kl,
+ predict_xstart,
+ rescale_timesteps,
+ rescale_learned_sigmas,
+ use_checkpoint,
+ use_scale_shift_norm,
+ resblock_updown,
+ use_fp16,
+ use_new_attention_order,
+):
+ model = create_model(
+ image_size,
+ num_channels,
+ num_res_blocks,
+ channel_mult=channel_mult,
+ learn_sigma=learn_sigma,
+ class_cond=class_cond,
+ use_checkpoint=use_checkpoint,
+ attention_resolutions=attention_resolutions,
+ num_heads=num_heads,
+ num_head_channels=num_head_channels,
+ num_heads_upsample=num_heads_upsample,
+ use_scale_shift_norm=use_scale_shift_norm,
+ dropout=dropout,
+ resblock_updown=resblock_updown,
+ use_fp16=use_fp16,
+ use_new_attention_order=use_new_attention_order,
+ )
+ diffusion = create_gaussian_diffusion(
+ steps=diffusion_steps,
+ learn_sigma=learn_sigma,
+ noise_schedule=noise_schedule,
+ use_kl=use_kl,
+ predict_xstart=predict_xstart,
+ rescale_timesteps=rescale_timesteps,
+ rescale_learned_sigmas=rescale_learned_sigmas,
+ timestep_respacing=timestep_respacing,
+ )
+ return model, diffusion
+
+
+def create_model(
+ image_size,
+ num_channels,
+ num_res_blocks,
+ channel_mult="",
+ learn_sigma=False,
+ class_cond=False,
+ use_checkpoint=False,
+ attention_resolutions="16",
+ num_heads=1,
+ num_head_channels=-1,
+ num_heads_upsample=-1,
+ use_scale_shift_norm=False,
+ dropout=0,
+ resblock_updown=False,
+ use_fp16=False,
+ use_new_attention_order=False,
+):
+ if channel_mult == "":
+ if image_size == 512:
+ channel_mult = (0.5, 1, 1, 2, 2, 4, 4)
+ elif image_size == 256:
+ channel_mult = (1, 1, 2, 2, 4, 4)
+ elif image_size == 128:
+ channel_mult = (1, 1, 2, 3, 4)
+ elif image_size == 64:
+ channel_mult = (1, 2, 3, 4)
+ else:
+ raise ValueError(f"unsupported image size: {image_size}")
+ else:
+ channel_mult = tuple(int(ch_mult) for ch_mult in channel_mult.split(","))
+
+ attention_ds = []
+ for res in attention_resolutions.split(","):
+ attention_ds.append(image_size // int(res))
+
+ return UNetModel(
+ image_size=image_size,
+ in_channels=3,
+ model_channels=num_channels,
+ out_channels=(3 if not learn_sigma else 6),
+ num_res_blocks=num_res_blocks,
+ attention_resolutions=tuple(attention_ds),
+ dropout=dropout,
+ channel_mult=channel_mult,
+ num_classes=(NUM_CLASSES if class_cond else None),
+ use_checkpoint=use_checkpoint,
+ use_fp16=use_fp16,
+ num_heads=num_heads,
+ num_head_channels=num_head_channels,
+ num_heads_upsample=num_heads_upsample,
+ use_scale_shift_norm=use_scale_shift_norm,
+ resblock_updown=resblock_updown,
+ use_new_attention_order=use_new_attention_order,
+ )
+
+
+def create_classifier_and_diffusion(
+ image_size,
+ classifier_use_fp16,
+ classifier_width,
+ classifier_depth,
+ classifier_attention_resolutions,
+ classifier_use_scale_shift_norm,
+ classifier_resblock_updown,
+ classifier_pool,
+ learn_sigma,
+ diffusion_steps,
+ noise_schedule,
+ timestep_respacing,
+ use_kl,
+ predict_xstart,
+ rescale_timesteps,
+ rescale_learned_sigmas,
+):
+ classifier = create_classifier(
+ image_size,
+ classifier_use_fp16,
+ classifier_width,
+ classifier_depth,
+ classifier_attention_resolutions,
+ classifier_use_scale_shift_norm,
+ classifier_resblock_updown,
+ classifier_pool,
+ )
+ diffusion = create_gaussian_diffusion(
+ steps=diffusion_steps,
+ learn_sigma=learn_sigma,
+ noise_schedule=noise_schedule,
+ use_kl=use_kl,
+ predict_xstart=predict_xstart,
+ rescale_timesteps=rescale_timesteps,
+ rescale_learned_sigmas=rescale_learned_sigmas,
+ timestep_respacing=timestep_respacing,
+ )
+ return classifier, diffusion
+
+
+def create_classifier(
+ image_size,
+ classifier_use_fp16,
+ classifier_width,
+ classifier_depth,
+ classifier_attention_resolutions,
+ classifier_use_scale_shift_norm,
+ classifier_resblock_updown,
+ classifier_pool,
+):
+ if image_size == 512:
+ channel_mult = (0.5, 1, 1, 2, 2, 4, 4)
+ elif image_size == 256:
+ channel_mult = (1, 1, 2, 2, 4, 4)
+ elif image_size == 128:
+ channel_mult = (1, 1, 2, 3, 4)
+ elif image_size == 64:
+ channel_mult = (1, 2, 3, 4)
+ else:
+ raise ValueError(f"unsupported image size: {image_size}")
+
+ attention_ds = []
+ for res in classifier_attention_resolutions.split(","):
+ attention_ds.append(image_size // int(res))
+
+ return EncoderUNetModel(
+ image_size=image_size,
+ in_channels=3,
+ model_channels=classifier_width,
+ out_channels=1000,
+ num_res_blocks=classifier_depth,
+ attention_resolutions=tuple(attention_ds),
+ channel_mult=channel_mult,
+ use_fp16=classifier_use_fp16,
+ num_head_channels=64,
+ use_scale_shift_norm=classifier_use_scale_shift_norm,
+ resblock_updown=classifier_resblock_updown,
+ pool=classifier_pool,
+ )
+
+
+def sr_model_and_diffusion_defaults():
+ res = model_and_diffusion_defaults()
+ res["large_size"] = 256
+ res["small_size"] = 64
+ arg_names = inspect.getfullargspec(sr_create_model_and_diffusion)[0]
+ for k in res.copy().keys():
+ if k not in arg_names:
+ del res[k]
+ return res
+
+
+def sr_create_model_and_diffusion(
+ large_size,
+ small_size,
+ class_cond,
+ learn_sigma,
+ num_channels,
+ num_res_blocks,
+ num_heads,
+ num_head_channels,
+ num_heads_upsample,
+ attention_resolutions,
+ dropout,
+ diffusion_steps,
+ noise_schedule,
+ timestep_respacing,
+ use_kl,
+ predict_xstart,
+ rescale_timesteps,
+ rescale_learned_sigmas,
+ use_checkpoint,
+ use_scale_shift_norm,
+ resblock_updown,
+ use_fp16,
+):
+ model = sr_create_model(
+ large_size,
+ small_size,
+ num_channels,
+ num_res_blocks,
+ learn_sigma=learn_sigma,
+ class_cond=class_cond,
+ use_checkpoint=use_checkpoint,
+ attention_resolutions=attention_resolutions,
+ num_heads=num_heads,
+ num_head_channels=num_head_channels,
+ num_heads_upsample=num_heads_upsample,
+ use_scale_shift_norm=use_scale_shift_norm,
+ dropout=dropout,
+ resblock_updown=resblock_updown,
+ use_fp16=use_fp16,
+ )
+ diffusion = create_gaussian_diffusion(
+ steps=diffusion_steps,
+ learn_sigma=learn_sigma,
+ noise_schedule=noise_schedule,
+ use_kl=use_kl,
+ predict_xstart=predict_xstart,
+ rescale_timesteps=rescale_timesteps,
+ rescale_learned_sigmas=rescale_learned_sigmas,
+ timestep_respacing=timestep_respacing,
+ )
+ return model, diffusion
+
+
+def sr_create_model(
+ large_size,
+ small_size,
+ num_channels,
+ num_res_blocks,
+ learn_sigma,
+ class_cond,
+ use_checkpoint,
+ attention_resolutions,
+ num_heads,
+ num_head_channels,
+ num_heads_upsample,
+ use_scale_shift_norm,
+ dropout,
+ resblock_updown,
+ use_fp16,
+):
+ _ = small_size # hack to prevent unused variable
+
+ if large_size == 512:
+ channel_mult = (1, 1, 2, 2, 4, 4)
+ elif large_size == 256:
+ channel_mult = (1, 1, 2, 2, 4, 4)
+ elif large_size == 64:
+ channel_mult = (1, 2, 3, 4)
+ else:
+ raise ValueError(f"unsupported large size: {large_size}")
+
+ attention_ds = []
+ for res in attention_resolutions.split(","):
+ attention_ds.append(large_size // int(res))
+
+ return SuperResModel(
+ image_size=large_size,
+ in_channels=3,
+ model_channels=num_channels,
+ out_channels=(3 if not learn_sigma else 6),
+ num_res_blocks=num_res_blocks,
+ attention_resolutions=tuple(attention_ds),
+ dropout=dropout,
+ channel_mult=channel_mult,
+ num_classes=(NUM_CLASSES if class_cond else None),
+ use_checkpoint=use_checkpoint,
+ num_heads=num_heads,
+ num_head_channels=num_head_channels,
+ num_heads_upsample=num_heads_upsample,
+ use_scale_shift_norm=use_scale_shift_norm,
+ resblock_updown=resblock_updown,
+ use_fp16=use_fp16,
+ )
+
+
+def create_gaussian_diffusion(
+ *,
+ steps=1000,
+ learn_sigma=False,
+ sigma_small=False,
+ noise_schedule="linear",
+ use_kl=False,
+ predict_xstart=False,
+ rescale_timesteps=False,
+ rescale_learned_sigmas=False,
+ timestep_respacing="",
+):
+ betas = gd.get_named_beta_schedule(noise_schedule, steps)
+ if use_kl:
+ loss_type = gd.LossType.RESCALED_KL
+ elif rescale_learned_sigmas:
+ loss_type = gd.LossType.RESCALED_MSE
+ else:
+ loss_type = gd.LossType.MSE
+ if not timestep_respacing:
+ timestep_respacing = [steps]
+ return SpacedDiffusion(
+ use_timesteps=space_timesteps(steps, timestep_respacing),
+ betas=betas,
+ model_mean_type=(
+ gd.ModelMeanType.EPSILON if not predict_xstart else gd.ModelMeanType.START_X
+ ),
+ model_var_type=(
+ (
+ gd.ModelVarType.FIXED_LARGE
+ if not sigma_small
+ else gd.ModelVarType.FIXED_SMALL
+ )
+ if not learn_sigma
+ else gd.ModelVarType.LEARNED_RANGE
+ ),
+ loss_type=loss_type,
+ rescale_timesteps=rescale_timesteps,
+ )
+
+
+def add_dict_to_argparser(parser, default_dict):
+ for k, v in default_dict.items():
+ v_type = type(v)
+ if v is None:
+ v_type = str
+ elif isinstance(v, bool):
+ v_type = str2bool
+ parser.add_argument(f"--{k}", default=v, type=v_type)
+
+
+def args_to_dict(args, keys):
+ return {k: getattr(args, k) for k in keys}
+
+
+def str2bool(v):
+ """
+ https://stackoverflow.com/questions/15008758/parsing-boolean-values-with-argparse
+ """
+ if isinstance(v, bool):
+ return v
+ if v.lower() in ("yes", "true", "t", "y", "1"):
+ return True
+ elif v.lower() in ("no", "false", "f", "n", "0"):
+ return False
+ else:
+ raise argparse.ArgumentTypeError("boolean value expected")
diff --git a/guided_diffusion/unet.py b/guided_diffusion/unet.py
new file mode 100644
index 0000000000000000000000000000000000000000..96b46930006b7c9e49948d31568474824195cf8f
--- /dev/null
+++ b/guided_diffusion/unet.py
@@ -0,0 +1,894 @@
+from abc import abstractmethod
+
+import math
+
+import numpy as np
+import torch as th
+import torch.nn as nn
+import torch.nn.functional as F
+
+from .fp16_util import convert_module_to_f16, convert_module_to_f32
+from .nn import (
+ checkpoint,
+ conv_nd,
+ linear,
+ avg_pool_nd,
+ zero_module,
+ normalization,
+ timestep_embedding,
+)
+
+
+class AttentionPool2d(nn.Module):
+ """
+ Adapted from CLIP: https://github.com/openai/CLIP/blob/main/clip/model.py
+ """
+
+ def __init__(
+ self,
+ spacial_dim: int,
+ embed_dim: int,
+ num_heads_channels: int,
+ output_dim: int = None,
+ ):
+ super().__init__()
+ self.positional_embedding = nn.Parameter(
+ th.randn(embed_dim, spacial_dim ** 2 + 1) / embed_dim ** 0.5
+ )
+ self.qkv_proj = conv_nd(1, embed_dim, 3 * embed_dim, 1)
+ self.c_proj = conv_nd(1, embed_dim, output_dim or embed_dim, 1)
+ self.num_heads = embed_dim // num_heads_channels
+ self.attention = QKVAttention(self.num_heads)
+
+ def forward(self, x):
+ b, c, *_spatial = x.shape
+ x = x.reshape(b, c, -1) # NC(HW)
+ x = th.cat([x.mean(dim=-1, keepdim=True), x], dim=-1) # NC(HW+1)
+ x = x + self.positional_embedding[None, :, :].to(x.dtype) # NC(HW+1)
+ x = self.qkv_proj(x)
+ x = self.attention(x)
+ x = self.c_proj(x)
+ return x[:, :, 0]
+
+
+class TimestepBlock(nn.Module):
+ """
+ Any module where forward() takes timestep embeddings as a second argument.
+ """
+
+ @abstractmethod
+ def forward(self, x, emb):
+ """
+ Apply the module to `x` given `emb` timestep embeddings.
+ """
+
+
+class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
+ """
+ A sequential module that passes timestep embeddings to the children that
+ support it as an extra input.
+ """
+
+ def forward(self, x, emb):
+ for layer in self:
+ if isinstance(layer, TimestepBlock):
+ x = layer(x, emb)
+ else:
+ x = layer(x)
+ return x
+
+
+class Upsample(nn.Module):
+ """
+ An upsampling layer with an optional convolution.
+
+ :param channels: channels in the inputs and outputs.
+ :param use_conv: a bool determining if a convolution is applied.
+ :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
+ upsampling occurs in the inner-two dimensions.
+ """
+
+ def __init__(self, channels, use_conv, dims=2, out_channels=None):
+ super().__init__()
+ self.channels = channels
+ self.out_channels = out_channels or channels
+ self.use_conv = use_conv
+ self.dims = dims
+ if use_conv:
+ self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=1)
+
+ def forward(self, x):
+ assert x.shape[1] == self.channels
+ if self.dims == 3:
+ x = F.interpolate(
+ x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest"
+ )
+ else:
+ x = F.interpolate(x, scale_factor=2, mode="nearest")
+ if self.use_conv:
+ x = self.conv(x)
+ return x
+
+
+class Downsample(nn.Module):
+ """
+ A downsampling layer with an optional convolution.
+
+ :param channels: channels in the inputs and outputs.
+ :param use_conv: a bool determining if a convolution is applied.
+ :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
+ downsampling occurs in the inner-two dimensions.
+ """
+
+ def __init__(self, channels, use_conv, dims=2, out_channels=None):
+ super().__init__()
+ self.channels = channels
+ self.out_channels = out_channels or channels
+ self.use_conv = use_conv
+ self.dims = dims
+ stride = 2 if dims != 3 else (1, 2, 2)
+ if use_conv:
+ self.op = conv_nd(
+ dims, self.channels, self.out_channels, 3, stride=stride, padding=1
+ )
+ else:
+ assert self.channels == self.out_channels
+ self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
+
+ def forward(self, x):
+ assert x.shape[1] == self.channels
+ return self.op(x)
+
+
+class ResBlock(TimestepBlock):
+ """
+ A residual block that can optionally change the number of channels.
+
+ :param channels: the number of input channels.
+ :param emb_channels: the number of timestep embedding channels.
+ :param dropout: the rate of dropout.
+ :param out_channels: if specified, the number of out channels.
+ :param use_conv: if True and out_channels is specified, use a spatial
+ convolution instead of a smaller 1x1 convolution to change the
+ channels in the skip connection.
+ :param dims: determines if the signal is 1D, 2D, or 3D.
+ :param use_checkpoint: if True, use gradient checkpointing on this module.
+ :param up: if True, use this block for upsampling.
+ :param down: if True, use this block for downsampling.
+ """
+
+ def __init__(
+ self,
+ channels,
+ emb_channels,
+ dropout,
+ out_channels=None,
+ use_conv=False,
+ use_scale_shift_norm=False,
+ dims=2,
+ use_checkpoint=False,
+ up=False,
+ down=False,
+ ):
+ super().__init__()
+ self.channels = channels
+ self.emb_channels = emb_channels
+ self.dropout = dropout
+ self.out_channels = out_channels or channels
+ self.use_conv = use_conv
+ self.use_checkpoint = use_checkpoint
+ self.use_scale_shift_norm = use_scale_shift_norm
+
+ self.in_layers = nn.Sequential(
+ normalization(channels),
+ nn.SiLU(),
+ conv_nd(dims, channels, self.out_channels, 3, padding=1),
+ )
+
+ self.updown = up or down
+
+ if up:
+ self.h_upd = Upsample(channels, False, dims)
+ self.x_upd = Upsample(channels, False, dims)
+ elif down:
+ self.h_upd = Downsample(channels, False, dims)
+ self.x_upd = Downsample(channels, False, dims)
+ else:
+ self.h_upd = self.x_upd = nn.Identity()
+
+ self.emb_layers = nn.Sequential(
+ nn.SiLU(),
+ linear(
+ emb_channels,
+ 2 * self.out_channels if use_scale_shift_norm else self.out_channels,
+ ),
+ )
+ self.out_layers = nn.Sequential(
+ normalization(self.out_channels),
+ nn.SiLU(),
+ nn.Dropout(p=dropout),
+ zero_module(
+ conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)
+ ),
+ )
+
+ if self.out_channels == channels:
+ self.skip_connection = nn.Identity()
+ elif use_conv:
+ self.skip_connection = conv_nd(
+ dims, channels, self.out_channels, 3, padding=1
+ )
+ else:
+ self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
+
+ def forward(self, x, emb):
+ """
+ Apply the block to a Tensor, conditioned on a timestep embedding.
+
+ :param x: an [N x C x ...] Tensor of features.
+ :param emb: an [N x emb_channels] Tensor of timestep embeddings.
+ :return: an [N x C x ...] Tensor of outputs.
+ """
+ return checkpoint(
+ self._forward, (x, emb), self.parameters(), self.use_checkpoint
+ )
+
+ def _forward(self, x, emb):
+ if self.updown:
+ in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
+ h = in_rest(x)
+ h = self.h_upd(h)
+ x = self.x_upd(x)
+ h = in_conv(h)
+ else:
+ h = self.in_layers(x)
+ emb_out = self.emb_layers(emb).type(h.dtype)
+ while len(emb_out.shape) < len(h.shape):
+ emb_out = emb_out[..., None]
+ if self.use_scale_shift_norm:
+ out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
+ scale, shift = th.chunk(emb_out, 2, dim=1)
+ h = out_norm(h) * (1 + scale) + shift
+ h = out_rest(h)
+ else:
+ h = h + emb_out
+ h = self.out_layers(h)
+ return self.skip_connection(x) + h
+
+
+class AttentionBlock(nn.Module):
+ """
+ An attention block that allows spatial positions to attend to each other.
+
+ Originally ported from here, but adapted to the N-d case.
+ https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
+ """
+
+ def __init__(
+ self,
+ channels,
+ num_heads=1,
+ num_head_channels=-1,
+ use_checkpoint=False,
+ use_new_attention_order=False,
+ ):
+ super().__init__()
+ self.channels = channels
+ if num_head_channels == -1:
+ self.num_heads = num_heads
+ else:
+ assert (
+ channels % num_head_channels == 0
+ ), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
+ self.num_heads = channels // num_head_channels
+ self.use_checkpoint = use_checkpoint
+ self.norm = normalization(channels)
+ self.qkv = conv_nd(1, channels, channels * 3, 1)
+ if use_new_attention_order:
+ # split qkv before split heads
+ self.attention = QKVAttention(self.num_heads)
+ else:
+ # split heads before split qkv
+ self.attention = QKVAttentionLegacy(self.num_heads)
+
+ self.proj_out = zero_module(conv_nd(1, channels, channels, 1))
+
+ def forward(self, x):
+ return checkpoint(self._forward, (x,), self.parameters(), True)
+
+ def _forward(self, x):
+ b, c, *spatial = x.shape
+ x = x.reshape(b, c, -1)
+ qkv = self.qkv(self.norm(x))
+ h = self.attention(qkv)
+ h = self.proj_out(h)
+ return (x + h).reshape(b, c, *spatial)
+
+
+def count_flops_attn(model, _x, y):
+ """
+ A counter for the `thop` package to count the operations in an
+ attention operation.
+ Meant to be used like:
+ macs, params = thop.profile(
+ model,
+ inputs=(inputs, timestamps),
+ custom_ops={QKVAttention: QKVAttention.count_flops},
+ )
+ """
+ b, c, *spatial = y[0].shape
+ num_spatial = int(np.prod(spatial))
+ # We perform two matmuls with the same number of ops.
+ # The first computes the weight matrix, the second computes
+ # the combination of the value vectors.
+ matmul_ops = 2 * b * (num_spatial ** 2) * c
+ model.total_ops += th.DoubleTensor([matmul_ops])
+
+
+class QKVAttentionLegacy(nn.Module):
+ """
+ A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping
+ """
+
+ def __init__(self, n_heads):
+ super().__init__()
+ self.n_heads = n_heads
+
+ def forward(self, qkv):
+ """
+ Apply QKV attention.
+
+ :param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs.
+ :return: an [N x (H * C) x T] tensor after attention.
+ """
+ bs, width, length = qkv.shape
+ assert width % (3 * self.n_heads) == 0
+ ch = width // (3 * self.n_heads)
+ q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1)
+ scale = 1 / math.sqrt(math.sqrt(ch))
+ weight = th.einsum(
+ "bct,bcs->bts", q * scale, k * scale
+ ) # More stable with f16 than dividing afterwards
+ weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
+ a = th.einsum("bts,bcs->bct", weight, v)
+ return a.reshape(bs, -1, length)
+
+ @staticmethod
+ def count_flops(model, _x, y):
+ return count_flops_attn(model, _x, y)
+
+
+class QKVAttention(nn.Module):
+ """
+ A module which performs QKV attention and splits in a different order.
+ """
+
+ def __init__(self, n_heads):
+ super().__init__()
+ self.n_heads = n_heads
+
+ def forward(self, qkv):
+ """
+ Apply QKV attention.
+
+ :param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs.
+ :return: an [N x (H * C) x T] tensor after attention.
+ """
+ bs, width, length = qkv.shape
+ assert width % (3 * self.n_heads) == 0
+ ch = width // (3 * self.n_heads)
+ q, k, v = qkv.chunk(3, dim=1)
+ scale = 1 / math.sqrt(math.sqrt(ch))
+ weight = th.einsum(
+ "bct,bcs->bts",
+ (q * scale).view(bs * self.n_heads, ch, length),
+ (k * scale).view(bs * self.n_heads, ch, length),
+ ) # More stable with f16 than dividing afterwards
+ weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
+ a = th.einsum("bts,bcs->bct", weight, v.reshape(bs * self.n_heads, ch, length))
+ return a.reshape(bs, -1, length)
+
+ @staticmethod
+ def count_flops(model, _x, y):
+ return count_flops_attn(model, _x, y)
+
+
+class UNetModel(nn.Module):
+ """
+ The full UNet model with attention and timestep embedding.
+
+ :param in_channels: channels in the input Tensor.
+ :param model_channels: base channel count for the model.
+ :param out_channels: channels in the output Tensor.
+ :param num_res_blocks: number of residual blocks per downsample.
+ :param attention_resolutions: a collection of downsample rates at which
+ attention will take place. May be a set, list, or tuple.
+ For example, if this contains 4, then at 4x downsampling, attention
+ will be used.
+ :param dropout: the dropout probability.
+ :param channel_mult: channel multiplier for each level of the UNet.
+ :param conv_resample: if True, use learned convolutions for upsampling and
+ downsampling.
+ :param dims: determines if the signal is 1D, 2D, or 3D.
+ :param num_classes: if specified (as an int), then this model will be
+ class-conditional with `num_classes` classes.
+ :param use_checkpoint: use gradient checkpointing to reduce memory usage.
+ :param num_heads: the number of attention heads in each attention layer.
+ :param num_heads_channels: if specified, ignore num_heads and instead use
+ a fixed channel width per attention head.
+ :param num_heads_upsample: works with num_heads to set a different number
+ of heads for upsampling. Deprecated.
+ :param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
+ :param resblock_updown: use residual blocks for up/downsampling.
+ :param use_new_attention_order: use a different attention pattern for potentially
+ increased efficiency.
+ """
+
+ def __init__(
+ self,
+ image_size,
+ in_channels,
+ model_channels,
+ out_channels,
+ num_res_blocks,
+ attention_resolutions,
+ dropout=0,
+ channel_mult=(1, 2, 4, 8),
+ conv_resample=True,
+ dims=2,
+ num_classes=None,
+ use_checkpoint=False,
+ use_fp16=False,
+ num_heads=1,
+ num_head_channels=-1,
+ num_heads_upsample=-1,
+ use_scale_shift_norm=False,
+ resblock_updown=False,
+ use_new_attention_order=False,
+ ):
+ super().__init__()
+
+ if num_heads_upsample == -1:
+ num_heads_upsample = num_heads
+
+ self.image_size = image_size
+ self.in_channels = in_channels
+ self.model_channels = model_channels
+ self.out_channels = out_channels
+ self.num_res_blocks = num_res_blocks
+ self.attention_resolutions = attention_resolutions
+ self.dropout = dropout
+ self.channel_mult = channel_mult
+ self.conv_resample = conv_resample
+ self.num_classes = num_classes
+ self.use_checkpoint = use_checkpoint
+ self.dtype = th.float16 if use_fp16 else th.float32
+ self.num_heads = num_heads
+ self.num_head_channels = num_head_channels
+ self.num_heads_upsample = num_heads_upsample
+
+ time_embed_dim = model_channels * 4
+ self.time_embed = nn.Sequential(
+ linear(model_channels, time_embed_dim),
+ nn.SiLU(),
+ linear(time_embed_dim, time_embed_dim),
+ )
+
+ if self.num_classes is not None:
+ self.label_emb = nn.Embedding(num_classes, time_embed_dim)
+
+ ch = input_ch = int(channel_mult[0] * model_channels)
+ self.input_blocks = nn.ModuleList(
+ [TimestepEmbedSequential(conv_nd(dims, in_channels, ch, 3, padding=1))]
+ )
+ self._feature_size = ch
+ input_block_chans = [ch]
+ ds = 1
+ for level, mult in enumerate(channel_mult):
+ for _ in range(num_res_blocks):
+ layers = [
+ ResBlock(
+ ch,
+ time_embed_dim,
+ dropout,
+ out_channels=int(mult * model_channels),
+ dims=dims,
+ use_checkpoint=use_checkpoint,
+ use_scale_shift_norm=use_scale_shift_norm,
+ )
+ ]
+ ch = int(mult * model_channels)
+ if ds in attention_resolutions:
+ layers.append(
+ AttentionBlock(
+ ch,
+ use_checkpoint=use_checkpoint,
+ num_heads=num_heads,
+ num_head_channels=num_head_channels,
+ use_new_attention_order=use_new_attention_order,
+ )
+ )
+ self.input_blocks.append(TimestepEmbedSequential(*layers))
+ self._feature_size += ch
+ input_block_chans.append(ch)
+ if level != len(channel_mult) - 1:
+ out_ch = ch
+ self.input_blocks.append(
+ TimestepEmbedSequential(
+ ResBlock(
+ ch,
+ time_embed_dim,
+ dropout,
+ out_channels=out_ch,
+ dims=dims,
+ use_checkpoint=use_checkpoint,
+ use_scale_shift_norm=use_scale_shift_norm,
+ down=True,
+ )
+ if resblock_updown
+ else Downsample(
+ ch, conv_resample, dims=dims, out_channels=out_ch
+ )
+ )
+ )
+ ch = out_ch
+ input_block_chans.append(ch)
+ ds *= 2
+ self._feature_size += ch
+
+ self.middle_block = TimestepEmbedSequential(
+ ResBlock(
+ ch,
+ time_embed_dim,
+ dropout,
+ dims=dims,
+ use_checkpoint=use_checkpoint,
+ use_scale_shift_norm=use_scale_shift_norm,
+ ),
+ AttentionBlock(
+ ch,
+ use_checkpoint=use_checkpoint,
+ num_heads=num_heads,
+ num_head_channels=num_head_channels,
+ use_new_attention_order=use_new_attention_order,
+ ),
+ ResBlock(
+ ch,
+ time_embed_dim,
+ dropout,
+ dims=dims,
+ use_checkpoint=use_checkpoint,
+ use_scale_shift_norm=use_scale_shift_norm,
+ ),
+ )
+ self._feature_size += ch
+
+ self.output_blocks = nn.ModuleList([])
+ for level, mult in list(enumerate(channel_mult))[::-1]:
+ for i in range(num_res_blocks + 1):
+ ich = input_block_chans.pop()
+ layers = [
+ ResBlock(
+ ch + ich,
+ time_embed_dim,
+ dropout,
+ out_channels=int(model_channels * mult),
+ dims=dims,
+ use_checkpoint=use_checkpoint,
+ use_scale_shift_norm=use_scale_shift_norm,
+ )
+ ]
+ ch = int(model_channels * mult)
+ if ds in attention_resolutions:
+ layers.append(
+ AttentionBlock(
+ ch,
+ use_checkpoint=use_checkpoint,
+ num_heads=num_heads_upsample,
+ num_head_channels=num_head_channels,
+ use_new_attention_order=use_new_attention_order,
+ )
+ )
+ if level and i == num_res_blocks:
+ out_ch = ch
+ layers.append(
+ ResBlock(
+ ch,
+ time_embed_dim,
+ dropout,
+ out_channels=out_ch,
+ dims=dims,
+ use_checkpoint=use_checkpoint,
+ use_scale_shift_norm=use_scale_shift_norm,
+ up=True,
+ )
+ if resblock_updown
+ else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
+ )
+ ds //= 2
+ self.output_blocks.append(TimestepEmbedSequential(*layers))
+ self._feature_size += ch
+
+ self.out = nn.Sequential(
+ normalization(ch),
+ nn.SiLU(),
+ zero_module(conv_nd(dims, input_ch, out_channels, 3, padding=1)),
+ )
+
+ def convert_to_fp16(self):
+ """
+ Convert the torso of the model to float16.
+ """
+ self.input_blocks.apply(convert_module_to_f16)
+ self.middle_block.apply(convert_module_to_f16)
+ self.output_blocks.apply(convert_module_to_f16)
+
+ def convert_to_fp32(self):
+ """
+ Convert the torso of the model to float32.
+ """
+ self.input_blocks.apply(convert_module_to_f32)
+ self.middle_block.apply(convert_module_to_f32)
+ self.output_blocks.apply(convert_module_to_f32)
+
+ def forward(self, x, timesteps, y=None):
+ """
+ Apply the model to an input batch.
+
+ :param x: an [N x C x ...] Tensor of inputs.
+ :param timesteps: a 1-D batch of timesteps.
+ :param y: an [N] Tensor of labels, if class-conditional.
+ :return: an [N x C x ...] Tensor of outputs.
+ """
+ assert (y is not None) == (
+ self.num_classes is not None
+ ), "must specify y if and only if the model is class-conditional"
+
+ hs = []
+ emb = self.time_embed(timestep_embedding(timesteps, self.model_channels))
+
+ if self.num_classes is not None:
+ assert y.shape == (x.shape[0],)
+ emb = emb + self.label_emb(y)
+
+ h = x.type(self.dtype)
+ for module in self.input_blocks:
+ h = module(h, emb)
+ hs.append(h)
+ h = self.middle_block(h, emb)
+ for module in self.output_blocks:
+ h = th.cat([h, hs.pop()], dim=1)
+ h = module(h, emb)
+ h = h.type(x.dtype)
+ return self.out(h)
+
+
+class SuperResModel(UNetModel):
+ """
+ A UNetModel that performs super-resolution.
+
+ Expects an extra kwarg `low_res` to condition on a low-resolution image.
+ """
+
+ def __init__(self, image_size, in_channels, *args, **kwargs):
+ super().__init__(image_size, in_channels * 2, *args, **kwargs)
+
+ def forward(self, x, timesteps, low_res=None, **kwargs):
+ _, _, new_height, new_width = x.shape
+ upsampled = F.interpolate(low_res, (new_height, new_width), mode="bilinear")
+ x = th.cat([x, upsampled], dim=1)
+ return super().forward(x, timesteps, **kwargs)
+
+
+class EncoderUNetModel(nn.Module):
+ """
+ The half UNet model with attention and timestep embedding.
+
+ For usage, see UNet.
+ """
+
+ def __init__(
+ self,
+ image_size,
+ in_channels,
+ model_channels,
+ out_channels,
+ num_res_blocks,
+ attention_resolutions,
+ dropout=0,
+ channel_mult=(1, 2, 4, 8),
+ conv_resample=True,
+ dims=2,
+ use_checkpoint=False,
+ use_fp16=False,
+ num_heads=1,
+ num_head_channels=-1,
+ num_heads_upsample=-1,
+ use_scale_shift_norm=False,
+ resblock_updown=False,
+ use_new_attention_order=False,
+ pool="adaptive",
+ ):
+ super().__init__()
+
+ if num_heads_upsample == -1:
+ num_heads_upsample = num_heads
+
+ self.in_channels = in_channels
+ self.model_channels = model_channels
+ self.out_channels = out_channels
+ self.num_res_blocks = num_res_blocks
+ self.attention_resolutions = attention_resolutions
+ self.dropout = dropout
+ self.channel_mult = channel_mult
+ self.conv_resample = conv_resample
+ self.use_checkpoint = use_checkpoint
+ self.dtype = th.float16 if use_fp16 else th.float32
+ self.num_heads = num_heads
+ self.num_head_channels = num_head_channels
+ self.num_heads_upsample = num_heads_upsample
+
+ time_embed_dim = model_channels * 4
+ self.time_embed = nn.Sequential(
+ linear(model_channels, time_embed_dim),
+ nn.SiLU(),
+ linear(time_embed_dim, time_embed_dim),
+ )
+
+ ch = int(channel_mult[0] * model_channels)
+ self.input_blocks = nn.ModuleList(
+ [TimestepEmbedSequential(conv_nd(dims, in_channels, ch, 3, padding=1))]
+ )
+ self._feature_size = ch
+ input_block_chans = [ch]
+ ds = 1
+ for level, mult in enumerate(channel_mult):
+ for _ in range(num_res_blocks):
+ layers = [
+ ResBlock(
+ ch,
+ time_embed_dim,
+ dropout,
+ out_channels=int(mult * model_channels),
+ dims=dims,
+ use_checkpoint=use_checkpoint,
+ use_scale_shift_norm=use_scale_shift_norm,
+ )
+ ]
+ ch = int(mult * model_channels)
+ if ds in attention_resolutions:
+ layers.append(
+ AttentionBlock(
+ ch,
+ use_checkpoint=use_checkpoint,
+ num_heads=num_heads,
+ num_head_channels=num_head_channels,
+ use_new_attention_order=use_new_attention_order,
+ )
+ )
+ self.input_blocks.append(TimestepEmbedSequential(*layers))
+ self._feature_size += ch
+ input_block_chans.append(ch)
+ if level != len(channel_mult) - 1:
+ out_ch = ch
+ self.input_blocks.append(
+ TimestepEmbedSequential(
+ ResBlock(
+ ch,
+ time_embed_dim,
+ dropout,
+ out_channels=out_ch,
+ dims=dims,
+ use_checkpoint=use_checkpoint,
+ use_scale_shift_norm=use_scale_shift_norm,
+ down=True,
+ )
+ if resblock_updown
+ else Downsample(
+ ch, conv_resample, dims=dims, out_channels=out_ch
+ )
+ )
+ )
+ ch = out_ch
+ input_block_chans.append(ch)
+ ds *= 2
+ self._feature_size += ch
+
+ self.middle_block = TimestepEmbedSequential(
+ ResBlock(
+ ch,
+ time_embed_dim,
+ dropout,
+ dims=dims,
+ use_checkpoint=use_checkpoint,
+ use_scale_shift_norm=use_scale_shift_norm,
+ ),
+ AttentionBlock(
+ ch,
+ use_checkpoint=use_checkpoint,
+ num_heads=num_heads,
+ num_head_channels=num_head_channels,
+ use_new_attention_order=use_new_attention_order,
+ ),
+ ResBlock(
+ ch,
+ time_embed_dim,
+ dropout,
+ dims=dims,
+ use_checkpoint=use_checkpoint,
+ use_scale_shift_norm=use_scale_shift_norm,
+ ),
+ )
+ self._feature_size += ch
+ self.pool = pool
+ if pool == "adaptive":
+ self.out = nn.Sequential(
+ normalization(ch),
+ nn.SiLU(),
+ nn.AdaptiveAvgPool2d((1, 1)),
+ zero_module(conv_nd(dims, ch, out_channels, 1)),
+ nn.Flatten(),
+ )
+ elif pool == "attention":
+ assert num_head_channels != -1
+ self.out = nn.Sequential(
+ normalization(ch),
+ nn.SiLU(),
+ AttentionPool2d(
+ (image_size // ds), ch, num_head_channels, out_channels
+ ),
+ )
+ elif pool == "spatial":
+ self.out = nn.Sequential(
+ nn.Linear(self._feature_size, 2048),
+ nn.ReLU(),
+ nn.Linear(2048, self.out_channels),
+ )
+ elif pool == "spatial_v2":
+ self.out = nn.Sequential(
+ nn.Linear(self._feature_size, 2048),
+ normalization(2048),
+ nn.SiLU(),
+ nn.Linear(2048, self.out_channels),
+ )
+ else:
+ raise NotImplementedError(f"Unexpected {pool} pooling")
+
+ def convert_to_fp16(self):
+ """
+ Convert the torso of the model to float16.
+ """
+ self.input_blocks.apply(convert_module_to_f16)
+ self.middle_block.apply(convert_module_to_f16)
+
+ def convert_to_fp32(self):
+ """
+ Convert the torso of the model to float32.
+ """
+ self.input_blocks.apply(convert_module_to_f32)
+ self.middle_block.apply(convert_module_to_f32)
+
+ def forward(self, x, timesteps):
+ """
+ Apply the model to an input batch.
+
+ :param x: an [N x C x ...] Tensor of inputs.
+ :param timesteps: a 1-D batch of timesteps.
+ :return: an [N x K] Tensor of outputs.
+ """
+ emb = self.time_embed(timestep_embedding(timesteps, self.model_channels))
+
+ results = []
+ h = x.type(self.dtype)
+ for module in self.input_blocks:
+ h = module(h, emb)
+ if self.pool.startswith("spatial"):
+ results.append(h.type(x.dtype).mean(dim=(2, 3)))
+ h = self.middle_block(h, emb)
+ if self.pool.startswith("spatial"):
+ results.append(h.type(x.dtype).mean(dim=(2, 3)))
+ h = th.cat(results, axis=-1)
+ return self.out(h)
+ else:
+ h = h.type(x.dtype)
+ return self.out(h)
diff --git a/misc.py b/misc.py
new file mode 100644
index 0000000000000000000000000000000000000000..d6675b9e984c6cea13b15ef1eb53ca308f4c2464
--- /dev/null
+++ b/misc.py
@@ -0,0 +1,53 @@
+import numpy as np
+import torch
+
+
+def torch_samps_to_imgs(imgs, uncenter=True):
+ if uncenter:
+ imgs = (imgs + 1) / 2 # [-1, 1] -> [0, 1]
+ imgs = (imgs * 255).clamp(0, 255)
+ imgs = imgs.to(torch.uint8)
+ imgs = imgs.permute(0, 2, 3, 1)
+ imgs = imgs.cpu().numpy()
+ return imgs
+
+
+def imgs_to_torch(imgs):
+ assert imgs.dtype == np.uint8
+ assert len(imgs.shape) == 4 and imgs.shape[-1] == 3, "expect (N, H, W, C)"
+ _, H, W, _ = imgs.shape
+
+ imgs = imgs.transpose(0, 3, 1, 2)
+ imgs = (imgs / 255).astype(np.float32)
+ imgs = (imgs * 2) - 1
+ imgs = torch.as_tensor(imgs)
+ H, W = [_l - (_l % 32) for _l in (H, W)]
+ imgs = torch.nn.functional.interpolate(imgs, (H, W), mode="bilinear")
+ return imgs
+
+
+def test_encode_decode():
+ import imageio
+ from run_img_sampling import ScoreAdapter, SD
+ from vis import _draw
+
+ fname = "~/clean.png"
+ raw = imageio.imread(fname)
+ raw = imgs_to_torch(raw[np.newaxis, ...])
+
+ model: ScoreAdapter = SD().run()
+ raw = raw.to(model.device)
+ zs = model.encode(raw)
+ img = model.decode(zs)
+ img = torch_samps_to_imgs(img)
+ _draw(
+ [imageio.imread(fname), img.squeeze(0)],
+ )
+
+
+def test():
+ test_encode_decode()
+
+
+if __name__ == "__main__":
+ test()
diff --git a/my/README.md b/my/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..5daa1c788deef956d5cb6399ecba2c96d947d827
--- /dev/null
+++ b/my/README.md
@@ -0,0 +1,2 @@
+a personal tookit for experiment management;
+some of the designs patterns are inspired by detectron2
diff --git a/my/__init__.py b/my/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/my/config.py b/my/config.py
new file mode 100644
index 0000000000000000000000000000000000000000..67af8cbeccc0cce7a6f128b60ab69d9a1127b737
--- /dev/null
+++ b/my/config.py
@@ -0,0 +1,234 @@
+from typing import List, Union
+from copy import deepcopy
+from collections import namedtuple
+from pathlib import Path
+import argparse
+from argparse import RawDescriptionHelpFormatter
+import yaml
+from pydantic import BaseModel as _Base
+
+
+class BaseConf(_Base):
+ class Config:
+ validate_all = True
+ allow_mutation = True
+ extra = "ignore"
+
+
+def SingleOrList(inner_type):
+ return Union[inner_type, List[inner_type]]
+
+
+def optional_load_config(fname="config.yml"):
+ cfg = {}
+ conf_fname = Path.cwd() / fname
+ if conf_fname.is_file():
+ with conf_fname.open("r") as f:
+ raw = f.read()
+ print("loaded config\n ")
+ print(raw) # yaml raw itself is well formatted
+ cfg = yaml.safe_load(raw)
+ return cfg
+
+
+def write_full_config(cfg_obj, fname="full_config.yml"):
+ cfg = cfg_obj.dict()
+ cfg = _dict_to_yaml(cfg)
+ print(f"\n--- full config ---\n\n{cfg}\n")
+ with (Path.cwd() / fname).open("w") as f:
+ f.write(cfg)
+
+
+def argparse_cfg_template(curr_cfgs):
+ parser = argparse.ArgumentParser(
+ description='Manual spec of configs',
+ epilog=f'curr cfgs:\n\n{_dict_to_yaml(curr_cfgs)}',
+ formatter_class=RawDescriptionHelpFormatter
+ )
+ _, args = parser.parse_known_args()
+ clauses = []
+ for i in range(0, len(args), 2):
+ assert args[i][:2] == "--", "please start args with --"
+ clauses.append({args[i][2:]: args[i+1]})
+ print(f"cmdline clauses: {clauses}")
+
+ maker = ConfigMaker(curr_cfgs)
+ for clu in clauses:
+ maker.execute_clause(clu)
+
+ final = maker.state.copy()
+ return final
+
+
+def _dict_to_yaml(arg):
+ return yaml.safe_dump(arg, sort_keys=False, allow_unicode=True)
+
+
+def dispatch(module):
+ cfg = optional_load_config()
+ cfg = module(**cfg).dict()
+
+ cfg = argparse_cfg_template(cfg) # cmdline takes priority
+ mod = module(**cfg)
+
+ write_full_config(mod)
+
+ mod.run()
+
+
+# below are some support tools
+
+
+class ConfigMaker():
+ CMD = namedtuple('cmd', field_names=['sub', 'verb', 'objs'])
+ VERBS = ('add', 'replace', 'del')
+
+ def __init__(self, base_node):
+ self.state = base_node
+ self.clauses = []
+
+ def clone(self):
+ return deepcopy(self)
+
+ def execute_clause(self, raw_clause):
+ cls = self.__class__
+ assert isinstance(raw_clause, (str, dict))
+ if isinstance(raw_clause, dict):
+ assert len(raw_clause) == 1, \
+ "a clause can only have 1 statement: {} clauses in {}".format(
+ len(raw_clause), raw_clause
+ )
+ cmd = list(raw_clause.keys())[0]
+ arg = raw_clause[cmd]
+ else:
+ cmd = raw_clause
+ arg = None
+ cmd = self.parse_clause_cmd(cmd)
+ tracer = NodeTracer(self.state)
+ tracer.advance_pointer(path=cmd.sub)
+ if cmd.verb == cls.VERBS[0]:
+ tracer.add(cmd.objs, arg)
+ elif cmd.verb == cls.VERBS[1]:
+ tracer.replace(cmd.objs, arg)
+ elif cmd.verb == cls.VERBS[2]:
+ assert isinstance(raw_clause, str)
+ tracer.delete(cmd.objs)
+ self.state = tracer.state
+
+ @classmethod
+ def parse_clause_cmd(cls, input):
+ """
+ Args:
+ input: a string to be parsed
+ 1. First test whether a verb is present
+ 2. If not present, then str is a single subject, and verb is replace
+ This is a syntactical sugar that makes writing config easy
+ 3. If a verb is found, whatever comes before is a subject, and after the
+ objects.
+ 4. Handle the edge cases properly. Below are expected parse outputs
+ input sub verb obj
+ --- No verb
+ '' '' replace []
+ 'a.b' 'a.b' replace []
+ 'add' '' add []
+ 'P Q' err: 2 subjects
+ --- Verb present
+ 'T add' 'T' add []
+ 'T del a b' 'T' del [a, b]
+ 'P Q add a' err: 2 subjects
+ 'P add del b' err: 2 verbs
+ """
+ assert isinstance(input, str)
+ input = input.split()
+ objs = []
+ sub = ''
+ verb, verb_inx = cls.scan_for_verb(input)
+ if verb is None:
+ assert len(input) <= 1, "no verb present; more than 1 subject: {}"\
+ .format(input)
+ sub = input[0] if len(input) == 1 else ''
+ verb = cls.VERBS[1]
+ else:
+ assert not verb_inx > 1, 'verb {} at inx {}; more than 1 subject in: {}'\
+ .format(verb, verb_inx, input)
+ sub = input[0] if verb_inx == 1 else ''
+ objs = input[verb_inx + 1:]
+ cmd = cls.CMD(sub=sub, verb=verb, objs=objs)
+ return cmd
+
+ @classmethod
+ def scan_for_verb(cls, input_list):
+ assert isinstance(input_list, list)
+ counts = [ input_list.count(v) for v in cls.VERBS ]
+ presence = [ cnt > 0 for cnt in counts ]
+ if sum(presence) == 0:
+ return None, -1
+ elif sum(presence) > 1:
+ raise ValueError("multiple verbs discovered in {}".format(input_list))
+
+ if max(counts) > 1:
+ raise ValueError("verbs repeated in cmd: {}".format(input_list))
+ # by now, there is 1 verb that has occured exactly 1 time
+ verb = cls.VERBS[presence.index(1)]
+ inx = input_list.index(verb)
+ return verb, inx
+
+
+class NodeTracer():
+ def __init__(self, src_node):
+ """
+ A src node can be either a list or dict
+ """
+ assert isinstance(src_node, (list, dict))
+
+ # these are movable pointers
+ self.child_token = "_" # init token can be anything
+ self.parent = {self.child_token: src_node}
+
+ # these are permanent pointers at the root
+ self.root_child_token = self.child_token
+ self.root = self.parent
+
+ @property
+ def state(self):
+ return self.root[self.root_child_token]
+
+ @property
+ def pointed(self):
+ return self.parent[self.child_token]
+
+ def advance_pointer(self, path):
+ if len(path) == 0:
+ return
+ path_list = list(
+ map(lambda x: int(x) if str.isdigit(x) else x, path.split('.'))
+ )
+
+ for i, token in enumerate(path_list):
+ self.parent = self.pointed
+ self.child_token = token
+ try:
+ self.pointed
+ except (IndexError, KeyError):
+ raise ValueError(
+ "During the tracing of {}, {}-th token '{}'"
+ " is not present in node {}".format(
+ path, i, self.child_token, self.state
+ )
+ )
+
+ def replace(self, objs, arg):
+ assert len(objs) == 0
+ val_type = type(self.parent[self.child_token])
+ # this is such an unfortunate hack
+ # turn everything to string, so that eval could work
+ # some of the clauses come from cmdline, some from yaml files for sow.
+ arg = str(arg)
+ if val_type == str:
+ pass
+ else:
+ arg = eval(arg)
+ assert type(arg) == val_type, \
+ f"require {val_type.__name__}, given {type(arg).__name__}"
+
+ self.parent[self.child_token] = arg
diff --git a/my/registry.py b/my/registry.py
new file mode 100644
index 0000000000000000000000000000000000000000..bdc247840194fc61d844aa9c97b5616d983373a2
--- /dev/null
+++ b/my/registry.py
@@ -0,0 +1,62 @@
+# from detectron2
+from typing import Any, Dict, Iterable, Iterator, Tuple
+from tabulate import tabulate
+
+
+class Registry(Iterable[Tuple[str, Any]]):
+ def __init__(self, name: str) -> None:
+ """
+ Args:
+ name (str): the name of this registry
+ """
+ self._name: str = name
+ self._obj_map: Dict[str, Any] = {}
+
+ def _do_register(self, name: str, obj: Any) -> None:
+ assert (
+ name not in self._obj_map
+ ), "An object named '{}' was already registered in '{}' registry!".format(
+ name, self._name
+ )
+ self._obj_map[name] = obj
+
+ def register(self, obj: Any = None) -> Any:
+ """
+ Register the given object under the the name `obj.__name__`.
+ Can be used as either a decorator or not. See docstring of this class for usage.
+ """
+ if obj is None:
+ # used as a decorator
+ def deco(func_or_class: Any) -> Any:
+ name = func_or_class.__name__
+ self._do_register(name, func_or_class)
+ return func_or_class
+
+ return deco
+
+ # used as a function call
+ name = obj.__name__
+ self._do_register(name, obj)
+
+ def get(self, name: str) -> Any:
+ ret = self._obj_map.get(name)
+ if ret is None:
+ raise KeyError(
+ "No object named '{}' found in '{}' registry!".format(name, self._name)
+ )
+ return ret
+
+ def __contains__(self, name: str) -> bool:
+ return name in self._obj_map
+
+ def __repr__(self) -> str:
+ table_headers = ["Names", "Objects"]
+ table = tabulate(
+ self._obj_map.items(), headers=table_headers, tablefmt="fancy_grid"
+ )
+ return "Registry of {}:\n".format(self._name) + table
+
+ def __iter__(self) -> Iterator[Tuple[str, Any]]:
+ return iter(self._obj_map.items())
+
+ __str__ = __repr__
diff --git a/my/utils/__init__.py b/my/utils/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..fc8cd6bb17eb8463e14845e0b4ecbbb86620ca0b
--- /dev/null
+++ b/my/utils/__init__.py
@@ -0,0 +1,4 @@
+from .event import EventStorage, get_event_storage, read_stats
+from .tqdm import tqdm
+from .heartbeat import HeartBeat, get_heartbeat
+from .debug import EarlyLoopBreak
diff --git a/my/utils/debug.py b/my/utils/debug.py
new file mode 100644
index 0000000000000000000000000000000000000000..33d98a348176e525872d27e4d13e7a3d8b2a3d90
--- /dev/null
+++ b/my/utils/debug.py
@@ -0,0 +1,15 @@
+import os
+
+class EarlyLoopBreak():
+ def __init__(self, break_at: int):
+ self.iter = 0
+ self.break_at = break_at
+ self.on = bool(os.environ.get("EBREAK"))
+
+ def on_break(self):
+ if not self.on:
+ return
+
+ self.iter += 1
+ if self.break_at > 0 and self.iter >= self.break_at:
+ return True
diff --git a/my/utils/event.py b/my/utils/event.py
new file mode 100644
index 0000000000000000000000000000000000000000..97dbbf2ea63e05cca70ac3f618dc58a20b90409b
--- /dev/null
+++ b/my/utils/event.py
@@ -0,0 +1,142 @@
+# design inspiration from detectron2
+from pathlib import Path
+import json
+import os
+from contextlib import contextmanager
+from .ticker import IntervalTicker
+
+
+_CURRENT_STORAGE_STACK = []
+
+
+def get_event_storage():
+ """
+ Returns:
+ The :class:`EventStorage` object that's currently being used.
+ Throws an error if no :class:`EventStorage` is currently enabled.
+ """
+ assert len(
+ _CURRENT_STORAGE_STACK
+ ), "get_event_storage() has to be called inside a 'with EventStorage(...)' context!"
+ return _CURRENT_STORAGE_STACK[-1]
+
+
+def read_lined_json(fname):
+ with Path(fname).open('r') as f:
+ for line in f:
+ item = json.loads(line)
+ yield item
+
+
+def read_stats(dirname, key):
+ if dirname is None or not (fname := Path(dirname) / "history.json").is_file():
+ return [], []
+ stats = read_lined_json(fname)
+ stats = list(filter(lambda x: key in x, stats))
+ xs = [e['iter'] for e in stats]
+ ys = [e[key] for e in stats]
+ return xs, ys
+
+
+class EventStorage():
+ def __init__(self, output_dir="./", start_iter=0, flush_period=60):
+ self.iter = start_iter
+ self.ticker = IntervalTicker(flush_period)
+ self.history = []
+ self._current_prefix = ""
+ self._init_curr_buffer_()
+
+ self.output_dir = output_dir
+ self.writable = False
+
+ def _open(self):
+ if self.writable:
+ output_dir = Path(self.output_dir)
+ if not output_dir.is_dir():
+ output_dir.mkdir(parents=True, exist_ok=True)
+ json_fname = output_dir / 'history.json'
+
+ self._file_handle = json_fname.open('a', encoding='utf8')
+ self.output_dir = output_dir # make sure it's a path object
+
+ def _init_curr_buffer_(self):
+ self.curr_buffer = {'iter': self.iter}
+
+ def step(self, flush=False):
+ self.history.append(self.curr_buffer)
+
+ on_flush_period = self.ticker.tick()
+ if flush or on_flush_period:
+ self.flush_history()
+
+ self.iter += 1
+ self._init_curr_buffer_()
+
+ def flush_history(self):
+ if self.writable:
+ for item in self.history:
+ line = json.dumps(item, sort_keys=True, ensure_ascii=False) + "\n"
+ self._file_handle.write(line)
+ self._file_handle.flush()
+ self.history = []
+
+ def full_key(self, key):
+ assert isinstance(key, str)
+ name = self._current_prefix + key
+ return name
+
+ def put(self, key, val):
+ key = self.full_key(key)
+ assert isinstance(val, (int, float, str))
+ if isinstance(val, float):
+ val = round(val, 3)
+ self.curr_buffer[key] = val
+
+ def put_scalars(self, **kwargs):
+ for k, v in kwargs.items():
+ self.put(k, v)
+
+ def put_artifact(self, key, ext, save_func):
+ if not self.writable:
+ return
+ os.makedirs(self.output_dir / key, exist_ok=True)
+ fname = (self.output_dir / key / f"step_{self.iter}").with_suffix(ext)
+ fname = str(fname)
+
+ # must be called inside so that
+ # 1. the func is not executed if the metric is not writable
+ # 2. the key is only inserted if the func succeeds
+ save_func(fname)
+ self.put(key, fname)
+ return fname
+
+ def close(self):
+ self.flush_history()
+ if self.writable:
+ self._file_handle.close()
+
+ def get_last(self):
+ if len(self.history) > 0:
+ last = self.history[-1]
+ return last
+
+ def __enter__(self):
+ if len(_CURRENT_STORAGE_STACK) > 0:
+ parent = _CURRENT_STORAGE_STACK[-1]
+ root, dirname = parent.output_dir, self.output_dir
+ if root is not None and dirname is not None:
+ child_dir = parent.output_dir / f"{self.output_dir}_{parent.iter}"
+ self.output_dir = child_dir
+ parent.put(str(dirname), str(child_dir))
+
+ if self.output_dir is not None:
+ self.writable = True
+ self._open()
+
+ _CURRENT_STORAGE_STACK.append(self)
+ return self
+
+ def __exit__(self, exc_type, exc_val, exc_tb):
+ assert _CURRENT_STORAGE_STACK[-1] == self
+ _CURRENT_STORAGE_STACK.pop()
+ self.close()
diff --git a/my/utils/heartbeat.py b/my/utils/heartbeat.py
new file mode 100644
index 0000000000000000000000000000000000000000..024dc981b64140950102b05ffa657354a3cae485
--- /dev/null
+++ b/my/utils/heartbeat.py
@@ -0,0 +1,78 @@
+# generates periodic hearbeats for remote expriment monitoring
+from pathlib import Path
+import json
+from inspect import stack
+from .ticker import IntervalTicker
+
+_CURRENT_BEAT_STACK = []
+
+
+def get_heartbeat():
+ """
+ Returns:
+ The :class:`HeartBeat` object that's currently being used.
+ Throws an error if no :class:`EventStorage` is currently enabled.
+ """
+ assert len(
+ _CURRENT_BEAT_STACK
+ ), "get_heartbeat() has to be called inside a 'with EventStorage(...)' context!"
+ return _CURRENT_BEAT_STACK[-1]
+
+
+def get_tqdm_meter(pbar, format_dict):
+ format_dict['bar_format'] = "{r_bar}"
+ meter_str = pbar.format_meter(**format_dict)
+ meter_str = meter_str[2:]
+ return meter_str
+
+
+def caller_info(n_stack_up):
+ info = stack()[1 + n_stack_up] # 1 up as base so that it starts from caller
+ msg = f"{info.filename}:{info.lineno} - {info.function}"
+ return msg
+
+
+class HeartBeat():
+ def __init__(
+ self, pbar, write_interval=10,
+ output_dir="./", fname="heartbeat.json"
+ ):
+ self.pbar = pbar
+ self.fname = Path(output_dir) / fname
+ self.ticker = IntervalTicker(write_interval)
+ self.completed = False
+
+ # force one write at the beginning
+ self.beat(force_write=True, n_stack_up=2)
+
+ def beat(self, force_write=False, n_stack_up=1):
+ on_write_period = self.ticker.tick()
+ if force_write or on_write_period:
+ stats = self.stats()
+ stats['caller'] = caller_info(n_stack_up)
+
+ with open(self.fname, "w") as f:
+ json.dump(stats, f)
+
+ def done(self):
+ self.completed = True
+ self.beat(force_write=True, n_stack_up=2)
+
+ def stats(self):
+ pbar = self.pbar
+ fdict = pbar.format_dict
+ stats = {
+ "beat": self.ticker.tick_str(),
+ "done": self.completed,
+ "meter": get_tqdm_meter(pbar, fdict),
+ "elapsed": int(fdict['elapsed'])
+ }
+ return stats
+
+ def __enter__(self):
+ _CURRENT_BEAT_STACK.append(self)
+ return self
+
+ def __exit__(self, exc_type, exc_val, exc_tb):
+ assert _CURRENT_BEAT_STACK[-1] == self
+ _CURRENT_BEAT_STACK.pop()
diff --git a/my/utils/plot.py b/my/utils/plot.py
new file mode 100644
index 0000000000000000000000000000000000000000..e4172311da88fbabcd107dd3f57b98db7638243a
--- /dev/null
+++ b/my/utils/plot.py
@@ -0,0 +1,9 @@
+import numpy as np
+import matplotlib.pyplot as plt
+
+
+def mpl_fig_to_buffer(fig):
+ fig.canvas.draw()
+ plot = np.array(fig.canvas.renderer.buffer_rgba())
+ plt.close(fig)
+ return plot
diff --git a/my/utils/seed.py b/my/utils/seed.py
new file mode 100644
index 0000000000000000000000000000000000000000..e3e81fad6c7610d11ec8d847f9a61a4e6675ecc4
--- /dev/null
+++ b/my/utils/seed.py
@@ -0,0 +1,21 @@
+# from pytorch lightning
+import random
+import numpy as np
+import torch
+
+max_seed_value = np.iinfo(np.uint32).max
+min_seed_value = np.iinfo(np.uint32).min
+
+
+def seed_everything(seed=None):
+ seed = int(seed)
+
+ if not (min_seed_value <= seed <= max_seed_value):
+ raise ValueError(f"{seed} is not in bounds, numpy accepts from {min_seed_value} to {max_seed_value}")
+
+ print(f"seed set to {seed}")
+ random.seed(seed)
+ np.random.seed(seed)
+ torch.manual_seed(seed)
+ torch.cuda.manual_seed_all(seed)
+ return seed
diff --git a/my/utils/ticker.py b/my/utils/ticker.py
new file mode 100644
index 0000000000000000000000000000000000000000..ac19520075aaa8fa27b9a9baf57a7478e4cc83d5
--- /dev/null
+++ b/my/utils/ticker.py
@@ -0,0 +1,18 @@
+from datetime import date, time, datetime, timedelta
+from time import sleep
+
+
+class IntervalTicker():
+ def __init__(self, interval=60):
+ self.interval = timedelta(seconds=interval)
+ self.last_tick = datetime.now()
+ self.now = self.last_tick
+
+ def tick(self):
+ self.now = datetime.now()
+ if (self.now - self.last_tick) > self.interval:
+ self.last_tick = self.now
+ return True
+
+ def tick_str(self):
+ return self.now.isoformat(timespec='seconds')
diff --git a/my/utils/tqdm.py b/my/utils/tqdm.py
new file mode 100644
index 0000000000000000000000000000000000000000..774f2aff7dc4c2956a3b80daed52b0c6ad97d98b
--- /dev/null
+++ b/my/utils/tqdm.py
@@ -0,0 +1,10 @@
+import os
+from tqdm import tqdm as orig_tqdm
+
+
+def tqdm(*args, **kwargs):
+ is_remote = bool(os.environ.get("IS_REMOTE", False))
+ if is_remote:
+ f = open(os.devnull, "w")
+ kwargs.update({"file": f})
+ return orig_tqdm(*args, **kwargs)
diff --git a/my3d.py b/my3d.py
new file mode 100644
index 0000000000000000000000000000000000000000..803dffe70ff6a8d5cec19c316bc59852c887dc06
--- /dev/null
+++ b/my3d.py
@@ -0,0 +1,160 @@
+# some tools developed for the vision class
+import numpy as np
+from numpy import cross, tan
+from numpy.linalg import norm, inv
+
+
+def normalize(v):
+ return v / norm(v)
+
+
+def camera_pose(eye, front, up):
+ z = normalize(-1 * front)
+ x = normalize(cross(up, z))
+ y = normalize(cross(z, x))
+
+ # convert to col vector
+ x = x.reshape(-1, 1)
+ y = y.reshape(-1, 1)
+ z = z.reshape(-1, 1)
+ eye = eye.reshape(-1, 1)
+
+ pose = np.block([
+ [x, y, z, eye],
+ [0, 0, 0, 1]
+ ])
+ return pose
+
+
+def compute_extrinsics(eye, front, up):
+ pose = camera_pose(eye, front, up)
+ world_2_cam = inv(pose)
+ return world_2_cam
+
+
+def compute_intrinsics(aspect_ratio, fov, img_height_in_pix):
+ # aspect ratio is w / h
+ ndc = compute_proj_to_normalized(aspect_ratio, fov)
+
+ # anything beyond [-1, 1] should be discarded
+ # this did not mention how to do z-clipping;
+
+ ndc_to_img = compute_normalized_to_img_trans(aspect_ratio, img_height_in_pix)
+ intrinsic = ndc_to_img @ ndc
+ return intrinsic
+
+
+def compute_proj_to_normalized(aspect, fov):
+ # compared to standard OpenGL NDC intrinsic,
+ # this skips the 3rd row treatment on z. hence the name partial_ndc
+ fov_in_rad = fov / 180 * np.pi
+ t = tan(fov_in_rad / 2) # tan half fov
+ partial_ndc_intrinsic = np.array([
+ [1 / (t * aspect), 0, 0, 0],
+ [0, 1 / t, 0, 0],
+ [0, 0, -1, 0] # copy the negative distance for division
+ ])
+ return partial_ndc_intrinsic
+
+
+def compute_normalized_to_img_trans(aspect, img_height_in_pix):
+ img_h = img_height_in_pix
+ img_w = img_height_in_pix * aspect
+
+ # note the OpenGL convention that (0, 0) sits at the center of the pixel;
+ # hence the extra -0.5 translation
+ # this is useful when you shoot rays through a pixel to the scene
+ ndc_to_img = np.array([
+ [img_w / 2, 0, img_w / 2 - 0.5],
+ [0, img_h / 2, img_h / 2 - 0.5],
+ [0, 0, 1]
+ ])
+
+ img_y_coord_flip = np.array([
+ [1, 0, 0],
+ [0, -1, img_h - 1], # note the -1
+ [0, 0, 1]
+ ])
+
+ # the product of the above 2 matrices is equivalent to adding
+ # - sign to the (1, 1) entry
+ # you could have simply written
+ # ndc_to_img = np.array([
+ # [img_w / 2, 0, img_w / 2 - 0.5],
+ # [0, -img_h / 2, img_h / 2 - 0.5],
+ # [0, 0, 1]
+ # ])
+
+ ndc_to_img = img_y_coord_flip @ ndc_to_img
+ return ndc_to_img
+
+
+def unproject(K, pixel_coords, depth=1.0):
+ """sometimes also referred to as backproject
+ pixel_coords: [n, 2] pixel locations
+ depth: [n,] or [,] depth value. of a shape that is broadcastable with pix coords
+ """
+ K = K[0:3, 0:3]
+
+ pixel_coords = as_homogeneous(pixel_coords)
+ pixel_coords = pixel_coords.T # [2+1, n], so that mat mult is on the left
+
+ # this will give points with z = -1, which is exactly what you want since
+ # your camera is facing the -ve z axis
+ pts = inv(K) @ pixel_coords
+
+ pts = pts * depth # [3, n] * [n,] broadcast
+ pts = pts.T
+ pts = as_homogeneous(pts)
+ return pts
+
+
+"""
+these two functions are changed so that they can handle arbitrary number of
+dimensions >=1
+"""
+
+
+def homogenize(pts):
+ # pts: [..., d], where last dim of the d is the diviser
+ *front, d = pts.shape
+ pts = pts / pts[..., -1].reshape(*front, 1)
+ return pts
+
+
+def as_homogeneous(pts, lib=np):
+ # pts: [..., d]
+ *front, d = pts.shape
+ points = lib.ones((*front, d + 1))
+ points[..., :d] = pts
+ return points
+
+
+def simple_point_render(pts, img_w, img_h, fov, eye, front, up):
+ """
+ pts: [N, 3]
+ """
+ canvas = np.ones((img_h, img_w, 3))
+
+ pts = as_homogeneous(pts)
+
+ E = compute_extrinsics(eye, front, up)
+ world_2_ndc = compute_proj_to_normalized(img_w / img_h, fov)
+ ndc_to_img = compute_normalized_to_img_trans(img_w / img_h, img_h)
+
+ pts = pts @ E.T
+ pts = pts @ world_2_ndc.T
+ pts = homogenize(pts)
+
+ # now filter out outliers beyond [-1, 1]
+ outlier_mask = (np.abs(pts) > 1.0).any(axis=1)
+ pts = pts[~outlier_mask]
+
+ pts = pts @ ndc_to_img.T
+
+ # now draw each point
+ pts = np.rint(pts).astype(np.int32)
+ xs, ys, _ = pts.T
+ canvas[ys, xs] = (1, 0, 0)
+
+ return canvas
diff --git a/ncsn/__init__.py b/ncsn/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/ncsn/bedroom.yml b/ncsn/bedroom.yml
new file mode 100644
index 0000000000000000000000000000000000000000..178d826d7a1fda1aca2110e2cca1f8c41da240d4
--- /dev/null
+++ b/ncsn/bedroom.yml
@@ -0,0 +1,69 @@
+training:
+ batch_size: 128
+ n_epochs: 500000
+ n_iters: 150001
+ snapshot_freq: 5000
+ snapshot_sampling: true
+ anneal_power: 2
+ log_all_sigmas: false
+
+sampling:
+ batch_size: 36
+ data_init: false
+ step_lr: 0.0000018
+ n_steps_each: 3
+ ckpt_id: 150000
+ final_only: true
+ fid: false
+ denoise: true
+ num_samples4fid: 10000
+ inpainting: false
+ interpolation: false
+ n_interpolations: 10
+
+fast_fid:
+ batch_size: 1000
+ num_samples: 1000
+ step_lr: 0.0000018
+ n_steps_each: 3
+ begin_ckpt: 100000
+ end_ckpt: 150000
+ verbose: false
+ ensemble: false
+
+test:
+ begin_ckpt: 5000
+ end_ckpt: 150000
+ batch_size: 100
+
+data:
+ dataset: "LSUN"
+ category: "bedroom"
+ image_size: 128
+ channels: 3
+ logit_transform: false
+ uniform_dequantization: false
+ gaussian_dequantization: false
+ random_flip: true
+ rescaled: false
+ num_workers: 32
+
+model:
+ sigma_begin: 190
+ num_classes: 1086
+ ema: true
+ ema_rate: 0.999
+ spec_norm: false
+ sigma_dist: geometric
+ sigma_end: 0.01
+ normalization: InstanceNorm++
+ nonlinearity: elu
+ ngf: 128
+
+optim:
+ weight_decay: 0.000
+ optimizer: "Adam"
+ lr: 0.0001
+ beta1: 0.9
+ amsgrad: false
+ eps: 0.00000001
diff --git a/ncsn/ema.py b/ncsn/ema.py
new file mode 100644
index 0000000000000000000000000000000000000000..5c67b81c00cdd1e1bf8fd1d80d25c7b1bab5c554
--- /dev/null
+++ b/ncsn/ema.py
@@ -0,0 +1,47 @@
+import copy
+import torch.nn as nn
+
+class EMAHelper(object):
+ def __init__(self, mu=0.999):
+ self.mu = mu
+ self.shadow = {}
+
+ def register(self, module):
+ if isinstance(module, nn.DataParallel):
+ module = module.module
+ for name, param in module.named_parameters():
+ if param.requires_grad:
+ self.shadow[name] = param.data.clone()
+
+ def update(self, module):
+ if isinstance(module, nn.DataParallel):
+ module = module.module
+ for name, param in module.named_parameters():
+ if param.requires_grad:
+ self.shadow[name].data = (1. - self.mu) * param.data + self.mu * self.shadow[name].data
+
+ def ema(self, module):
+ if isinstance(module, nn.DataParallel):
+ module = module.module
+ for name, param in module.named_parameters():
+ if param.requires_grad:
+ param.data.copy_(self.shadow[name].data)
+
+ def ema_copy(self, module):
+ if isinstance(module, nn.DataParallel):
+ inner_module = module.module
+ module_copy = type(inner_module)(inner_module.config).to(inner_module.config.device)
+ module_copy.load_state_dict(inner_module.state_dict())
+ module_copy = nn.DataParallel(module_copy)
+ else:
+ module_copy = type(module)(module.config).to(module.config.device)
+ module_copy.load_state_dict(module.state_dict())
+ # module_copy = copy.deepcopy(module)
+ self.ema(module_copy)
+ return module_copy
+
+ def state_dict(self):
+ return self.shadow
+
+ def load_state_dict(self, state_dict):
+ self.shadow = state_dict
diff --git a/ncsn/layers.py b/ncsn/layers.py
new file mode 100644
index 0000000000000000000000000000000000000000..283889b86d0ad0bf06114602989cdb988f282770
--- /dev/null
+++ b/ncsn/layers.py
@@ -0,0 +1,456 @@
+import torch.nn as nn
+import torch
+from torch.nn.parameter import Parameter
+import torch.nn.functional as F
+from .normalization import *
+from functools import partial
+import math
+import torch.nn.init as init
+
+
+def get_act(config):
+ if config.model.nonlinearity.lower() == 'elu':
+ return nn.ELU()
+ elif config.model.nonlinearity.lower() == 'relu':
+ return nn.ReLU()
+ elif config.model.nonlinearity.lower() == 'lrelu':
+ return nn.LeakyReLU(negative_slope=0.2)
+ elif config.model.nonlinearity.lower() == 'swish':
+ def swish(x):
+ return x * torch.sigmoid(x)
+ return swish
+ else:
+ raise NotImplementedError('activation function does not exist!')
+
+def spectral_norm(layer, n_iters=1):
+ return torch.nn.utils.spectral_norm(layer, n_power_iterations=n_iters)
+
+def conv1x1(in_planes, out_planes, stride=1, bias=True, spec_norm=False):
+ "1x1 convolution"
+ conv = nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride,
+ padding=0, bias=bias)
+ if spec_norm:
+ conv = spectral_norm(conv)
+ return conv
+
+
+def conv3x3(in_planes, out_planes, stride=1, bias=True, spec_norm=False):
+ "3x3 convolution with padding"
+ conv = nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
+ padding=1, bias=bias)
+ if spec_norm:
+ conv = spectral_norm(conv)
+
+ return conv
+
+
+def stride_conv3x3(in_planes, out_planes, kernel_size, bias=True, spec_norm=False):
+ conv = nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=2,
+ padding=kernel_size // 2, bias=bias)
+ if spec_norm:
+ conv = spectral_norm(conv)
+ return conv
+
+
+def dilated_conv3x3(in_planes, out_planes, dilation, bias=True, spec_norm=False):
+ conv = nn.Conv2d(in_planes, out_planes, kernel_size=3, padding=dilation, dilation=dilation, bias=bias)
+ if spec_norm:
+ conv = spectral_norm(conv)
+
+ return conv
+
+class CRPBlock(nn.Module):
+ def __init__(self, features, n_stages, act=nn.ReLU(), maxpool=True, spec_norm=False):
+ super().__init__()
+ self.convs = nn.ModuleList()
+ for i in range(n_stages):
+ self.convs.append(conv3x3(features, features, stride=1, bias=False, spec_norm=spec_norm))
+ self.n_stages = n_stages
+ if maxpool:
+ self.maxpool = nn.MaxPool2d(kernel_size=5, stride=1, padding=2)
+ else:
+ self.maxpool = nn.AvgPool2d(kernel_size=5, stride=1, padding=2)
+
+ self.act = act
+
+ def forward(self, x):
+ x = self.act(x)
+ path = x
+ for i in range(self.n_stages):
+ path = self.maxpool(path)
+ path = self.convs[i](path)
+ x = path + x
+ return x
+
+
+class CondCRPBlock(nn.Module):
+ def __init__(self, features, n_stages, num_classes, normalizer, act=nn.ReLU(), spec_norm=False):
+ super().__init__()
+ self.convs = nn.ModuleList()
+ self.norms = nn.ModuleList()
+ self.normalizer = normalizer
+ for i in range(n_stages):
+ self.norms.append(normalizer(features, num_classes, bias=True))
+ self.convs.append(conv3x3(features, features, stride=1, bias=False, spec_norm=spec_norm))
+
+ self.n_stages = n_stages
+ self.maxpool = nn.AvgPool2d(kernel_size=5, stride=1, padding=2)
+ self.act = act
+
+ def forward(self, x, y):
+ x = self.act(x)
+ path = x
+ for i in range(self.n_stages):
+ path = self.norms[i](path, y)
+ path = self.maxpool(path)
+ path = self.convs[i](path)
+
+ x = path + x
+ return x
+
+
+class RCUBlock(nn.Module):
+ def __init__(self, features, n_blocks, n_stages, act=nn.ReLU(), spec_norm=False):
+ super().__init__()
+
+ for i in range(n_blocks):
+ for j in range(n_stages):
+ setattr(self, '{}_{}_conv'.format(i + 1, j + 1), conv3x3(features, features, stride=1, bias=False,
+ spec_norm=spec_norm))
+
+ self.stride = 1
+ self.n_blocks = n_blocks
+ self.n_stages = n_stages
+ self.act = act
+
+ def forward(self, x):
+ for i in range(self.n_blocks):
+ residual = x
+ for j in range(self.n_stages):
+ x = self.act(x)
+ x = getattr(self, '{}_{}_conv'.format(i + 1, j + 1))(x)
+
+ x += residual
+ return x
+
+
+class CondRCUBlock(nn.Module):
+ def __init__(self, features, n_blocks, n_stages, num_classes, normalizer, act=nn.ReLU(), spec_norm=False):
+ super().__init__()
+
+ for i in range(n_blocks):
+ for j in range(n_stages):
+ setattr(self, '{}_{}_norm'.format(i + 1, j + 1), normalizer(features, num_classes, bias=True))
+ setattr(self, '{}_{}_conv'.format(i + 1, j + 1),
+ conv3x3(features, features, stride=1, bias=False, spec_norm=spec_norm))
+
+ self.stride = 1
+ self.n_blocks = n_blocks
+ self.n_stages = n_stages
+ self.act = act
+ self.normalizer = normalizer
+
+ def forward(self, x, y):
+ for i in range(self.n_blocks):
+ residual = x
+ for j in range(self.n_stages):
+ x = getattr(self, '{}_{}_norm'.format(i + 1, j + 1))(x, y)
+ x = self.act(x)
+ x = getattr(self, '{}_{}_conv'.format(i + 1, j + 1))(x)
+
+ x += residual
+ return x
+
+
+class MSFBlock(nn.Module):
+ def __init__(self, in_planes, features, spec_norm=False):
+ """
+ :param in_planes: tuples of input planes
+ """
+ super().__init__()
+ assert isinstance(in_planes, list) or isinstance(in_planes, tuple)
+ self.convs = nn.ModuleList()
+ self.features = features
+
+ for i in range(len(in_planes)):
+ self.convs.append(conv3x3(in_planes[i], features, stride=1, bias=True, spec_norm=spec_norm))
+
+ def forward(self, xs, shape):
+ sums = torch.zeros(xs[0].shape[0], self.features, *shape, device=xs[0].device)
+ for i in range(len(self.convs)):
+ h = self.convs[i](xs[i])
+ h = F.interpolate(h, size=shape, mode='bilinear', align_corners=True)
+ sums += h
+ return sums
+
+
+class CondMSFBlock(nn.Module):
+ def __init__(self, in_planes, features, num_classes, normalizer, spec_norm=False):
+ """
+ :param in_planes: tuples of input planes
+ """
+ super().__init__()
+ assert isinstance(in_planes, list) or isinstance(in_planes, tuple)
+
+ self.convs = nn.ModuleList()
+ self.norms = nn.ModuleList()
+ self.features = features
+ self.normalizer = normalizer
+
+ for i in range(len(in_planes)):
+ self.convs.append(conv3x3(in_planes[i], features, stride=1, bias=True, spec_norm=spec_norm))
+ self.norms.append(normalizer(in_planes[i], num_classes, bias=True))
+
+ def forward(self, xs, y, shape):
+ sums = torch.zeros(xs[0].shape[0], self.features, *shape, device=xs[0].device)
+ for i in range(len(self.convs)):
+ h = self.norms[i](xs[i], y)
+ h = self.convs[i](h)
+ h = F.interpolate(h, size=shape, mode='bilinear', align_corners=True)
+ sums += h
+ return sums
+
+
+class RefineBlock(nn.Module):
+ def __init__(self, in_planes, features, act=nn.ReLU(), start=False, end=False, maxpool=True, spec_norm=False):
+ super().__init__()
+
+ assert isinstance(in_planes, tuple) or isinstance(in_planes, list)
+ self.n_blocks = n_blocks = len(in_planes)
+
+ self.adapt_convs = nn.ModuleList()
+ for i in range(n_blocks):
+ self.adapt_convs.append(
+ RCUBlock(in_planes[i], 2, 2, act, spec_norm=spec_norm)
+ )
+
+ self.output_convs = RCUBlock(features, 3 if end else 1, 2, act, spec_norm=spec_norm)
+
+ if not start:
+ self.msf = MSFBlock(in_planes, features, spec_norm=spec_norm)
+
+ self.crp = CRPBlock(features, 2, act, maxpool=maxpool, spec_norm=spec_norm)
+
+ def forward(self, xs, output_shape):
+ assert isinstance(xs, tuple) or isinstance(xs, list)
+ hs = []
+ for i in range(len(xs)):
+ h = self.adapt_convs[i](xs[i])
+ hs.append(h)
+
+ if self.n_blocks > 1:
+ h = self.msf(hs, output_shape)
+ else:
+ h = hs[0]
+
+ h = self.crp(h)
+ h = self.output_convs(h)
+
+ return h
+
+
+
+class CondRefineBlock(nn.Module):
+ def __init__(self, in_planes, features, num_classes, normalizer, act=nn.ReLU(), start=False, end=False, spec_norm=False):
+ super().__init__()
+
+ assert isinstance(in_planes, tuple) or isinstance(in_planes, list)
+ self.n_blocks = n_blocks = len(in_planes)
+
+ self.adapt_convs = nn.ModuleList()
+ for i in range(n_blocks):
+ self.adapt_convs.append(
+ CondRCUBlock(in_planes[i], 2, 2, num_classes, normalizer, act, spec_norm=spec_norm)
+ )
+
+ self.output_convs = CondRCUBlock(features, 3 if end else 1, 2, num_classes, normalizer, act, spec_norm=spec_norm)
+
+ if not start:
+ self.msf = CondMSFBlock(in_planes, features, num_classes, normalizer, spec_norm=spec_norm)
+
+ self.crp = CondCRPBlock(features, 2, num_classes, normalizer, act, spec_norm=spec_norm)
+
+ def forward(self, xs, y, output_shape):
+ assert isinstance(xs, tuple) or isinstance(xs, list)
+ hs = []
+ for i in range(len(xs)):
+ h = self.adapt_convs[i](xs[i], y)
+ hs.append(h)
+
+ if self.n_blocks > 1:
+ h = self.msf(hs, y, output_shape)
+ else:
+ h = hs[0]
+
+ h = self.crp(h, y)
+ h = self.output_convs(h, y)
+
+ return h
+
+
+class ConvMeanPool(nn.Module):
+ def __init__(self, input_dim, output_dim, kernel_size=3, biases=True, adjust_padding=False, spec_norm=False):
+ super().__init__()
+ if not adjust_padding:
+ conv = nn.Conv2d(input_dim, output_dim, kernel_size, stride=1, padding=kernel_size // 2, bias=biases)
+ if spec_norm:
+ conv = spectral_norm(conv)
+ self.conv = conv
+ else:
+ conv = nn.Conv2d(input_dim, output_dim, kernel_size, stride=1, padding=kernel_size // 2, bias=biases)
+ if spec_norm:
+ conv = spectral_norm(conv)
+
+ self.conv = nn.Sequential(
+ nn.ZeroPad2d((1, 0, 1, 0)),
+ conv
+ )
+
+ def forward(self, inputs):
+ output = self.conv(inputs)
+ output = sum([output[:, :, ::2, ::2], output[:, :, 1::2, ::2],
+ output[:, :, ::2, 1::2], output[:, :, 1::2, 1::2]]) / 4.
+ return output
+
+class MeanPoolConv(nn.Module):
+ def __init__(self, input_dim, output_dim, kernel_size=3, biases=True, spec_norm=False):
+ super().__init__()
+ self.conv = nn.Conv2d(input_dim, output_dim, kernel_size, stride=1, padding=kernel_size // 2, bias=biases)
+ if spec_norm:
+ self.conv = spectral_norm(self.conv)
+
+ def forward(self, inputs):
+ output = inputs
+ output = sum([output[:, :, ::2, ::2], output[:, :, 1::2, ::2],
+ output[:, :, ::2, 1::2], output[:, :, 1::2, 1::2]]) / 4.
+ return self.conv(output)
+
+
+class UpsampleConv(nn.Module):
+ def __init__(self, input_dim, output_dim, kernel_size=3, biases=True, spec_norm=False):
+ super().__init__()
+ self.conv = nn.Conv2d(input_dim, output_dim, kernel_size, stride=1, padding=kernel_size // 2, bias=biases)
+ if spec_norm:
+ self.conv = spectral_norm(self.conv)
+ self.pixelshuffle = nn.PixelShuffle(upscale_factor=2)
+
+ def forward(self, inputs):
+ output = inputs
+ output = torch.cat([output, output, output, output], dim=1)
+ output = self.pixelshuffle(output)
+ return self.conv(output)
+
+
+class ConditionalResidualBlock(nn.Module):
+ def __init__(self, input_dim, output_dim, num_classes, resample=None, act=nn.ELU(),
+ normalization=ConditionalBatchNorm2d, adjust_padding=False, dilation=None, spec_norm=False):
+ super().__init__()
+ self.non_linearity = act
+ self.input_dim = input_dim
+ self.output_dim = output_dim
+ self.resample = resample
+ self.normalization = normalization
+ if resample == 'down':
+ if dilation is not None:
+ self.conv1 = dilated_conv3x3(input_dim, input_dim, dilation=dilation, spec_norm=spec_norm)
+ self.normalize2 = normalization(input_dim, num_classes)
+ self.conv2 = dilated_conv3x3(input_dim, output_dim, dilation=dilation, spec_norm=spec_norm)
+ conv_shortcut = partial(dilated_conv3x3, dilation=dilation, spec_norm=spec_norm)
+ else:
+ self.conv1 = conv3x3(input_dim, input_dim, spec_norm=spec_norm)
+ self.normalize2 = normalization(input_dim, num_classes)
+ self.conv2 = ConvMeanPool(input_dim, output_dim, 3, adjust_padding=adjust_padding, spec_norm=spec_norm)
+ conv_shortcut = partial(ConvMeanPool, kernel_size=1, adjust_padding=adjust_padding, spec_norm=spec_norm)
+
+ elif resample is None:
+ if dilation is not None:
+ conv_shortcut = partial(dilated_conv3x3, dilation=dilation, spec_norm=spec_norm)
+ self.conv1 = dilated_conv3x3(input_dim, output_dim, dilation=dilation, spec_norm=spec_norm)
+ self.normalize2 = normalization(output_dim, num_classes)
+ self.conv2 = dilated_conv3x3(output_dim, output_dim, dilation=dilation, spec_norm=spec_norm)
+ else:
+ conv_shortcut = nn.Conv2d
+ self.conv1 = conv3x3(input_dim, output_dim, spec_norm=spec_norm)
+ self.normalize2 = normalization(output_dim, num_classes)
+ self.conv2 = conv3x3(output_dim, output_dim, spec_norm=spec_norm)
+ else:
+ raise Exception('invalid resample value')
+
+ if output_dim != input_dim or resample is not None:
+ self.shortcut = conv_shortcut(input_dim, output_dim)
+
+ self.normalize1 = normalization(input_dim, num_classes)
+
+
+ def forward(self, x, y):
+ output = self.normalize1(x, y)
+ output = self.non_linearity(output)
+ output = self.conv1(output)
+ output = self.normalize2(output, y)
+ output = self.non_linearity(output)
+ output = self.conv2(output)
+
+ if self.output_dim == self.input_dim and self.resample is None:
+ shortcut = x
+ else:
+ shortcut = self.shortcut(x)
+
+ return shortcut + output
+
+
+class ResidualBlock(nn.Module):
+ def __init__(self, input_dim, output_dim, resample=None, act=nn.ELU(),
+ normalization=nn.BatchNorm2d, adjust_padding=False, dilation=None, spec_norm=False):
+ super().__init__()
+ self.non_linearity = act
+ self.input_dim = input_dim
+ self.output_dim = output_dim
+ self.resample = resample
+ self.normalization = normalization
+ if resample == 'down':
+ if dilation is not None:
+ self.conv1 = dilated_conv3x3(input_dim, input_dim, dilation=dilation, spec_norm=spec_norm)
+ self.normalize2 = normalization(input_dim)
+ self.conv2 = dilated_conv3x3(input_dim, output_dim, dilation=dilation, spec_norm=spec_norm)
+ conv_shortcut = partial(dilated_conv3x3, dilation=dilation, spec_norm=spec_norm)
+ else:
+ self.conv1 = conv3x3(input_dim, input_dim, spec_norm=spec_norm)
+ self.normalize2 = normalization(input_dim)
+ self.conv2 = ConvMeanPool(input_dim, output_dim, 3, adjust_padding=adjust_padding, spec_norm=spec_norm)
+ conv_shortcut = partial(ConvMeanPool, kernel_size=1, adjust_padding=adjust_padding, spec_norm=spec_norm)
+
+ elif resample is None:
+ if dilation is not None:
+ conv_shortcut = partial(dilated_conv3x3, dilation=dilation, spec_norm=spec_norm)
+ self.conv1 = dilated_conv3x3(input_dim, output_dim, dilation=dilation, spec_norm=spec_norm)
+ self.normalize2 = normalization(output_dim)
+ self.conv2 = dilated_conv3x3(output_dim, output_dim, dilation=dilation, spec_norm=spec_norm)
+ else:
+ # conv_shortcut = nn.Conv2d ### Something wierd here.
+ conv_shortcut = partial(conv1x1, spec_norm=spec_norm)
+ self.conv1 = conv3x3(input_dim, output_dim, spec_norm=spec_norm)
+ self.normalize2 = normalization(output_dim)
+ self.conv2 = conv3x3(output_dim, output_dim, spec_norm=spec_norm)
+ else:
+ raise Exception('invalid resample value')
+
+ if output_dim != input_dim or resample is not None:
+ self.shortcut = conv_shortcut(input_dim, output_dim)
+
+ self.normalize1 = normalization(input_dim)
+
+
+ def forward(self, x):
+ output = self.normalize1(x)
+ output = self.non_linearity(output)
+ output = self.conv1(output)
+ output = self.normalize2(output)
+ output = self.non_linearity(output)
+ output = self.conv2(output)
+
+ if self.output_dim == self.input_dim and self.resample is None:
+ shortcut = x
+ else:
+ shortcut = self.shortcut(x)
+
+ return shortcut + output
diff --git a/ncsn/ncsnv2.py b/ncsn/ncsnv2.py
new file mode 100644
index 0000000000000000000000000000000000000000..2cc5ab0ea37764f4cda404779648f9a653029805
--- /dev/null
+++ b/ncsn/ncsnv2.py
@@ -0,0 +1,314 @@
+import torch.nn as nn
+import numpy as np
+import torch.nn.functional as F
+import torch
+from functools import partial
+from .layers import *
+from .normalization import get_normalization
+
+
+def get_sigmas(config):
+ if config.model.sigma_dist == 'geometric':
+ sigmas = torch.tensor(
+ np.exp(np.linspace(np.log(config.model.sigma_begin), np.log(config.model.sigma_end),
+ config.model.num_classes))).float().to(config.device)
+ elif config.model.sigma_dist == 'uniform':
+ sigmas = torch.tensor(
+ np.linspace(config.model.sigma_begin, config.model.sigma_end, config.model.num_classes)
+ ).float().to(config.device)
+
+ else:
+ raise NotImplementedError('sigma distribution not supported')
+
+ return sigmas
+
+
+class NCSNv2(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.logit_transform = config.data.logit_transform
+ self.rescaled = config.data.rescaled
+ self.norm = get_normalization(config, conditional=False)
+ self.ngf = ngf = config.model.ngf
+ self.num_classes = num_classes = config.model.num_classes
+
+ self.act = act = get_act(config)
+ self.register_buffer('sigmas', get_sigmas(config))
+ self.config = config
+
+ self.begin_conv = nn.Conv2d(config.data.channels, ngf, 3, stride=1, padding=1)
+
+ self.normalizer = self.norm(ngf, self.num_classes)
+ self.end_conv = nn.Conv2d(ngf, config.data.channels, 3, stride=1, padding=1)
+
+ self.res1 = nn.ModuleList([
+ ResidualBlock(self.ngf, self.ngf, resample=None, act=act,
+ normalization=self.norm),
+ ResidualBlock(self.ngf, self.ngf, resample=None, act=act,
+ normalization=self.norm)]
+ )
+
+ self.res2 = nn.ModuleList([
+ ResidualBlock(self.ngf, 2 * self.ngf, resample='down', act=act,
+ normalization=self.norm),
+ ResidualBlock(2 * self.ngf, 2 * self.ngf, resample=None, act=act,
+ normalization=self.norm)]
+ )
+
+ self.res3 = nn.ModuleList([
+ ResidualBlock(2 * self.ngf, 2 * self.ngf, resample='down', act=act,
+ normalization=self.norm, dilation=2),
+ ResidualBlock(2 * self.ngf, 2 * self.ngf, resample=None, act=act,
+ normalization=self.norm, dilation=2)]
+ )
+
+ if config.data.image_size == 28:
+ self.res4 = nn.ModuleList([
+ ResidualBlock(2 * self.ngf, 2 * self.ngf, resample='down', act=act,
+ normalization=self.norm, adjust_padding=True, dilation=4),
+ ResidualBlock(2 * self.ngf, 2 * self.ngf, resample=None, act=act,
+ normalization=self.norm, dilation=4)]
+ )
+ else:
+ self.res4 = nn.ModuleList([
+ ResidualBlock(2 * self.ngf, 2 * self.ngf, resample='down', act=act,
+ normalization=self.norm, adjust_padding=False, dilation=4),
+ ResidualBlock(2 * self.ngf, 2 * self.ngf, resample=None, act=act,
+ normalization=self.norm, dilation=4)]
+ )
+
+ self.refine1 = RefineBlock([2 * self.ngf], 2 * self.ngf, act=act, start=True)
+ self.refine2 = RefineBlock([2 * self.ngf, 2 * self.ngf], 2 * self.ngf, act=act)
+ self.refine3 = RefineBlock([2 * self.ngf, 2 * self.ngf], self.ngf, act=act)
+ self.refine4 = RefineBlock([self.ngf, self.ngf], self.ngf, act=act, end=True)
+
+ def _compute_cond_module(self, module, x):
+ for m in module:
+ x = m(x)
+ return x
+
+ def forward(self, x, y):
+ if not self.logit_transform and not self.rescaled:
+ h = 2 * x - 1.
+ else:
+ h = x
+
+ output = self.begin_conv(h)
+
+ layer1 = self._compute_cond_module(self.res1, output)
+ layer2 = self._compute_cond_module(self.res2, layer1)
+ layer3 = self._compute_cond_module(self.res3, layer2)
+ layer4 = self._compute_cond_module(self.res4, layer3)
+
+ ref1 = self.refine1([layer4], layer4.shape[2:])
+ ref2 = self.refine2([layer3, ref1], layer3.shape[2:])
+ ref3 = self.refine3([layer2, ref2], layer2.shape[2:])
+ output = self.refine4([layer1, ref3], layer1.shape[2:])
+
+ output = self.normalizer(output)
+ output = self.act(output)
+ output = self.end_conv(output)
+
+ used_sigmas = self.sigmas[y].view(x.shape[0], *([1] * len(x.shape[1:])))
+
+ output = output / used_sigmas
+
+ return output
+
+
+class NCSNv2Deeper(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.logit_transform = config.data.logit_transform
+ self.rescaled = config.data.rescaled
+ self.norm = get_normalization(config, conditional=False)
+ self.ngf = ngf = config.model.ngf
+ self.num_classes = config.model.num_classes
+ self.act = act = get_act(config)
+ self.register_buffer('sigmas', get_sigmas(config))
+ self.config = config
+
+ self.begin_conv = nn.Conv2d(config.data.channels, ngf, 3, stride=1, padding=1)
+ self.normalizer = self.norm(ngf, self.num_classes)
+
+ self.end_conv = nn.Conv2d(ngf, config.data.channels, 3, stride=1, padding=1)
+
+ self.res1 = nn.ModuleList([
+ ResidualBlock(self.ngf, self.ngf, resample=None, act=act,
+ normalization=self.norm),
+ ResidualBlock(self.ngf, self.ngf, resample=None, act=act,
+ normalization=self.norm)]
+ )
+
+ self.res2 = nn.ModuleList([
+ ResidualBlock(self.ngf, 2 * self.ngf, resample='down', act=act,
+ normalization=self.norm),
+ ResidualBlock(2 * self.ngf, 2 * self.ngf, resample=None, act=act,
+ normalization=self.norm)]
+ )
+
+ self.res3 = nn.ModuleList([
+ ResidualBlock(2 * self.ngf, 2 * self.ngf, resample='down', act=act,
+ normalization=self.norm),
+ ResidualBlock(2 * self.ngf, 2 * self.ngf, resample=None, act=act,
+ normalization=self.norm)]
+ )
+
+ self.res4 = nn.ModuleList([
+ ResidualBlock(2 * self.ngf, 4 * self.ngf, resample='down', act=act,
+ normalization=self.norm, dilation=2),
+ ResidualBlock(4 * self.ngf, 4 * self.ngf, resample=None, act=act,
+ normalization=self.norm, dilation=2)]
+ )
+
+ self.res5 = nn.ModuleList([
+ ResidualBlock(4 * self.ngf, 4 * self.ngf, resample='down', act=act,
+ normalization=self.norm, dilation=4),
+ ResidualBlock(4 * self.ngf, 4 * self.ngf, resample=None, act=act,
+ normalization=self.norm, dilation=4)]
+ )
+
+ self.refine1 = RefineBlock([4 * self.ngf], 4 * self.ngf, act=act, start=True)
+ self.refine2 = RefineBlock([4 * self.ngf, 4 * self.ngf], 2 * self.ngf, act=act)
+ self.refine3 = RefineBlock([2 * self.ngf, 2 * self.ngf], 2 * self.ngf, act=act)
+ self.refine4 = RefineBlock([2 * self.ngf, 2 * self.ngf], self.ngf, act=act)
+ self.refine5 = RefineBlock([self.ngf, self.ngf], self.ngf, act=act, end=True)
+
+ def _compute_cond_module(self, module, x):
+ for m in module:
+ x = m(x)
+ return x
+
+ def forward(self, x, y):
+ if not self.logit_transform and not self.rescaled:
+ h = 2 * x - 1.
+ else:
+ h = x
+
+ output = self.begin_conv(h)
+
+ layer1 = self._compute_cond_module(self.res1, output)
+ layer2 = self._compute_cond_module(self.res2, layer1)
+ layer3 = self._compute_cond_module(self.res3, layer2)
+ layer4 = self._compute_cond_module(self.res4, layer3)
+ layer5 = self._compute_cond_module(self.res5, layer4)
+
+ ref1 = self.refine1([layer5], layer5.shape[2:])
+ ref2 = self.refine2([layer4, ref1], layer4.shape[2:])
+ ref3 = self.refine3([layer3, ref2], layer3.shape[2:])
+ ref4 = self.refine4([layer2, ref3], layer2.shape[2:])
+ output = self.refine5([layer1, ref4], layer1.shape[2:])
+
+ output = self.normalizer(output)
+ output = self.act(output)
+ output = self.end_conv(output)
+
+ used_sigmas = self.sigmas[y].view(x.shape[0], *([1] * len(x.shape[1:])))
+
+ output = output / used_sigmas
+
+ return output
+
+
+class NCSNv2Deepest(nn.Module):
+ def __init__(self, config):
+ super().__init__()
+ self.logit_transform = config.data.logit_transform
+ self.rescaled = config.data.rescaled
+ self.norm = get_normalization(config, conditional=False)
+ self.ngf = ngf = config.model.ngf
+ self.num_classes = config.model.num_classes
+ self.act = act = get_act(config)
+ self.register_buffer('sigmas', get_sigmas(config))
+ self.config = config
+
+ self.begin_conv = nn.Conv2d(config.data.channels, ngf, 3, stride=1, padding=1)
+ self.normalizer = self.norm(ngf, self.num_classes)
+
+ self.end_conv = nn.Conv2d(ngf, config.data.channels, 3, stride=1, padding=1)
+
+ self.res1 = nn.ModuleList([
+ ResidualBlock(self.ngf, self.ngf, resample=None, act=act,
+ normalization=self.norm),
+ ResidualBlock(self.ngf, self.ngf, resample=None, act=act,
+ normalization=self.norm)]
+ )
+
+ self.res2 = nn.ModuleList([
+ ResidualBlock(self.ngf, 2 * self.ngf, resample='down', act=act,
+ normalization=self.norm),
+ ResidualBlock(2 * self.ngf, 2 * self.ngf, resample=None, act=act,
+ normalization=self.norm)]
+ )
+
+ self.res3 = nn.ModuleList([
+ ResidualBlock(2 * self.ngf, 2 * self.ngf, resample='down', act=act,
+ normalization=self.norm),
+ ResidualBlock(2 * self.ngf, 2 * self.ngf, resample=None, act=act,
+ normalization=self.norm)]
+ )
+
+ self.res31 = nn.ModuleList([
+ ResidualBlock(2 * self.ngf, 2 * self.ngf, resample='down', act=act,
+ normalization=self.norm),
+ ResidualBlock(2 * self.ngf, 2 * self.ngf, resample=None, act=act,
+ normalization=self.norm)]
+ )
+
+ self.res4 = nn.ModuleList([
+ ResidualBlock(2 * self.ngf, 4 * self.ngf, resample='down', act=act,
+ normalization=self.norm, dilation=2),
+ ResidualBlock(4 * self.ngf, 4 * self.ngf, resample=None, act=act,
+ normalization=self.norm, dilation=2)]
+ )
+
+ self.res5 = nn.ModuleList([
+ ResidualBlock(4 * self.ngf, 4 * self.ngf, resample='down', act=act,
+ normalization=self.norm, dilation=4),
+ ResidualBlock(4 * self.ngf, 4 * self.ngf, resample=None, act=act,
+ normalization=self.norm, dilation=4)]
+ )
+
+ self.refine1 = RefineBlock([4 * self.ngf], 4 * self.ngf, act=act, start=True)
+ self.refine2 = RefineBlock([4 * self.ngf, 4 * self.ngf], 2 * self.ngf, act=act)
+ self.refine3 = RefineBlock([2 * self.ngf, 2 * self.ngf], 2 * self.ngf, act=act)
+ self.refine31 = RefineBlock([2 * self.ngf, 2 * self.ngf], 2 * self.ngf, act=act)
+ self.refine4 = RefineBlock([2 * self.ngf, 2 * self.ngf], self.ngf, act=act)
+ self.refine5 = RefineBlock([self.ngf, self.ngf], self.ngf, act=act, end=True)
+
+ def _compute_cond_module(self, module, x):
+ for m in module:
+ x = m(x)
+ return x
+
+ def forward(self, x, y):
+ if not self.logit_transform and not self.rescaled:
+ h = 2 * x - 1.
+ else:
+ h = x
+
+ output = self.begin_conv(h)
+
+ layer1 = self._compute_cond_module(self.res1, output)
+ layer2 = self._compute_cond_module(self.res2, layer1)
+ layer3 = self._compute_cond_module(self.res3, layer2)
+ layer31 = self._compute_cond_module(self.res31, layer3)
+ layer4 = self._compute_cond_module(self.res4, layer31)
+ layer5 = self._compute_cond_module(self.res5, layer4)
+
+ ref1 = self.refine1([layer5], layer5.shape[2:])
+ ref2 = self.refine2([layer4, ref1], layer4.shape[2:])
+ ref31 = self.refine31([layer31, ref2], layer31.shape[2:])
+ ref3 = self.refine3([layer3, ref31], layer3.shape[2:])
+ ref4 = self.refine4([layer2, ref3], layer2.shape[2:])
+ output = self.refine5([layer1, ref4], layer1.shape[2:])
+
+ output = self.normalizer(output)
+ output = self.act(output)
+ output = self.end_conv(output)
+
+ used_sigmas = self.sigmas[y].view(x.shape[0], *([1] * len(x.shape[1:])))
+
+ output = output / used_sigmas
+
+ return output
diff --git a/ncsn/normalization.py b/ncsn/normalization.py
new file mode 100644
index 0000000000000000000000000000000000000000..77f0dd4d2667f7868ce3352ab3ed1c1fcd525d34
--- /dev/null
+++ b/ncsn/normalization.py
@@ -0,0 +1,208 @@
+import torch
+import torch.nn as nn
+
+
+def get_normalization(config, conditional=True):
+ norm = config.model.normalization
+ if conditional:
+ if norm == 'NoneNorm':
+ return ConditionalNoneNorm2d
+ elif norm == 'InstanceNorm++':
+ return ConditionalInstanceNorm2dPlus
+ elif norm == 'InstanceNorm':
+ return ConditionalInstanceNorm2d
+ elif norm == 'BatchNorm':
+ return ConditionalBatchNorm2d
+ elif norm == 'VarianceNorm':
+ return ConditionalVarianceNorm2d
+ else:
+ raise NotImplementedError("{} does not exist!".format(norm))
+ else:
+ if norm == 'BatchNorm':
+ return nn.BatchNorm2d
+ elif norm == 'InstanceNorm':
+ return nn.InstanceNorm2d
+ elif norm == 'InstanceNorm++':
+ return InstanceNorm2dPlus
+ elif norm == 'VarianceNorm':
+ return VarianceNorm2d
+ elif norm == 'NoneNorm':
+ return NoneNorm2d
+ elif norm is None:
+ return None
+ else:
+ raise NotImplementedError("{} does not exist!".format(norm))
+
+class ConditionalBatchNorm2d(nn.Module):
+ def __init__(self, num_features, num_classes, bias=True):
+ super().__init__()
+ self.num_features = num_features
+ self.bias = bias
+ self.bn = nn.BatchNorm2d(num_features, affine=False)
+ if self.bias:
+ self.embed = nn.Embedding(num_classes, num_features * 2)
+ self.embed.weight.data[:, :num_features].uniform_() # Initialise scale at N(1, 0.02)
+ self.embed.weight.data[:, num_features:].zero_() # Initialise bias at 0
+ else:
+ self.embed = nn.Embedding(num_classes, num_features)
+ self.embed.weight.data.uniform_()
+
+ def forward(self, x, y):
+ out = self.bn(x)
+ if self.bias:
+ gamma, beta = self.embed(y).chunk(2, dim=1)
+ out = gamma.view(-1, self.num_features, 1, 1) * out + beta.view(-1, self.num_features, 1, 1)
+ else:
+ gamma = self.embed(y)
+ out = gamma.view(-1, self.num_features, 1, 1) * out
+ return out
+
+
+class ConditionalInstanceNorm2d(nn.Module):
+ def __init__(self, num_features, num_classes, bias=True):
+ super().__init__()
+ self.num_features = num_features
+ self.bias = bias
+ self.instance_norm = nn.InstanceNorm2d(num_features, affine=False, track_running_stats=False)
+ if bias:
+ self.embed = nn.Embedding(num_classes, num_features * 2)
+ self.embed.weight.data[:, :num_features].uniform_() # Initialise scale at N(1, 0.02)
+ self.embed.weight.data[:, num_features:].zero_() # Initialise bias at 0
+ else:
+ self.embed = nn.Embedding(num_classes, num_features)
+ self.embed.weight.data.uniform_()
+
+ def forward(self, x, y):
+ h = self.instance_norm(x)
+ if self.bias:
+ gamma, beta = self.embed(y).chunk(2, dim=-1)
+ out = gamma.view(-1, self.num_features, 1, 1) * h + beta.view(-1, self.num_features, 1, 1)
+ else:
+ gamma = self.embed(y)
+ out = gamma.view(-1, self.num_features, 1, 1) * h
+ return out
+
+
+class ConditionalVarianceNorm2d(nn.Module):
+ def __init__(self, num_features, num_classes, bias=False):
+ super().__init__()
+ self.num_features = num_features
+ self.bias = bias
+ self.embed = nn.Embedding(num_classes, num_features)
+ self.embed.weight.data.normal_(1, 0.02)
+
+ def forward(self, x, y):
+ vars = torch.var(x, dim=(2, 3), keepdim=True)
+ h = x / torch.sqrt(vars + 1e-5)
+
+ gamma = self.embed(y)
+ out = gamma.view(-1, self.num_features, 1, 1) * h
+ return out
+
+
+class VarianceNorm2d(nn.Module):
+ def __init__(self, num_features, bias=False):
+ super().__init__()
+ self.num_features = num_features
+ self.bias = bias
+ self.alpha = nn.Parameter(torch.zeros(num_features))
+ self.alpha.data.normal_(1, 0.02)
+
+ def forward(self, x):
+ vars = torch.var(x, dim=(2, 3), keepdim=True)
+ h = x / torch.sqrt(vars + 1e-5)
+
+ out = self.alpha.view(-1, self.num_features, 1, 1) * h
+ return out
+
+
+class ConditionalNoneNorm2d(nn.Module):
+ def __init__(self, num_features, num_classes, bias=True):
+ super().__init__()
+ self.num_features = num_features
+ self.bias = bias
+ if bias:
+ self.embed = nn.Embedding(num_classes, num_features * 2)
+ self.embed.weight.data[:, :num_features].uniform_() # Initialise scale at N(1, 0.02)
+ self.embed.weight.data[:, num_features:].zero_() # Initialise bias at 0
+ else:
+ self.embed = nn.Embedding(num_classes, num_features)
+ self.embed.weight.data.uniform_()
+
+ def forward(self, x, y):
+ if self.bias:
+ gamma, beta = self.embed(y).chunk(2, dim=-1)
+ out = gamma.view(-1, self.num_features, 1, 1) * x + beta.view(-1, self.num_features, 1, 1)
+ else:
+ gamma = self.embed(y)
+ out = gamma.view(-1, self.num_features, 1, 1) * x
+ return out
+
+
+class NoneNorm2d(nn.Module):
+ def __init__(self, num_features, bias=True):
+ super().__init__()
+
+ def forward(self, x):
+ return x
+
+
+class InstanceNorm2dPlus(nn.Module):
+ def __init__(self, num_features, bias=True):
+ super().__init__()
+ self.num_features = num_features
+ self.bias = bias
+ self.instance_norm = nn.InstanceNorm2d(num_features, affine=False, track_running_stats=False)
+ self.alpha = nn.Parameter(torch.zeros(num_features))
+ self.gamma = nn.Parameter(torch.zeros(num_features))
+ self.alpha.data.normal_(1, 0.02)
+ self.gamma.data.normal_(1, 0.02)
+ if bias:
+ self.beta = nn.Parameter(torch.zeros(num_features))
+
+ def forward(self, x):
+ means = torch.mean(x, dim=(2, 3))
+ m = torch.mean(means, dim=-1, keepdim=True)
+ v = torch.var(means, dim=-1, keepdim=True)
+ means = (means - m) / (torch.sqrt(v + 1e-5))
+ h = self.instance_norm(x)
+
+ if self.bias:
+ h = h + means[..., None, None] * self.alpha[..., None, None]
+ out = self.gamma.view(-1, self.num_features, 1, 1) * h + self.beta.view(-1, self.num_features, 1, 1)
+ else:
+ h = h + means[..., None, None] * self.alpha[..., None, None]
+ out = self.gamma.view(-1, self.num_features, 1, 1) * h
+ return out
+
+
+class ConditionalInstanceNorm2dPlus(nn.Module):
+ def __init__(self, num_features, num_classes, bias=True):
+ super().__init__()
+ self.num_features = num_features
+ self.bias = bias
+ self.instance_norm = nn.InstanceNorm2d(num_features, affine=False, track_running_stats=False)
+ if bias:
+ self.embed = nn.Embedding(num_classes, num_features * 3)
+ self.embed.weight.data[:, :2 * num_features].normal_(1, 0.02) # Initialise scale at N(1, 0.02)
+ self.embed.weight.data[:, 2 * num_features:].zero_() # Initialise bias at 0
+ else:
+ self.embed = nn.Embedding(num_classes, 2 * num_features)
+ self.embed.weight.data.normal_(1, 0.02)
+
+ def forward(self, x, y):
+ means = torch.mean(x, dim=(2, 3))
+ m = torch.mean(means, dim=-1, keepdim=True)
+ v = torch.var(means, dim=-1, keepdim=True)
+ means = (means - m) / (torch.sqrt(v + 1e-5))
+ h = self.instance_norm(x)
+
+ if self.bias:
+ gamma, alpha, beta = self.embed(y).chunk(3, dim=-1)
+ h = h + means[..., None, None] * alpha[..., None, None]
+ out = gamma.view(-1, self.num_features, 1, 1) * h + beta.view(-1, self.num_features, 1, 1)
+ else:
+ gamma, alpha = self.embed(y).chunk(2, dim=-1)
+ h = h + means[..., None, None] * alpha[..., None, None]
+ out = gamma.view(-1, self.num_features, 1, 1) * h
+ return out
diff --git a/pose.py b/pose.py
new file mode 100644
index 0000000000000000000000000000000000000000..63c1539894140d43fb88fdd27d21fdeeda267b44
--- /dev/null
+++ b/pose.py
@@ -0,0 +1,120 @@
+import numpy as np
+from numpy import sin, cos
+from math import pi as π
+from my3d import camera_pose
+from my.config import BaseConf
+import random
+
+
+def get_K(H, W, FoV_x):
+ FoV_x = FoV_x / 180 * π # to rad
+ f = 1 / np.tan(FoV_x / 2) * (W / 2)
+
+ K = np.array([
+ [f, 0, -(W/2 - 0.5)],
+ [0, -f, -(H/2 - 0.5)],
+ [0, 0, -1]
+ ])
+ return K
+
+
+SIDEVIEW_PROMPTS = [
+ "front view of", "side view of", "backside view of", "side view of"
+]
+
+TOPVIEW_PROMPT = "overhead view of"
+
+
+def train_eye_with_prompts(r, n):
+ hs = np.random.rand(n) * 360
+ vs = np.random.rand(n) * np.deg2rad(100)
+ vs = np.clip(vs, 1e-2, π-1e-2)
+
+ prompts = []
+ v_thresh = np.deg2rad(30)
+ for i in range(n):
+ _p = ""
+ if vs[i] < v_thresh:
+ _p = TOPVIEW_PROMPT
+ else:
+ _a = hs[i]
+ _a = (_a + 45) % 360
+ _quad = int(_a // 90)
+ _p = SIDEVIEW_PROMPTS[_quad]
+ prompts.append(_p)
+
+ θ = np.deg2rad(hs)
+ # φ = v
+ φ = np.arccos(1 - 2 * (vs / π))
+
+ eyes = np.zeros((n, 3))
+
+ eyes[:, 0] = r * sin(φ) * cos(π-θ) # x
+ eyes[:, 2] = r * sin(φ) * sin(π-θ) # z
+ eyes[:, 1] = r * cos(φ) # y
+
+ return eyes, prompts
+
+
+def spiral_poses(
+ radius, height,
+ num_steps=20, num_rounds=1,
+ center=np.array([0, 0, 0]), up=np.array([0, 1, 0]),
+):
+ eyes = []
+ for i in range(num_steps):
+ ratio = (i + 1) / num_steps
+ Δy = height * (1 - ratio)
+
+ θ = ratio * (360 * num_rounds)
+ θ = θ / 180 * π
+ # _r = max(radius * ratio, 0.5)
+ _r = max(radius * sin(ratio * π / 2), 0.5)
+ Δx, Δz = _r * np.array([np.cos(θ), np.sin(θ)])
+ eyes.append(center + [Δx, Δy, Δz])
+
+ poses = [
+ camera_pose(e, center - e, up) for e in eyes
+ ]
+ return poses
+
+
+class PoseConfig(BaseConf):
+ rend_hw: int = 64
+ FoV: float = 60.0
+ R: float = 1.5
+
+ def make(self):
+ cfgs = self.dict()
+ hw = cfgs.pop("rend_hw")
+ cfgs["H"] = hw
+ cfgs["W"] = hw
+ return Poser(**cfgs)
+
+
+class Poser():
+ def __init__(self, H, W, FoV, R):
+ self.H, self.W = H, W
+ self.R = R
+ self.K = get_K(H, W, FoV)
+
+ def sample_train(self, n):
+ eyes, prompts = train_eye_with_prompts(r=self.R, n=n)
+ up = np.array([0, 1, 0])
+ poses = [
+ camera_pose(e, -e, up) for e in eyes
+ ]
+ poses = np.stack(poses, 0)
+ # FoV during training: [40,70]
+ random_Ks = [
+ get_K(self.H, self.W, random.random() * 30 + 40)
+ for i in range(len(poses))
+ # self.K for i in range(len(poses))
+ ]
+ # return self.K, poses, prompts
+ return random_Ks, poses, prompts
+
+ def sample_test(self, n):
+ poses = spiral_poses(self.R, self.R, n, num_rounds=3)
+ poses = np.stack(poses, axis=0)
+ return self.K, poses
diff --git a/release/diffusion_ckpts/guided_ddpm/models/lsun_bedroom.pt b/release/diffusion_ckpts/guided_ddpm/models/lsun_bedroom.pt
new file mode 100755
index 0000000000000000000000000000000000000000..8151eb010127c20ea2cd8825f5c86504afe9c067
--- /dev/null
+++ b/release/diffusion_ckpts/guided_ddpm/models/lsun_bedroom.pt
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:f9faf136dc2375dcdb392b35cee9ca9dca1fd5257b2f3358613136395ec39231
+size 2211383297
diff --git a/release/diffusion_ckpts/guided_ddpm/models/lsun_ffhq.pt b/release/diffusion_ckpts/guided_ddpm/models/lsun_ffhq.pt
new file mode 100755
index 0000000000000000000000000000000000000000..da864bfea0ce5857103ee31779ba65287f19fa1c
--- /dev/null
+++ b/release/diffusion_ckpts/guided_ddpm/models/lsun_ffhq.pt
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:e409993ae12fc4cb8cd61aba7352c1bc0af0735e2debdd4b3c609280c8dc448b
+size 2211370791
diff --git a/release/diffusion_ckpts/stable_diffusion/sd-v1-5.ckpt b/release/diffusion_ckpts/stable_diffusion/sd-v1-5.ckpt
new file mode 100644
index 0000000000000000000000000000000000000000..623eb69de3c5007e4747b80f445d43c150a4050c
--- /dev/null
+++ b/release/diffusion_ckpts/stable_diffusion/sd-v1-5.ckpt
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:e1441589a6f3c5a53f5f54d0975a18a7feb7cdf0b0dee276dfc3331ae376a053
+size 7703807346
diff --git a/requirements.txt b/requirements.txt
new file mode 100644
index 0000000000000000000000000000000000000000..de95e703432a25f8c74c89539700ed8a11f78909
--- /dev/null
+++ b/requirements.txt
@@ -0,0 +1,16 @@
+pydantic
+tqdm
+click
+easydict
+tabulate
+imageio
+einops
+matplotlib
+omegaconf==2.1.1
+torchmetrics==0.6.0
+pytorch-lightning==1.4.2
+transformers
+kornia==0.6.0
+git+https:///github.com/openai/CLIP.git#egg=clip
+imageio[ffmpeg]
+imageio[pyav]
\ No newline at end of file
diff --git a/run_img_sampling.py b/run_img_sampling.py
new file mode 100644
index 0000000000000000000000000000000000000000..bded1a0a2eb1b5530c590ae55c8d10c54720253b
--- /dev/null
+++ b/run_img_sampling.py
@@ -0,0 +1,235 @@
+from pathlib import Path
+import numpy as np
+import torch
+
+from misc import torch_samps_to_imgs
+from adapt import Karras, ScoreAdapter, power_schedule
+from adapt_gddpm import GuidedDDPM
+from adapt_ncsn import NCSN as _NCSN
+# from adapt_vesde import VESDE # not included to prevent import conflicts
+from adapt_sd import StableDiffusion
+
+from my.utils import tqdm, EventStorage, HeartBeat, EarlyLoopBreak
+from my.config import BaseConf, dispatch
+from my.utils.seed import seed_everything
+
+
+class GDDPM(BaseConf):
+ """Guided DDPM from OpenAI"""
+ model: str = "m_lsun_256"
+ lsun_cat: str = "bedroom"
+ imgnet_cat: int = -1
+
+ def make(self):
+ args = self.dict()
+ model = GuidedDDPM(**args)
+ return model
+
+
+class SD(BaseConf):
+ """Stable Diffusion"""
+ variant: str = "v1"
+ v2_highres: bool = False
+ prompt: str = "a photograph of an astronaut riding a horse"
+ scale: float = 3.0 # classifier free guidance scale
+ precision: str = 'autocast'
+
+ def make(self):
+ args = self.dict()
+ model = StableDiffusion(**args)
+ return model
+
+
+class SDE(BaseConf):
+ def make(self):
+ args = self.dict()
+ model = VESDE(**args)
+ return model
+
+
+class NCSN(BaseConf):
+ def make(self):
+ args = self.dict()
+ model = _NCSN(**args)
+ return model
+
+
+class KarrasGen(BaseConf):
+ family: str = "gddpm"
+ gddpm: GDDPM = GDDPM()
+ sd: SD = SD()
+ # sde: SDE = SDE()
+ ncsn: NCSN = NCSN()
+
+ batch_size: int = 10
+ num_images: int = 1250
+ num_t: int = 40
+ σ_max: float = 80.0
+ heun: bool = True
+ langevin: bool = False
+ cls_scaling: float = 1.0 # classifier guidance scaling
+
+ def run(self):
+ args = self.dict()
+ family = args.pop("family")
+ model = getattr(self, family).make()
+ self.karras_generate(model, **args)
+
+ @staticmethod
+ def karras_generate(
+ model: ScoreAdapter,
+ batch_size, num_images, σ_max, num_t, langevin, heun, cls_scaling,
+ **kwargs
+ ):
+ del kwargs # removed extra args
+ num_batches = num_images // batch_size
+
+ fuse = EarlyLoopBreak(5)
+ with tqdm(total=num_batches) as pbar, \
+ HeartBeat(pbar) as hbeat, \
+ EventStorage() as metric:
+
+ all_imgs = []
+
+ for _ in range(num_batches):
+ if fuse.on_break():
+ break
+
+ pipeline = Karras.inference(
+ model, batch_size, num_t,
+ init_xs=None, heun=heun, σ_max=σ_max,
+ langevin=langevin, cls_scaling=cls_scaling
+ )
+
+ for imgs in tqdm(pipeline, total=num_t+1, disable=False):
+ # _std = imgs.std().item()
+ # print(_std)
+ hbeat.beat()
+ pass
+
+ if isinstance(model, StableDiffusion):
+ imgs = model.decode(imgs)
+
+ imgs = torch_samps_to_imgs(imgs, uncenter=model.samps_centered())
+ all_imgs.append(imgs)
+
+ pbar.update()
+
+ all_imgs = np.concatenate(all_imgs, axis=0)
+ metric.put_artifact("imgs", ".npy", lambda fn: np.save(fn, all_imgs))
+ metric.step()
+ hbeat.done()
+
+
+class SMLDGen(BaseConf):
+ family: str = "ncsn"
+ gddpm: GDDPM = GDDPM()
+ # sde: SDE = SDE()
+ ncsn: NCSN = NCSN()
+
+ batch_size: int = 16
+ num_images: int = 16
+ num_stages: int = 80
+ num_steps: int = 15
+ σ_max: float = 80.0
+ ε: float = 1e-5
+
+ def run(self):
+ args = self.dict()
+ family = args.pop("family")
+ model = getattr(self, family).make()
+ self.smld_generate(model, **args)
+
+ @staticmethod
+ def smld_generate(
+ model: ScoreAdapter,
+ batch_size, num_images, num_stages, num_steps, σ_max, ε,
+ **kwargs
+ ):
+ num_batches = num_images // batch_size
+ σs = power_schedule(σ_max, model.σ_min, num_stages)
+ σs = [model.snap_t_to_nearest_tick(σ)[0] for σ in σs]
+
+ fuse = EarlyLoopBreak(5)
+ with tqdm(total=num_batches) as pbar, \
+ HeartBeat(pbar) as hbeat, \
+ EventStorage() as metric:
+
+ all_imgs = []
+
+ for _ in range(num_batches):
+ if fuse.on_break():
+ break
+
+ init_xs = torch.rand(batch_size, *model.data_shape(), device=model.device)
+ if model.samps_centered():
+ init_xs = init_xs * 2 - 1 # [0, 1] -> [-1, 1]
+
+ pipeline = smld_inference(
+ model, σs, num_steps, ε, init_xs
+ )
+
+ for imgs in tqdm(pipeline, total=(num_stages * num_steps)+1, disable=False):
+ pbar.set_description(f"{imgs.max().item():.3f}")
+ metric.put_scalars(
+ max=imgs.max().item(), min=imgs.min().item(), std=imgs.std().item()
+ )
+ metric.step()
+ hbeat.beat()
+
+ pbar.update()
+ imgs = torch_samps_to_imgs(imgs, uncenter=model.samps_centered())
+ all_imgs.append(imgs)
+
+ all_imgs = np.concatenate(all_imgs, axis=0)
+ metric.put_artifact("imgs", ".npy", lambda fn: np.save(fn, all_imgs))
+ metric.step()
+ hbeat.done()
+
+
+def smld_inference(model, σs, num_steps, ε, init_xs):
+ from math import sqrt
+ # not doing conditioning or cls guidance; for gddpm only lsun works; fine.
+
+ xs = init_xs
+ yield xs
+
+ for i in range(len(σs)):
+ α_i = ε * ((σs[i] / σs[-1]) ** 2)
+ for _ in range(num_steps):
+ grad = model.score(xs, σs[i])
+ z = torch.randn_like(xs)
+ xs = xs + α_i * grad + sqrt(2 * α_i) * z
+ yield xs
+
+
+def load_np_imgs(fname):
+ fname = Path(fname)
+ data = np.load(fname)
+ if fname.suffix == ".npz":
+ imgs = data['arr_0']
+ else:
+ imgs = data
+ return imgs
+
+
+def visualize(max_n_imgs=16):
+ import torchvision.utils as vutils
+ from imageio import imwrite
+ from einops import rearrange
+
+ all_imgs = load_np_imgs("imgs/step_0.npy")
+
+ imgs = all_imgs[:max_n_imgs]
+ imgs = rearrange(imgs, "N H W C -> N C H W", C=3)
+ imgs = torch.from_numpy(imgs)
+ pane = vutils.make_grid(imgs, padding=2, nrow=4)
+ pane = rearrange(pane, "C H W -> H W C", C=3)
+ pane = pane.numpy()
+ imwrite("preview.jpg", pane)
+
+
+if __name__ == "__main__":
+ seed_everything(0)
+ dispatch(KarrasGen)
+ visualize(16)
diff --git a/run_nerf.py b/run_nerf.py
new file mode 100644
index 0000000000000000000000000000000000000000..a66ed3c600ff43614c8dab4127e28f928a580dc8
--- /dev/null
+++ b/run_nerf.py
@@ -0,0 +1,62 @@
+from typing import List
+from pydantic import validator
+
+from my.config import BaseConf, SingleOrList, dispatch
+from my.utils.seed import seed_everything
+
+import numpy as np
+from voxnerf.vox import VOXRF_REGISTRY
+from voxnerf.pipelines import train
+
+
+class VoxConfig(BaseConf):
+ model_type: str = "VoxRF"
+ bbox_len: float = 1.5
+ grid_size: SingleOrList(int) = [128, 128, 128]
+ step_ratio: float = 0.5
+ density_shift: float = -10.
+ ray_march_weight_thres: float = 0.0001
+ c: int = 3
+ blend_bg_texture: bool = False
+ bg_texture_hw: int = 64
+
+ @validator("grid_size")
+ def check_gsize(cls, grid_size):
+ if isinstance(grid_size, int):
+ return [grid_size, ] * 3
+ else:
+ assert len(grid_size) == 3
+ return grid_size
+
+ def make(self):
+ params = self.dict()
+ m_type = params.pop("model_type")
+ model_fn = VOXRF_REGISTRY.get(m_type)
+
+ radius = params.pop('bbox_len')
+ aabb = radius * np.array([
+ [-1, -1, -1],
+ [1, 1, 1]
+ ])
+ model = model_fn(aabb=aabb, **params)
+ return model
+
+
+class TrainerConfig(BaseConf):
+ model: VoxConfig = VoxConfig()
+ scene: str = "lego"
+ n_epoch: int = 2
+ bs: int = 4096
+ lr: float = 0.02
+
+ def run(self):
+ args = self.dict()
+ args.pop("model")
+
+ model = self.model.make()
+ train(model, **args)
+
+
+if __name__ == "__main__":
+ seed_everything(0)
+ dispatch(TrainerConfig)
diff --git a/run_sjc.py b/run_sjc.py
new file mode 100644
index 0000000000000000000000000000000000000000..01894c75f33b08f91f2345036e0a837dd6763cfa
--- /dev/null
+++ b/run_sjc.py
@@ -0,0 +1,298 @@
+import math
+import numpy as np
+import torch
+import torch.nn as nn
+from einops import rearrange
+from imageio import imwrite
+from pydantic import validator
+
+from my.utils import (
+ tqdm, EventStorage, HeartBeat, EarlyLoopBreak,
+ get_event_storage, get_heartbeat, read_stats
+)
+from my.config import BaseConf, dispatch, optional_load_config
+from my.utils.seed import seed_everything
+
+from adapt import ScoreAdapter, karras_t_schedule
+from run_img_sampling import GDDPM, SD, StableDiffusion
+from misc import torch_samps_to_imgs
+from pose import PoseConfig
+
+from run_nerf import VoxConfig
+from voxnerf.utils import every
+from voxnerf.render import (
+ as_torch_tsrs, rays_from_img, ray_box_intersect, render_ray_bundle
+)
+from voxnerf.vis import stitch_vis, bad_vis as nerf_vis
+
+
+device_glb = torch.device("cuda")
+
+
+def tsr_stats(tsr):
+ return {
+ "mean": tsr.mean().item(),
+ "std": tsr.std().item(),
+ "max": tsr.max().item(),
+ }
+
+
+class SJC(BaseConf):
+ family: str = "sd"
+ gddpm: GDDPM = GDDPM()
+ sd: SD = SD(
+ variant="v1",
+ prompt="A high quality photo of a delicious burger",
+ scale=100.0
+ )
+ lr: float = 0.05
+ n_steps: int = 10000
+ vox: VoxConfig = VoxConfig(
+ model_type="V_SD", grid_size=100, density_shift=-1.0, c=3,
+ blend_bg_texture=True, bg_texture_hw=4,
+ bbox_len=1.0
+ )
+ pose: PoseConfig = PoseConfig(rend_hw=64, FoV=60.0, R=1.5)
+
+ emptiness_scale: int = 10
+ emptiness_weight: int = 1e4
+ emptiness_step: float = 0.5
+ emptiness_multiplier: float = 20.0
+
+ depth_weight: int = 0
+
+ var_red: bool = True
+
+ @validator("vox")
+ def check_vox(cls, vox_cfg, values):
+ family = values['family']
+ if family == "sd":
+ vox_cfg.c = 4
+ return vox_cfg
+
+ def run(self):
+ cfgs = self.dict()
+
+ family = cfgs.pop("family")
+ model = getattr(self, family).make()
+
+ cfgs.pop("vox")
+ vox = self.vox.make()
+
+ cfgs.pop("pose")
+ poser = self.pose.make()
+
+ sjc_3d(**cfgs, poser=poser, model=model, vox=vox)
+
+
+def sjc_3d(
+ poser, vox, model: ScoreAdapter,
+ lr, n_steps, emptiness_scale, emptiness_weight, emptiness_step, emptiness_multiplier,
+ depth_weight, var_red, **kwargs
+):
+ del kwargs
+
+ assert model.samps_centered()
+ _, target_H, target_W = model.data_shape()
+ bs = 1
+ aabb = vox.aabb.T.cpu().numpy()
+ vox = vox.to(device_glb)
+ opt = torch.optim.Adamax(vox.opt_params(), lr=lr)
+
+ H, W = poser.H, poser.W
+ Ks, poses, prompt_prefixes = poser.sample_train(n_steps)
+
+ ts = model.us[30:-10]
+ fuse = EarlyLoopBreak(5)
+
+ same_noise = torch.randn(1, 4, H, W, device=model.device).repeat(bs, 1, 1, 1)
+
+ with tqdm(total=n_steps) as pbar, \
+ HeartBeat(pbar) as hbeat, \
+ EventStorage() as metric:
+ for i in range(n_steps):
+ if fuse.on_break():
+ break
+
+ p = f"{prompt_prefixes[i]} {model.prompt}"
+ score_conds = model.prompts_emb([p])
+
+ y, depth, ws = render_one_view(vox, aabb, H, W, Ks[i], poses[i], return_w=True)
+
+ if isinstance(model, StableDiffusion):
+ pass
+ else:
+ y = torch.nn.functional.interpolate(y, (target_H, target_W), mode='bilinear')
+
+ opt.zero_grad()
+
+ with torch.no_grad():
+ chosen_σs = np.random.choice(ts, bs, replace=False)
+ chosen_σs = chosen_σs.reshape(-1, 1, 1, 1)
+ chosen_σs = torch.as_tensor(chosen_σs, device=model.device, dtype=torch.float32)
+ # chosen_σs = us[i]
+
+ noise = torch.randn(bs, *y.shape[1:], device=model.device)
+
+ zs = y + chosen_σs * noise
+ Ds = model.denoise(zs, chosen_σs, **score_conds)
+
+ if var_red:
+ grad = (Ds - y) / chosen_σs
+ else:
+ grad = (Ds - zs) / chosen_σs
+
+ grad = grad.mean(0, keepdim=True)
+
+ y.backward(-grad, retain_graph=True)
+
+ if depth_weight > 0:
+ center_depth = depth[7:-7, 7:-7]
+ border_depth_mean = (depth.sum() - center_depth.sum()) / (64*64-50*50)
+ center_depth_mean = center_depth.mean()
+ depth_diff = center_depth_mean - border_depth_mean
+ depth_loss = - torch.log(depth_diff + 1e-12)
+ depth_loss = depth_weight * depth_loss
+ depth_loss.backward(retain_graph=True)
+
+ emptiness_loss = torch.log(1 + emptiness_scale * ws).mean()
+ emptiness_loss = emptiness_weight * emptiness_loss
+ if emptiness_step * n_steps <= i:
+ emptiness_loss *= emptiness_multiplier
+ emptiness_loss.backward()
+
+ opt.step()
+
+ metric.put_scalars(**tsr_stats(y))
+
+ if every(pbar, percent=1):
+ with torch.no_grad():
+ if isinstance(model, StableDiffusion):
+ y = model.decode(y)
+ vis_routine(metric, y, depth)
+
+ # if every(pbar, step=2500):
+ # metric.put_artifact(
+ # "ckpt", ".pt", lambda fn: torch.save(vox.state_dict(), fn)
+ # )
+ # with EventStorage("test"):
+ # evaluate(model, vox, poser)
+
+ metric.step()
+ pbar.update()
+ pbar.set_description(p)
+ hbeat.beat()
+
+ metric.put_artifact(
+ "ckpt", ".pt", lambda fn: torch.save(vox.state_dict(), fn)
+ )
+ with EventStorage("test"):
+ evaluate(model, vox, poser)
+
+ metric.step()
+
+ hbeat.done()
+
+
+@torch.no_grad()
+def evaluate(score_model, vox, poser):
+ H, W = poser.H, poser.W
+ vox.eval()
+ K, poses = poser.sample_test(100)
+
+ fuse = EarlyLoopBreak(5)
+ metric = get_event_storage()
+ hbeat = get_heartbeat()
+
+ aabb = vox.aabb.T.cpu().numpy()
+ vox = vox.to(device_glb)
+
+ num_imgs = len(poses)
+
+ for i in (pbar := tqdm(range(num_imgs))):
+ if fuse.on_break():
+ break
+
+ pose = poses[i]
+ y, depth = render_one_view(vox, aabb, H, W, K, pose)
+ if isinstance(score_model, StableDiffusion):
+ y = score_model.decode(y)
+ vis_routine(metric, y, depth)
+
+ metric.step()
+ hbeat.beat()
+
+ metric.flush_history()
+
+ metric.put_artifact(
+ "view_seq", ".mp4",
+ lambda fn: stitch_vis(fn, read_stats(metric.output_dir, "view")[1])
+ )
+
+ metric.step()
+
+
+def render_one_view(vox, aabb, H, W, K, pose, return_w=False):
+ N = H * W
+ ro, rd = rays_from_img(H, W, K, pose)
+ ro, rd, t_min, t_max = scene_box_filter(ro, rd, aabb)
+ assert len(ro) == N, "for now all pixels must be in"
+ ro, rd, t_min, t_max = as_torch_tsrs(vox.device, ro, rd, t_min, t_max)
+ rgbs, depth, weights = render_ray_bundle(vox, ro, rd, t_min, t_max)
+
+ rgbs = rearrange(rgbs, "(h w) c -> 1 c h w", h=H, w=W)
+ depth = rearrange(depth, "(h w) 1 -> h w", h=H, w=W)
+ if return_w:
+ return rgbs, depth, weights
+ else:
+ return rgbs, depth
+
+
+def scene_box_filter(ro, rd, aabb):
+ _, t_min, t_max = ray_box_intersect(ro, rd, aabb)
+ # do not render what's behind the ray origin
+ t_min, t_max = np.maximum(t_min, 0), np.maximum(t_max, 0)
+ return ro, rd, t_min, t_max
+
+
+def vis_routine(metric, y, depth):
+ pane = nerf_vis(y, depth, final_H=256)
+ im = torch_samps_to_imgs(y)[0]
+ depth = depth.cpu().numpy()
+ metric.put_artifact("view", ".png", lambda fn: imwrite(fn, pane))
+ metric.put_artifact("img", ".png", lambda fn: imwrite(fn, im))
+ metric.put_artifact("depth", ".npy", lambda fn: np.save(fn, depth))
+
+
+def evaluate_ckpt():
+ cfg = optional_load_config(fname="full_config.yml")
+ assert len(cfg) > 0, "can't find cfg file"
+ mod = SJC(**cfg)
+
+ family = cfg.pop("family")
+ model: ScoreAdapter = getattr(mod, family).make()
+ vox = mod.vox.make()
+ poser = mod.pose.make()
+
+ pbar = tqdm(range(1))
+
+ with EventStorage(), HeartBeat(pbar):
+ ckpt_fname = latest_ckpt()
+ state = torch.load(ckpt_fname, map_location="cpu")
+ vox.load_state_dict(state)
+ vox.to(device_glb)
+
+ with EventStorage("test"):
+ evaluate(model, vox, poser)
+
+
+def latest_ckpt():
+ ts, ys = read_stats("./", "ckpt")
+ assert len(ys) > 0
+ return ys[-1]
+
+
+if __name__ == "__main__":
+ seed_everything(0)
+ dispatch(SJC)
+ # evaluate_ckpt()
diff --git a/sd1/__init__.py b/sd1/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/sd1/configs/v1-finetune_textual_inverison.yaml b/sd1/configs/v1-finetune_textual_inverison.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..69beca2cf236ea0a6495fd9895b7fdf71f64d9f8
--- /dev/null
+++ b/sd1/configs/v1-finetune_textual_inverison.yaml
@@ -0,0 +1,106 @@
+model:
+ base_learning_rate: 5.0e-03
+ target: ldm.models.diffusion.ddpm_textual_inversion.LatentDiffusion
+ params:
+ linear_start: 0.00085
+ linear_end: 0.0120
+ num_timesteps_cond: 1
+ log_every_t: 200
+ timesteps: 1000
+ first_stage_key: image
+ cond_stage_key: caption
+ image_size: 64
+ channels: 4
+ cond_stage_trainable: true # Note: different from the one we trained before
+ conditioning_key: crossattn
+ monitor: val/loss_simple_ema
+ scale_factor: 0.18215
+ use_ema: False
+ embedding_reg_weight: 0.0
+
+ personalization_config:
+ target: ldm.modules.embedding_manager.EmbeddingManager
+ params:
+ placeholder_strings: ["*"]
+ initializer_words: ["sculpture"]
+ per_image_tokens: false
+ num_vectors_per_token: 1
+ progressive_words: False
+
+ unet_config:
+ target: ldm.modules.diffusionmodules.openaimodel.UNetModel
+ params:
+ image_size: 32 # unused
+ in_channels: 4
+ out_channels: 4
+ model_channels: 320
+ attention_resolutions: [ 4, 2, 1 ]
+ num_res_blocks: 2
+ channel_mult: [ 1, 2, 4, 4 ]
+ num_heads: 8
+ use_spatial_transformer: True
+ transformer_depth: 1
+ context_dim: 768
+ use_checkpoint: True
+ legacy: False
+
+ first_stage_config:
+ target: ldm.models.autoencoder.AutoencoderKL
+ params:
+ embed_dim: 4
+ monitor: val/rec_loss
+ ddconfig:
+ double_z: true
+ z_channels: 4
+ resolution: 256
+ in_channels: 3
+ out_ch: 3
+ ch: 128
+ ch_mult:
+ - 1
+ - 2
+ - 4
+ - 4
+ num_res_blocks: 2
+ attn_resolutions: []
+ dropout: 0.0
+ lossconfig:
+ target: torch.nn.Identity
+
+ cond_stage_config:
+ target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
+
+data:
+ target: main.DataModuleFromConfig
+ params:
+ batch_size: 2
+ num_workers: 2
+ wrap: false
+ train:
+ target: ldm.data.personalized.PersonalizedBase
+ params:
+ size: 512
+ set: train
+ per_image_tokens: false
+ repeats: 100
+ validation:
+ target: ldm.data.personalized.PersonalizedBase
+ params:
+ size: 512
+ set: val
+ per_image_tokens: false
+ repeats: 10
+
+lightning:
+ callbacks:
+ image_logger:
+ target: main.ImageLogger
+ params:
+ batch_frequency: 500
+ max_images: 8
+ increase_log_steps: False
+
+ trainer:
+ benchmark: True
+ max_steps: 15000
+ gpus: 0,
\ No newline at end of file
diff --git a/sd1/configs/v1-finetune_textual_inverison_style.yaml b/sd1/configs/v1-finetune_textual_inverison_style.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..e9d8e8fac29ff2eaa5800f6ae47e89d1bb3194f0
--- /dev/null
+++ b/sd1/configs/v1-finetune_textual_inverison_style.yaml
@@ -0,0 +1,106 @@
+model:
+ base_learning_rate: 5.0e-03
+ target: ldm.models.diffusion.ddpm_textual_inversion.LatentDiffusion
+ params:
+ linear_start: 0.00085
+ linear_end: 0.0120
+ num_timesteps_cond: 1
+ log_every_t: 200
+ timesteps: 1000
+ first_stage_key: image
+ cond_stage_key: caption
+ image_size: 64
+ channels: 4
+ cond_stage_trainable: true # Note: different from the one we trained before
+ conditioning_key: crossattn
+ monitor: val/loss_simple_ema
+ scale_factor: 0.18215
+ use_ema: False
+ embedding_reg_weight: 0.0
+
+ personalization_config:
+ target: ldm.modules.embedding_manager.EmbeddingManager
+ params:
+ placeholder_strings: ["*"]
+ initializer_words: ["sculpture"]
+ per_image_tokens: false
+ num_vectors_per_token: 1
+ progressive_words: False
+
+ unet_config:
+ target: ldm.modules.diffusionmodules.openaimodel.UNetModel
+ params:
+ image_size: 32 # unused
+ in_channels: 4
+ out_channels: 4
+ model_channels: 320
+ attention_resolutions: [ 4, 2, 1 ]
+ num_res_blocks: 2
+ channel_mult: [ 1, 2, 4, 4 ]
+ num_heads: 8
+ use_spatial_transformer: True
+ transformer_depth: 1
+ context_dim: 768
+ use_checkpoint: True
+ legacy: False
+
+ first_stage_config:
+ target: ldm.models.autoencoder.AutoencoderKL
+ params:
+ embed_dim: 4
+ monitor: val/rec_loss
+ ddconfig:
+ double_z: true
+ z_channels: 4
+ resolution: 256
+ in_channels: 3
+ out_ch: 3
+ ch: 128
+ ch_mult:
+ - 1
+ - 2
+ - 4
+ - 4
+ num_res_blocks: 2
+ attn_resolutions: []
+ dropout: 0.0
+ lossconfig:
+ target: torch.nn.Identity
+
+ cond_stage_config:
+ target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
+
+data:
+ target: main.DataModuleFromConfig
+ params:
+ batch_size: 2
+ num_workers: 2
+ wrap: false
+ train:
+ target: ldm.data.personalized_style.PersonalizedBase
+ params:
+ size: 512
+ set: train
+ per_image_tokens: false
+ repeats: 100
+ validation:
+ target: ldm.data.personalized_style.PersonalizedBase
+ params:
+ size: 512
+ set: val
+ per_image_tokens: false
+ repeats: 10
+
+lightning:
+ callbacks:
+ image_logger:
+ target: main.ImageLogger
+ params:
+ batch_frequency: 500
+ max_images: 8
+ increase_log_steps: False
+
+ trainer:
+ benchmark: True
+ max_steps: 15000
+ gpus: 0,
\ No newline at end of file
diff --git a/sd1/configs/v1-inference.yaml b/sd1/configs/v1-inference.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..fd7b9bf954112207da9da0ab60a1388306fffaaa
--- /dev/null
+++ b/sd1/configs/v1-inference.yaml
@@ -0,0 +1,70 @@
+model:
+ base_learning_rate: 1.0e-04
+ target: ldm.models.diffusion.ddpm_original.LatentDiffusion
+ params:
+ linear_start: 0.00085
+ linear_end: 0.0120
+ num_timesteps_cond: 1
+ log_every_t: 200
+ timesteps: 1000
+ first_stage_key: "jpg"
+ cond_stage_key: "txt"
+ image_size: 64
+ channels: 4
+ cond_stage_trainable: false # Note: different from the one we trained before
+ conditioning_key: crossattn
+ monitor: val/loss_simple_ema
+ scale_factor: 0.18215
+ use_ema: False
+
+ scheduler_config: # 10000 warmup steps
+ target: ldm.lr_scheduler.LambdaLinearScheduler
+ params:
+ warm_up_steps: [ 10000 ]
+ cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
+ f_start: [ 1.e-6 ]
+ f_max: [ 1. ]
+ f_min: [ 1. ]
+
+ unet_config:
+ target: ldm.modules.diffusionmodules.openaimodel.UNetModel
+ params:
+ image_size: 32 # unused
+ in_channels: 4
+ out_channels: 4
+ model_channels: 320
+ attention_resolutions: [ 4, 2, 1 ]
+ num_res_blocks: 2
+ channel_mult: [ 1, 2, 4, 4 ]
+ num_heads: 8
+ use_spatial_transformer: True
+ transformer_depth: 1
+ context_dim: 768
+ use_checkpoint: True
+ legacy: False
+
+ first_stage_config:
+ target: ldm.models.autoencoder.AutoencoderKL
+ params:
+ embed_dim: 4
+ monitor: val/rec_loss
+ ddconfig:
+ double_z: true
+ z_channels: 4
+ resolution: 256
+ in_channels: 3
+ out_ch: 3
+ ch: 128
+ ch_mult:
+ - 1
+ - 2
+ - 4
+ - 4
+ num_res_blocks: 2
+ attn_resolutions: []
+ dropout: 0.0
+ lossconfig:
+ target: torch.nn.Identity
+
+ cond_stage_config:
+ target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
diff --git a/sd1/configs/v1-inference_textual_inversion.yaml b/sd1/configs/v1-inference_textual_inversion.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..ab0189e638749ba36bcda411400f37c5828e6064
--- /dev/null
+++ b/sd1/configs/v1-inference_textual_inversion.yaml
@@ -0,0 +1,70 @@
+model:
+ base_learning_rate: 1.0e-04
+ target: ldm.models.diffusion.ddpm_textual_inversion.LatentDiffusion
+ params:
+ linear_start: 0.00085
+ linear_end: 0.0120
+ num_timesteps_cond: 1
+ log_every_t: 200
+ timesteps: 1000
+ first_stage_key: "jpg"
+ cond_stage_key: "txt"
+ image_size: 64
+ channels: 4
+ cond_stage_trainable: false # Note: different from the one we trained before
+ conditioning_key: crossattn
+ monitor: val/loss_simple_ema
+ scale_factor: 0.18215
+ use_ema: True
+
+ personalization_config:
+ target: ldm.modules.embedding_manager.EmbeddingManager
+ params:
+ placeholder_strings: ["*"]
+ initializer_words: ["sculpture"]
+ per_image_tokens: false
+ num_vectors_per_token: 1
+ progressive_words: False
+
+ unet_config:
+ target: ldm.modules.diffusionmodules.openaimodel.UNetModel
+ params:
+ image_size: 32 # unused
+ in_channels: 4
+ out_channels: 4
+ model_channels: 320
+ attention_resolutions: [ 4, 2, 1 ]
+ num_res_blocks: 2
+ channel_mult: [ 1, 2, 4, 4 ]
+ num_heads: 8
+ use_spatial_transformer: True
+ transformer_depth: 1
+ context_dim: 768
+ use_checkpoint: True
+ legacy: False
+
+ first_stage_config:
+ target: ldm.models.autoencoder.AutoencoderKL
+ params:
+ embed_dim: 4
+ monitor: val/rec_loss
+ ddconfig:
+ double_z: true
+ z_channels: 4
+ resolution: 256
+ in_channels: 3
+ out_ch: 3
+ ch: 128
+ ch_mult:
+ - 1
+ - 2
+ - 4
+ - 4
+ num_res_blocks: 2
+ attn_resolutions: []
+ dropout: 0.0
+ lossconfig:
+ target: torch.nn.Identity
+
+ cond_stage_config:
+ target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
diff --git a/sd1/ldm/__init__.py b/sd1/ldm/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/sd1/ldm/data/__init__.py b/sd1/ldm/data/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/sd1/ldm/data/base.py b/sd1/ldm/data/base.py
new file mode 100644
index 0000000000000000000000000000000000000000..b196c2f7aa583a3e8bc4aad9f943df0c4dae0da7
--- /dev/null
+++ b/sd1/ldm/data/base.py
@@ -0,0 +1,23 @@
+from abc import abstractmethod
+from torch.utils.data import Dataset, ConcatDataset, ChainDataset, IterableDataset
+
+
+class Txt2ImgIterableBaseDataset(IterableDataset):
+ '''
+ Define an interface to make the IterableDatasets for text2img data chainable
+ '''
+ def __init__(self, num_records=0, valid_ids=None, size=256):
+ super().__init__()
+ self.num_records = num_records
+ self.valid_ids = valid_ids
+ self.sample_ids = valid_ids
+ self.size = size
+
+ print(f'{self.__class__.__name__} dataset contains {self.__len__()} examples.')
+
+ def __len__(self):
+ return self.num_records
+
+ @abstractmethod
+ def __iter__(self):
+ pass
\ No newline at end of file
diff --git a/sd1/ldm/data/imagenet.py b/sd1/ldm/data/imagenet.py
new file mode 100644
index 0000000000000000000000000000000000000000..1c473f9c6965b22315dbb289eff8247c71bdc790
--- /dev/null
+++ b/sd1/ldm/data/imagenet.py
@@ -0,0 +1,394 @@
+import os, yaml, pickle, shutil, tarfile, glob
+import cv2
+import albumentations
+import PIL
+import numpy as np
+import torchvision.transforms.functional as TF
+from omegaconf import OmegaConf
+from functools import partial
+from PIL import Image
+from tqdm import tqdm
+from torch.utils.data import Dataset, Subset
+
+import taming.data.utils as tdu
+from taming.data.imagenet import str_to_indices, give_synsets_from_indices, download, retrieve
+from taming.data.imagenet import ImagePaths
+
+from ldm.modules.image_degradation import degradation_fn_bsr, degradation_fn_bsr_light
+
+
+def synset2idx(path_to_yaml="data/index_synset.yaml"):
+ with open(path_to_yaml) as f:
+ di2s = yaml.load(f)
+ return dict((v,k) for k,v in di2s.items())
+
+
+class ImageNetBase(Dataset):
+ def __init__(self, config=None):
+ self.config = config or OmegaConf.create()
+ if not type(self.config)==dict:
+ self.config = OmegaConf.to_container(self.config)
+ self.keep_orig_class_label = self.config.get("keep_orig_class_label", False)
+ self.process_images = True # if False we skip loading & processing images and self.data contains filepaths
+ self._prepare()
+ self._prepare_synset_to_human()
+ self._prepare_idx_to_synset()
+ self._prepare_human_to_integer_label()
+ self._load()
+
+ def __len__(self):
+ return len(self.data)
+
+ def __getitem__(self, i):
+ return self.data[i]
+
+ def _prepare(self):
+ raise NotImplementedError()
+
+ def _filter_relpaths(self, relpaths):
+ ignore = set([
+ "n06596364_9591.JPEG",
+ ])
+ relpaths = [rpath for rpath in relpaths if not rpath.split("/")[-1] in ignore]
+ if "sub_indices" in self.config:
+ indices = str_to_indices(self.config["sub_indices"])
+ synsets = give_synsets_from_indices(indices, path_to_yaml=self.idx2syn) # returns a list of strings
+ self.synset2idx = synset2idx(path_to_yaml=self.idx2syn)
+ files = []
+ for rpath in relpaths:
+ syn = rpath.split("/")[0]
+ if syn in synsets:
+ files.append(rpath)
+ return files
+ else:
+ return relpaths
+
+ def _prepare_synset_to_human(self):
+ SIZE = 2655750
+ URL = "https://heibox.uni-heidelberg.de/f/9f28e956cd304264bb82/?dl=1"
+ self.human_dict = os.path.join(self.root, "synset_human.txt")
+ if (not os.path.exists(self.human_dict) or
+ not os.path.getsize(self.human_dict)==SIZE):
+ download(URL, self.human_dict)
+
+ def _prepare_idx_to_synset(self):
+ URL = "https://heibox.uni-heidelberg.de/f/d835d5b6ceda4d3aa910/?dl=1"
+ self.idx2syn = os.path.join(self.root, "index_synset.yaml")
+ if (not os.path.exists(self.idx2syn)):
+ download(URL, self.idx2syn)
+
+ def _prepare_human_to_integer_label(self):
+ URL = "https://heibox.uni-heidelberg.de/f/2362b797d5be43b883f6/?dl=1"
+ self.human2integer = os.path.join(self.root, "imagenet1000_clsidx_to_labels.txt")
+ if (not os.path.exists(self.human2integer)):
+ download(URL, self.human2integer)
+ with open(self.human2integer, "r") as f:
+ lines = f.read().splitlines()
+ assert len(lines) == 1000
+ self.human2integer_dict = dict()
+ for line in lines:
+ value, key = line.split(":")
+ self.human2integer_dict[key] = int(value)
+
+ def _load(self):
+ with open(self.txt_filelist, "r") as f:
+ self.relpaths = f.read().splitlines()
+ l1 = len(self.relpaths)
+ self.relpaths = self._filter_relpaths(self.relpaths)
+ print("Removed {} files from filelist during filtering.".format(l1 - len(self.relpaths)))
+
+ self.synsets = [p.split("/")[0] for p in self.relpaths]
+ self.abspaths = [os.path.join(self.datadir, p) for p in self.relpaths]
+
+ unique_synsets = np.unique(self.synsets)
+ class_dict = dict((synset, i) for i, synset in enumerate(unique_synsets))
+ if not self.keep_orig_class_label:
+ self.class_labels = [class_dict[s] for s in self.synsets]
+ else:
+ self.class_labels = [self.synset2idx[s] for s in self.synsets]
+
+ with open(self.human_dict, "r") as f:
+ human_dict = f.read().splitlines()
+ human_dict = dict(line.split(maxsplit=1) for line in human_dict)
+
+ self.human_labels = [human_dict[s] for s in self.synsets]
+
+ labels = {
+ "relpath": np.array(self.relpaths),
+ "synsets": np.array(self.synsets),
+ "class_label": np.array(self.class_labels),
+ "human_label": np.array(self.human_labels),
+ }
+
+ if self.process_images:
+ self.size = retrieve(self.config, "size", default=256)
+ self.data = ImagePaths(self.abspaths,
+ labels=labels,
+ size=self.size,
+ random_crop=self.random_crop,
+ )
+ else:
+ self.data = self.abspaths
+
+
+class ImageNetTrain(ImageNetBase):
+ NAME = "ILSVRC2012_train"
+ URL = "http://www.image-net.org/challenges/LSVRC/2012/"
+ AT_HASH = "a306397ccf9c2ead27155983c254227c0fd938e2"
+ FILES = [
+ "ILSVRC2012_img_train.tar",
+ ]
+ SIZES = [
+ 147897477120,
+ ]
+
+ def __init__(self, process_images=True, data_root=None, **kwargs):
+ self.process_images = process_images
+ self.data_root = data_root
+ super().__init__(**kwargs)
+
+ def _prepare(self):
+ if self.data_root:
+ self.root = os.path.join(self.data_root, self.NAME)
+ else:
+ cachedir = os.environ.get("XDG_CACHE_HOME", os.path.expanduser("~/.cache"))
+ self.root = os.path.join(cachedir, "autoencoders/data", self.NAME)
+
+ self.datadir = os.path.join(self.root, "data")
+ self.txt_filelist = os.path.join(self.root, "filelist.txt")
+ self.expected_length = 1281167
+ self.random_crop = retrieve(self.config, "ImageNetTrain/random_crop",
+ default=True)
+ if not tdu.is_prepared(self.root):
+ # prep
+ print("Preparing dataset {} in {}".format(self.NAME, self.root))
+
+ datadir = self.datadir
+ if not os.path.exists(datadir):
+ path = os.path.join(self.root, self.FILES[0])
+ if not os.path.exists(path) or not os.path.getsize(path)==self.SIZES[0]:
+ import academictorrents as at
+ atpath = at.get(self.AT_HASH, datastore=self.root)
+ assert atpath == path
+
+ print("Extracting {} to {}".format(path, datadir))
+ os.makedirs(datadir, exist_ok=True)
+ with tarfile.open(path, "r:") as tar:
+ tar.extractall(path=datadir)
+
+ print("Extracting sub-tars.")
+ subpaths = sorted(glob.glob(os.path.join(datadir, "*.tar")))
+ for subpath in tqdm(subpaths):
+ subdir = subpath[:-len(".tar")]
+ os.makedirs(subdir, exist_ok=True)
+ with tarfile.open(subpath, "r:") as tar:
+ tar.extractall(path=subdir)
+
+ filelist = glob.glob(os.path.join(datadir, "**", "*.JPEG"))
+ filelist = [os.path.relpath(p, start=datadir) for p in filelist]
+ filelist = sorted(filelist)
+ filelist = "\n".join(filelist)+"\n"
+ with open(self.txt_filelist, "w") as f:
+ f.write(filelist)
+
+ tdu.mark_prepared(self.root)
+
+
+class ImageNetValidation(ImageNetBase):
+ NAME = "ILSVRC2012_validation"
+ URL = "http://www.image-net.org/challenges/LSVRC/2012/"
+ AT_HASH = "5d6d0df7ed81efd49ca99ea4737e0ae5e3a5f2e5"
+ VS_URL = "https://heibox.uni-heidelberg.de/f/3e0f6e9c624e45f2bd73/?dl=1"
+ FILES = [
+ "ILSVRC2012_img_val.tar",
+ "validation_synset.txt",
+ ]
+ SIZES = [
+ 6744924160,
+ 1950000,
+ ]
+
+ def __init__(self, process_images=True, data_root=None, **kwargs):
+ self.data_root = data_root
+ self.process_images = process_images
+ super().__init__(**kwargs)
+
+ def _prepare(self):
+ if self.data_root:
+ self.root = os.path.join(self.data_root, self.NAME)
+ else:
+ cachedir = os.environ.get("XDG_CACHE_HOME", os.path.expanduser("~/.cache"))
+ self.root = os.path.join(cachedir, "autoencoders/data", self.NAME)
+ self.datadir = os.path.join(self.root, "data")
+ self.txt_filelist = os.path.join(self.root, "filelist.txt")
+ self.expected_length = 50000
+ self.random_crop = retrieve(self.config, "ImageNetValidation/random_crop",
+ default=False)
+ if not tdu.is_prepared(self.root):
+ # prep
+ print("Preparing dataset {} in {}".format(self.NAME, self.root))
+
+ datadir = self.datadir
+ if not os.path.exists(datadir):
+ path = os.path.join(self.root, self.FILES[0])
+ if not os.path.exists(path) or not os.path.getsize(path)==self.SIZES[0]:
+ import academictorrents as at
+ atpath = at.get(self.AT_HASH, datastore=self.root)
+ assert atpath == path
+
+ print("Extracting {} to {}".format(path, datadir))
+ os.makedirs(datadir, exist_ok=True)
+ with tarfile.open(path, "r:") as tar:
+ tar.extractall(path=datadir)
+
+ vspath = os.path.join(self.root, self.FILES[1])
+ if not os.path.exists(vspath) or not os.path.getsize(vspath)==self.SIZES[1]:
+ download(self.VS_URL, vspath)
+
+ with open(vspath, "r") as f:
+ synset_dict = f.read().splitlines()
+ synset_dict = dict(line.split() for line in synset_dict)
+
+ print("Reorganizing into synset folders")
+ synsets = np.unique(list(synset_dict.values()))
+ for s in synsets:
+ os.makedirs(os.path.join(datadir, s), exist_ok=True)
+ for k, v in synset_dict.items():
+ src = os.path.join(datadir, k)
+ dst = os.path.join(datadir, v)
+ shutil.move(src, dst)
+
+ filelist = glob.glob(os.path.join(datadir, "**", "*.JPEG"))
+ filelist = [os.path.relpath(p, start=datadir) for p in filelist]
+ filelist = sorted(filelist)
+ filelist = "\n".join(filelist)+"\n"
+ with open(self.txt_filelist, "w") as f:
+ f.write(filelist)
+
+ tdu.mark_prepared(self.root)
+
+
+
+class ImageNetSR(Dataset):
+ def __init__(self, size=None,
+ degradation=None, downscale_f=4, min_crop_f=0.5, max_crop_f=1.,
+ random_crop=True):
+ """
+ Imagenet Superresolution Dataloader
+ Performs following ops in order:
+ 1. crops a crop of size s from image either as random or center crop
+ 2. resizes crop to size with cv2.area_interpolation
+ 3. degrades resized crop with degradation_fn
+
+ :param size: resizing to size after cropping
+ :param degradation: degradation_fn, e.g. cv_bicubic or bsrgan_light
+ :param downscale_f: Low Resolution Downsample factor
+ :param min_crop_f: determines crop size s,
+ where s = c * min_img_side_len with c sampled from interval (min_crop_f, max_crop_f)
+ :param max_crop_f: ""
+ :param data_root:
+ :param random_crop:
+ """
+ self.base = self.get_base()
+ assert size
+ assert (size / downscale_f).is_integer()
+ self.size = size
+ self.LR_size = int(size / downscale_f)
+ self.min_crop_f = min_crop_f
+ self.max_crop_f = max_crop_f
+ assert(max_crop_f <= 1.)
+ self.center_crop = not random_crop
+
+ self.image_rescaler = albumentations.SmallestMaxSize(max_size=size, interpolation=cv2.INTER_AREA)
+
+ self.pil_interpolation = False # gets reset later if incase interp_op is from pillow
+
+ if degradation == "bsrgan":
+ self.degradation_process = partial(degradation_fn_bsr, sf=downscale_f)
+
+ elif degradation == "bsrgan_light":
+ self.degradation_process = partial(degradation_fn_bsr_light, sf=downscale_f)
+
+ else:
+ interpolation_fn = {
+ "cv_nearest": cv2.INTER_NEAREST,
+ "cv_bilinear": cv2.INTER_LINEAR,
+ "cv_bicubic": cv2.INTER_CUBIC,
+ "cv_area": cv2.INTER_AREA,
+ "cv_lanczos": cv2.INTER_LANCZOS4,
+ "pil_nearest": PIL.Image.NEAREST,
+ "pil_bilinear": PIL.Image.BILINEAR,
+ "pil_bicubic": PIL.Image.BICUBIC,
+ "pil_box": PIL.Image.BOX,
+ "pil_hamming": PIL.Image.HAMMING,
+ "pil_lanczos": PIL.Image.LANCZOS,
+ }[degradation]
+
+ self.pil_interpolation = degradation.startswith("pil_")
+
+ if self.pil_interpolation:
+ self.degradation_process = partial(TF.resize, size=self.LR_size, interpolation=interpolation_fn)
+
+ else:
+ self.degradation_process = albumentations.SmallestMaxSize(max_size=self.LR_size,
+ interpolation=interpolation_fn)
+
+ def __len__(self):
+ return len(self.base)
+
+ def __getitem__(self, i):
+ example = self.base[i]
+ image = Image.open(example["file_path_"])
+
+ if not image.mode == "RGB":
+ image = image.convert("RGB")
+
+ image = np.array(image).astype(np.uint8)
+
+ min_side_len = min(image.shape[:2])
+ crop_side_len = min_side_len * np.random.uniform(self.min_crop_f, self.max_crop_f, size=None)
+ crop_side_len = int(crop_side_len)
+
+ if self.center_crop:
+ self.cropper = albumentations.CenterCrop(height=crop_side_len, width=crop_side_len)
+
+ else:
+ self.cropper = albumentations.RandomCrop(height=crop_side_len, width=crop_side_len)
+
+ image = self.cropper(image=image)["image"]
+ image = self.image_rescaler(image=image)["image"]
+
+ if self.pil_interpolation:
+ image_pil = PIL.Image.fromarray(image)
+ LR_image = self.degradation_process(image_pil)
+ LR_image = np.array(LR_image).astype(np.uint8)
+
+ else:
+ LR_image = self.degradation_process(image=image)["image"]
+
+ example["image"] = (image/127.5 - 1.0).astype(np.float32)
+ example["LR_image"] = (LR_image/127.5 - 1.0).astype(np.float32)
+
+ return example
+
+
+class ImageNetSRTrain(ImageNetSR):
+ def __init__(self, **kwargs):
+ super().__init__(**kwargs)
+
+ def get_base(self):
+ with open("data/imagenet_train_hr_indices.p", "rb") as f:
+ indices = pickle.load(f)
+ dset = ImageNetTrain(process_images=False,)
+ return Subset(dset, indices)
+
+
+class ImageNetSRValidation(ImageNetSR):
+ def __init__(self, **kwargs):
+ super().__init__(**kwargs)
+
+ def get_base(self):
+ with open("data/imagenet_val_hr_indices.p", "rb") as f:
+ indices = pickle.load(f)
+ dset = ImageNetValidation(process_images=False,)
+ return Subset(dset, indices)
diff --git a/sd1/ldm/data/lsun.py b/sd1/ldm/data/lsun.py
new file mode 100644
index 0000000000000000000000000000000000000000..6256e45715ff0b57c53f985594d27cbbbff0e68e
--- /dev/null
+++ b/sd1/ldm/data/lsun.py
@@ -0,0 +1,92 @@
+import os
+import numpy as np
+import PIL
+from PIL import Image
+from torch.utils.data import Dataset
+from torchvision import transforms
+
+
+class LSUNBase(Dataset):
+ def __init__(self,
+ txt_file,
+ data_root,
+ size=None,
+ interpolation="bicubic",
+ flip_p=0.5
+ ):
+ self.data_paths = txt_file
+ self.data_root = data_root
+ with open(self.data_paths, "r") as f:
+ self.image_paths = f.read().splitlines()
+ self._length = len(self.image_paths)
+ self.labels = {
+ "relative_file_path_": [l for l in self.image_paths],
+ "file_path_": [os.path.join(self.data_root, l)
+ for l in self.image_paths],
+ }
+
+ self.size = size
+ self.interpolation = {"linear": PIL.Image.LINEAR,
+ "bilinear": PIL.Image.BILINEAR,
+ "bicubic": PIL.Image.BICUBIC,
+ "lanczos": PIL.Image.LANCZOS,
+ }[interpolation]
+ self.flip = transforms.RandomHorizontalFlip(p=flip_p)
+
+ def __len__(self):
+ return self._length
+
+ def __getitem__(self, i):
+ example = dict((k, self.labels[k][i]) for k in self.labels)
+ image = Image.open(example["file_path_"])
+ if not image.mode == "RGB":
+ image = image.convert("RGB")
+
+ # default to score-sde preprocessing
+ img = np.array(image).astype(np.uint8)
+ crop = min(img.shape[0], img.shape[1])
+ h, w, = img.shape[0], img.shape[1]
+ img = img[(h - crop) // 2:(h + crop) // 2,
+ (w - crop) // 2:(w + crop) // 2]
+
+ image = Image.fromarray(img)
+ if self.size is not None:
+ image = image.resize((self.size, self.size), resample=self.interpolation)
+
+ image = self.flip(image)
+ image = np.array(image).astype(np.uint8)
+ example["image"] = (image / 127.5 - 1.0).astype(np.float32)
+ return example
+
+
+class LSUNChurchesTrain(LSUNBase):
+ def __init__(self, **kwargs):
+ super().__init__(txt_file="data/lsun/church_outdoor_train.txt", data_root="data/lsun/churches", **kwargs)
+
+
+class LSUNChurchesValidation(LSUNBase):
+ def __init__(self, flip_p=0., **kwargs):
+ super().__init__(txt_file="data/lsun/church_outdoor_val.txt", data_root="data/lsun/churches",
+ flip_p=flip_p, **kwargs)
+
+
+class LSUNBedroomsTrain(LSUNBase):
+ def __init__(self, **kwargs):
+ super().__init__(txt_file="data/lsun/bedrooms_train.txt", data_root="data/lsun/bedrooms", **kwargs)
+
+
+class LSUNBedroomsValidation(LSUNBase):
+ def __init__(self, flip_p=0.0, **kwargs):
+ super().__init__(txt_file="data/lsun/bedrooms_val.txt", data_root="data/lsun/bedrooms",
+ flip_p=flip_p, **kwargs)
+
+
+class LSUNCatsTrain(LSUNBase):
+ def __init__(self, **kwargs):
+ super().__init__(txt_file="data/lsun/cat_train.txt", data_root="data/lsun/cats", **kwargs)
+
+
+class LSUNCatsValidation(LSUNBase):
+ def __init__(self, flip_p=0., **kwargs):
+ super().__init__(txt_file="data/lsun/cat_val.txt", data_root="data/lsun/cats",
+ flip_p=flip_p, **kwargs)
diff --git a/sd1/ldm/data/personalized.py b/sd1/ldm/data/personalized.py
new file mode 100644
index 0000000000000000000000000000000000000000..c8a57d09fa354cbd06190829114bdce2afce2aa6
--- /dev/null
+++ b/sd1/ldm/data/personalized.py
@@ -0,0 +1,160 @@
+import os
+import numpy as np
+import PIL
+from PIL import Image
+from torch.utils.data import Dataset
+from torchvision import transforms
+
+import random
+
+imagenet_templates_smallest = [
+ 'a photo of a {}',
+]
+
+imagenet_templates_small = [
+ 'a photo of a {}',
+ 'a rendering of a {}',
+ 'a cropped photo of the {}',
+ 'the photo of a {}',
+ 'a photo of a clean {}',
+ 'a photo of a dirty {}',
+ 'a dark photo of the {}',
+ 'a photo of my {}',
+ 'a photo of the cool {}',
+ 'a close-up photo of a {}',
+ 'a bright photo of the {}',
+ 'a cropped photo of a {}',
+ 'a photo of the {}',
+ 'a good photo of the {}',
+ 'a photo of one {}',
+ 'a close-up photo of the {}',
+ 'a rendition of the {}',
+ 'a photo of the clean {}',
+ 'a rendition of a {}',
+ 'a photo of a nice {}',
+ 'a good photo of a {}',
+ 'a photo of the nice {}',
+ 'a photo of the small {}',
+ 'a photo of the weird {}',
+ 'a photo of the large {}',
+ 'a photo of a cool {}',
+ 'a photo of a small {}',
+]
+
+imagenet_dual_templates_small = [
+ 'a photo of a {} with {}',
+ 'a rendering of a {} with {}',
+ 'a cropped photo of the {} with {}',
+ 'the photo of a {} with {}',
+ 'a photo of a clean {} with {}',
+ 'a photo of a dirty {} with {}',
+ 'a dark photo of the {} with {}',
+ 'a photo of my {} with {}',
+ 'a photo of the cool {} with {}',
+ 'a close-up photo of a {} with {}',
+ 'a bright photo of the {} with {}',
+ 'a cropped photo of a {} with {}',
+ 'a photo of the {} with {}',
+ 'a good photo of the {} with {}',
+ 'a photo of one {} with {}',
+ 'a close-up photo of the {} with {}',
+ 'a rendition of the {} with {}',
+ 'a photo of the clean {} with {}',
+ 'a rendition of a {} with {}',
+ 'a photo of a nice {} with {}',
+ 'a good photo of a {} with {}',
+ 'a photo of the nice {} with {}',
+ 'a photo of the small {} with {}',
+ 'a photo of the weird {} with {}',
+ 'a photo of the large {} with {}',
+ 'a photo of a cool {} with {}',
+ 'a photo of a small {} with {}',
+]
+
+per_img_token_list = [
+ 'א', 'ב', 'ג', 'ד', 'ה', 'ו', 'ז', 'ח', 'ט', 'י', 'כ', 'ל', 'מ', 'נ', 'ס', 'ע', 'פ', 'צ', 'ק', 'ר', 'ש', 'ת',
+]
+
+class PersonalizedBase(Dataset):
+ def __init__(self,
+ data_root,
+ size=None,
+ repeats=100,
+ interpolation="bicubic",
+ flip_p=0.5,
+ set="train",
+ placeholder_token="*",
+ per_image_tokens=False,
+ center_crop=False,
+ mixing_prob=0.25,
+ coarse_class_text=None,
+ ):
+
+ self.data_root = data_root
+
+ self.image_paths = [os.path.join(self.data_root, file_path) for file_path in os.listdir(self.data_root)]
+
+ # self._length = len(self.image_paths)
+ self.num_images = len(self.image_paths)
+ self._length = self.num_images
+
+ self.placeholder_token = placeholder_token
+
+ self.per_image_tokens = per_image_tokens
+ self.center_crop = center_crop
+ self.mixing_prob = mixing_prob
+
+ self.coarse_class_text = coarse_class_text
+
+ if per_image_tokens:
+ assert self.num_images < len(per_img_token_list), f"Can't use per-image tokens when the training set contains more than {len(per_img_token_list)} tokens. To enable larger sets, add more tokens to 'per_img_token_list'."
+
+ if set == "train":
+ self._length = self.num_images * repeats
+
+ self.size = size
+ self.interpolation = {"linear": PIL.Image.LINEAR,
+ "bilinear": PIL.Image.BILINEAR,
+ "bicubic": PIL.Image.BICUBIC,
+ "lanczos": PIL.Image.LANCZOS,
+ }[interpolation]
+ self.flip = transforms.RandomHorizontalFlip(p=flip_p)
+
+ def __len__(self):
+ return self._length
+
+ def __getitem__(self, i):
+ example = {}
+ image = Image.open(self.image_paths[i % self.num_images])
+
+ if not image.mode == "RGB":
+ image = image.convert("RGB")
+
+ placeholder_string = self.placeholder_token
+ if self.coarse_class_text:
+ placeholder_string = f"{self.coarse_class_text} {placeholder_string}"
+
+ if self.per_image_tokens and np.random.uniform() < self.mixing_prob:
+ text = random.choice(imagenet_dual_templates_small).format(placeholder_string, per_img_token_list[i % self.num_images])
+ else:
+ text = random.choice(imagenet_templates_small).format(placeholder_string)
+
+ example["caption"] = text
+
+ # default to score-sde preprocessing
+ img = np.array(image).astype(np.uint8)
+
+ if self.center_crop:
+ crop = min(img.shape[0], img.shape[1])
+ h, w, = img.shape[0], img.shape[1]
+ img = img[(h - crop) // 2:(h + crop) // 2,
+ (w - crop) // 2:(w + crop) // 2]
+
+ image = Image.fromarray(img)
+ if self.size is not None:
+ image = image.resize((self.size, self.size), resample=self.interpolation)
+
+ image = self.flip(image)
+ image = np.array(image).astype(np.uint8)
+ example["image"] = (image / 127.5 - 1.0).astype(np.float32)
+ return example
\ No newline at end of file
diff --git a/sd1/ldm/data/personalized_style.py b/sd1/ldm/data/personalized_style.py
new file mode 100644
index 0000000000000000000000000000000000000000..b6be7b15c4cafc7c3ec2649b0e9b8318c15ad4a1
--- /dev/null
+++ b/sd1/ldm/data/personalized_style.py
@@ -0,0 +1,129 @@
+import os
+import numpy as np
+import PIL
+from PIL import Image
+from torch.utils.data import Dataset
+from torchvision import transforms
+
+import random
+
+imagenet_templates_small = [
+ 'a painting in the style of {}',
+ 'a rendering in the style of {}',
+ 'a cropped painting in the style of {}',
+ 'the painting in the style of {}',
+ 'a clean painting in the style of {}',
+ 'a dirty painting in the style of {}',
+ 'a dark painting in the style of {}',
+ 'a picture in the style of {}',
+ 'a cool painting in the style of {}',
+ 'a close-up painting in the style of {}',
+ 'a bright painting in the style of {}',
+ 'a cropped painting in the style of {}',
+ 'a good painting in the style of {}',
+ 'a close-up painting in the style of {}',
+ 'a rendition in the style of {}',
+ 'a nice painting in the style of {}',
+ 'a small painting in the style of {}',
+ 'a weird painting in the style of {}',
+ 'a large painting in the style of {}',
+]
+
+imagenet_dual_templates_small = [
+ 'a painting in the style of {} with {}',
+ 'a rendering in the style of {} with {}',
+ 'a cropped painting in the style of {} with {}',
+ 'the painting in the style of {} with {}',
+ 'a clean painting in the style of {} with {}',
+ 'a dirty painting in the style of {} with {}',
+ 'a dark painting in the style of {} with {}',
+ 'a cool painting in the style of {} with {}',
+ 'a close-up painting in the style of {} with {}',
+ 'a bright painting in the style of {} with {}',
+ 'a cropped painting in the style of {} with {}',
+ 'a good painting in the style of {} with {}',
+ 'a painting of one {} in the style of {}',
+ 'a nice painting in the style of {} with {}',
+ 'a small painting in the style of {} with {}',
+ 'a weird painting in the style of {} with {}',
+ 'a large painting in the style of {} with {}',
+]
+
+per_img_token_list = [
+ 'א', 'ב', 'ג', 'ד', 'ה', 'ו', 'ז', 'ח', 'ט', 'י', 'כ', 'ל', 'מ', 'נ', 'ס', 'ע', 'פ', 'צ', 'ק', 'ר', 'ש', 'ת',
+]
+
+class PersonalizedBase(Dataset):
+ def __init__(self,
+ data_root,
+ size=None,
+ repeats=100,
+ interpolation="bicubic",
+ flip_p=0.5,
+ set="train",
+ placeholder_token="*",
+ per_image_tokens=False,
+ center_crop=False,
+ ):
+
+ self.data_root = data_root
+
+ self.image_paths = [os.path.join(self.data_root, file_path) for file_path in os.listdir(self.data_root)]
+
+ # self._length = len(self.image_paths)
+ self.num_images = len(self.image_paths)
+ self._length = self.num_images
+
+ self.placeholder_token = placeholder_token
+
+ self.per_image_tokens = per_image_tokens
+ self.center_crop = center_crop
+
+ if per_image_tokens:
+ assert self.num_images < len(per_img_token_list), f"Can't use per-image tokens when the training set contains more than {len(per_img_token_list)} tokens. To enable larger sets, add more tokens to 'per_img_token_list'."
+
+ if set == "train":
+ self._length = self.num_images * repeats
+
+ self.size = size
+ self.interpolation = {"linear": PIL.Image.LINEAR,
+ "bilinear": PIL.Image.BILINEAR,
+ "bicubic": PIL.Image.BICUBIC,
+ "lanczos": PIL.Image.LANCZOS,
+ }[interpolation]
+ self.flip = transforms.RandomHorizontalFlip(p=flip_p)
+
+ def __len__(self):
+ return self._length
+
+ def __getitem__(self, i):
+ example = {}
+ image = Image.open(self.image_paths[i % self.num_images])
+
+ if not image.mode == "RGB":
+ image = image.convert("RGB")
+
+ if self.per_image_tokens and np.random.uniform() < 0.25:
+ text = random.choice(imagenet_dual_templates_small).format(self.placeholder_token, per_img_token_list[i % self.num_images])
+ else:
+ text = random.choice(imagenet_templates_small).format(self.placeholder_token)
+
+ example["caption"] = text
+
+ # default to score-sde preprocessing
+ img = np.array(image).astype(np.uint8)
+
+ if self.center_crop:
+ crop = min(img.shape[0], img.shape[1])
+ h, w, = img.shape[0], img.shape[1]
+ img = img[(h - crop) // 2:(h + crop) // 2,
+ (w - crop) // 2:(w + crop) // 2]
+
+ image = Image.fromarray(img)
+ if self.size is not None:
+ image = image.resize((self.size, self.size), resample=self.interpolation)
+
+ image = self.flip(image)
+ image = np.array(image).astype(np.uint8)
+ example["image"] = (image / 127.5 - 1.0).astype(np.float32)
+ return example
\ No newline at end of file
diff --git a/sd1/ldm/lr_scheduler.py b/sd1/ldm/lr_scheduler.py
new file mode 100644
index 0000000000000000000000000000000000000000..be39da9ca6dacc22bf3df9c7389bbb403a4a3ade
--- /dev/null
+++ b/sd1/ldm/lr_scheduler.py
@@ -0,0 +1,98 @@
+import numpy as np
+
+
+class LambdaWarmUpCosineScheduler:
+ """
+ note: use with a base_lr of 1.0
+ """
+ def __init__(self, warm_up_steps, lr_min, lr_max, lr_start, max_decay_steps, verbosity_interval=0):
+ self.lr_warm_up_steps = warm_up_steps
+ self.lr_start = lr_start
+ self.lr_min = lr_min
+ self.lr_max = lr_max
+ self.lr_max_decay_steps = max_decay_steps
+ self.last_lr = 0.
+ self.verbosity_interval = verbosity_interval
+
+ def schedule(self, n, **kwargs):
+ if self.verbosity_interval > 0:
+ if n % self.verbosity_interval == 0: print(f"current step: {n}, recent lr-multiplier: {self.last_lr}")
+ if n < self.lr_warm_up_steps:
+ lr = (self.lr_max - self.lr_start) / self.lr_warm_up_steps * n + self.lr_start
+ self.last_lr = lr
+ return lr
+ else:
+ t = (n - self.lr_warm_up_steps) / (self.lr_max_decay_steps - self.lr_warm_up_steps)
+ t = min(t, 1.0)
+ lr = self.lr_min + 0.5 * (self.lr_max - self.lr_min) * (
+ 1 + np.cos(t * np.pi))
+ self.last_lr = lr
+ return lr
+
+ def __call__(self, n, **kwargs):
+ return self.schedule(n,**kwargs)
+
+
+class LambdaWarmUpCosineScheduler2:
+ """
+ supports repeated iterations, configurable via lists
+ note: use with a base_lr of 1.0.
+ """
+ def __init__(self, warm_up_steps, f_min, f_max, f_start, cycle_lengths, verbosity_interval=0):
+ assert len(warm_up_steps) == len(f_min) == len(f_max) == len(f_start) == len(cycle_lengths)
+ self.lr_warm_up_steps = warm_up_steps
+ self.f_start = f_start
+ self.f_min = f_min
+ self.f_max = f_max
+ self.cycle_lengths = cycle_lengths
+ self.cum_cycles = np.cumsum([0] + list(self.cycle_lengths))
+ self.last_f = 0.
+ self.verbosity_interval = verbosity_interval
+
+ def find_in_interval(self, n):
+ interval = 0
+ for cl in self.cum_cycles[1:]:
+ if n <= cl:
+ return interval
+ interval += 1
+
+ def schedule(self, n, **kwargs):
+ cycle = self.find_in_interval(n)
+ n = n - self.cum_cycles[cycle]
+ if self.verbosity_interval > 0:
+ if n % self.verbosity_interval == 0: print(f"current step: {n}, recent lr-multiplier: {self.last_f}, "
+ f"current cycle {cycle}")
+ if n < self.lr_warm_up_steps[cycle]:
+ f = (self.f_max[cycle] - self.f_start[cycle]) / self.lr_warm_up_steps[cycle] * n + self.f_start[cycle]
+ self.last_f = f
+ return f
+ else:
+ t = (n - self.lr_warm_up_steps[cycle]) / (self.cycle_lengths[cycle] - self.lr_warm_up_steps[cycle])
+ t = min(t, 1.0)
+ f = self.f_min[cycle] + 0.5 * (self.f_max[cycle] - self.f_min[cycle]) * (
+ 1 + np.cos(t * np.pi))
+ self.last_f = f
+ return f
+
+ def __call__(self, n, **kwargs):
+ return self.schedule(n, **kwargs)
+
+
+class LambdaLinearScheduler(LambdaWarmUpCosineScheduler2):
+
+ def schedule(self, n, **kwargs):
+ cycle = self.find_in_interval(n)
+ n = n - self.cum_cycles[cycle]
+ if self.verbosity_interval > 0:
+ if n % self.verbosity_interval == 0: print(f"current step: {n}, recent lr-multiplier: {self.last_f}, "
+ f"current cycle {cycle}")
+
+ if n < self.lr_warm_up_steps[cycle]:
+ f = (self.f_max[cycle] - self.f_start[cycle]) / self.lr_warm_up_steps[cycle] * n + self.f_start[cycle]
+ self.last_f = f
+ return f
+ else:
+ f = self.f_min[cycle] + (self.f_max[cycle] - self.f_min[cycle]) * (self.cycle_lengths[cycle] - n) / (self.cycle_lengths[cycle])
+ self.last_f = f
+ return f
+
diff --git a/sd1/ldm/models/autoencoder.py b/sd1/ldm/models/autoencoder.py
new file mode 100644
index 0000000000000000000000000000000000000000..6a9c4f45498561953b8085981609b2a3298a5473
--- /dev/null
+++ b/sd1/ldm/models/autoencoder.py
@@ -0,0 +1,443 @@
+import torch
+import pytorch_lightning as pl
+import torch.nn.functional as F
+from contextlib import contextmanager
+
+from taming.modules.vqvae.quantize import VectorQuantizer2 as VectorQuantizer
+
+from ldm.modules.diffusionmodules.model import Encoder, Decoder
+from ldm.modules.distributions.distributions import DiagonalGaussianDistribution
+
+from ldm.util import instantiate_from_config
+
+
+class VQModel(pl.LightningModule):
+ def __init__(self,
+ ddconfig,
+ lossconfig,
+ n_embed,
+ embed_dim,
+ ckpt_path=None,
+ ignore_keys=[],
+ image_key="image",
+ colorize_nlabels=None,
+ monitor=None,
+ batch_resize_range=None,
+ scheduler_config=None,
+ lr_g_factor=1.0,
+ remap=None,
+ sane_index_shape=False, # tell vector quantizer to return indices as bhw
+ use_ema=False
+ ):
+ super().__init__()
+ self.embed_dim = embed_dim
+ self.n_embed = n_embed
+ self.image_key = image_key
+ self.encoder = Encoder(**ddconfig)
+ self.decoder = Decoder(**ddconfig)
+ self.loss = instantiate_from_config(lossconfig)
+ self.quantize = VectorQuantizer(n_embed, embed_dim, beta=0.25,
+ remap=remap,
+ sane_index_shape=sane_index_shape)
+ self.quant_conv = torch.nn.Conv2d(ddconfig["z_channels"], embed_dim, 1)
+ self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
+ if colorize_nlabels is not None:
+ assert type(colorize_nlabels)==int
+ self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
+ if monitor is not None:
+ self.monitor = monitor
+ self.batch_resize_range = batch_resize_range
+ if self.batch_resize_range is not None:
+ print(f"{self.__class__.__name__}: Using per-batch resizing in range {batch_resize_range}.")
+
+ self.use_ema = use_ema
+ if self.use_ema:
+ self.model_ema = LitEma(self)
+ print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
+
+ if ckpt_path is not None:
+ self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
+ self.scheduler_config = scheduler_config
+ self.lr_g_factor = lr_g_factor
+
+ @contextmanager
+ def ema_scope(self, context=None):
+ if self.use_ema:
+ self.model_ema.store(self.parameters())
+ self.model_ema.copy_to(self)
+ if context is not None:
+ print(f"{context}: Switched to EMA weights")
+ try:
+ yield None
+ finally:
+ if self.use_ema:
+ self.model_ema.restore(self.parameters())
+ if context is not None:
+ print(f"{context}: Restored training weights")
+
+ def init_from_ckpt(self, path, ignore_keys=list()):
+ sd = torch.load(path, map_location="cpu")["state_dict"]
+ keys = list(sd.keys())
+ for k in keys:
+ for ik in ignore_keys:
+ if k.startswith(ik):
+ print("Deleting key {} from state_dict.".format(k))
+ del sd[k]
+ missing, unexpected = self.load_state_dict(sd, strict=False)
+ print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
+ if len(missing) > 0:
+ print(f"Missing Keys: {missing}")
+ print(f"Unexpected Keys: {unexpected}")
+
+ def on_train_batch_end(self, *args, **kwargs):
+ if self.use_ema:
+ self.model_ema(self)
+
+ def encode(self, x):
+ h = self.encoder(x)
+ h = self.quant_conv(h)
+ quant, emb_loss, info = self.quantize(h)
+ return quant, emb_loss, info
+
+ def encode_to_prequant(self, x):
+ h = self.encoder(x)
+ h = self.quant_conv(h)
+ return h
+
+ def decode(self, quant):
+ quant = self.post_quant_conv(quant)
+ dec = self.decoder(quant)
+ return dec
+
+ def decode_code(self, code_b):
+ quant_b = self.quantize.embed_code(code_b)
+ dec = self.decode(quant_b)
+ return dec
+
+ def forward(self, input, return_pred_indices=False):
+ quant, diff, (_,_,ind) = self.encode(input)
+ dec = self.decode(quant)
+ if return_pred_indices:
+ return dec, diff, ind
+ return dec, diff
+
+ def get_input(self, batch, k):
+ x = batch[k]
+ if len(x.shape) == 3:
+ x = x[..., None]
+ x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
+ if self.batch_resize_range is not None:
+ lower_size = self.batch_resize_range[0]
+ upper_size = self.batch_resize_range[1]
+ if self.global_step <= 4:
+ # do the first few batches with max size to avoid later oom
+ new_resize = upper_size
+ else:
+ new_resize = np.random.choice(np.arange(lower_size, upper_size+16, 16))
+ if new_resize != x.shape[2]:
+ x = F.interpolate(x, size=new_resize, mode="bicubic")
+ x = x.detach()
+ return x
+
+ def training_step(self, batch, batch_idx, optimizer_idx):
+ # https://github.com/pytorch/pytorch/issues/37142
+ # try not to fool the heuristics
+ x = self.get_input(batch, self.image_key)
+ xrec, qloss, ind = self(x, return_pred_indices=True)
+
+ if optimizer_idx == 0:
+ # autoencode
+ aeloss, log_dict_ae = self.loss(qloss, x, xrec, optimizer_idx, self.global_step,
+ last_layer=self.get_last_layer(), split="train",
+ predicted_indices=ind)
+
+ self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=True)
+ return aeloss
+
+ if optimizer_idx == 1:
+ # discriminator
+ discloss, log_dict_disc = self.loss(qloss, x, xrec, optimizer_idx, self.global_step,
+ last_layer=self.get_last_layer(), split="train")
+ self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=True)
+ return discloss
+
+ def validation_step(self, batch, batch_idx):
+ log_dict = self._validation_step(batch, batch_idx)
+ with self.ema_scope():
+ log_dict_ema = self._validation_step(batch, batch_idx, suffix="_ema")
+ return log_dict
+
+ def _validation_step(self, batch, batch_idx, suffix=""):
+ x = self.get_input(batch, self.image_key)
+ xrec, qloss, ind = self(x, return_pred_indices=True)
+ aeloss, log_dict_ae = self.loss(qloss, x, xrec, 0,
+ self.global_step,
+ last_layer=self.get_last_layer(),
+ split="val"+suffix,
+ predicted_indices=ind
+ )
+
+ discloss, log_dict_disc = self.loss(qloss, x, xrec, 1,
+ self.global_step,
+ last_layer=self.get_last_layer(),
+ split="val"+suffix,
+ predicted_indices=ind
+ )
+ rec_loss = log_dict_ae[f"val{suffix}/rec_loss"]
+ self.log(f"val{suffix}/rec_loss", rec_loss,
+ prog_bar=True, logger=True, on_step=False, on_epoch=True, sync_dist=True)
+ self.log(f"val{suffix}/aeloss", aeloss,
+ prog_bar=True, logger=True, on_step=False, on_epoch=True, sync_dist=True)
+ if version.parse(pl.__version__) >= version.parse('1.4.0'):
+ del log_dict_ae[f"val{suffix}/rec_loss"]
+ self.log_dict(log_dict_ae)
+ self.log_dict(log_dict_disc)
+ return self.log_dict
+
+ def configure_optimizers(self):
+ lr_d = self.learning_rate
+ lr_g = self.lr_g_factor*self.learning_rate
+ print("lr_d", lr_d)
+ print("lr_g", lr_g)
+ opt_ae = torch.optim.Adam(list(self.encoder.parameters())+
+ list(self.decoder.parameters())+
+ list(self.quantize.parameters())+
+ list(self.quant_conv.parameters())+
+ list(self.post_quant_conv.parameters()),
+ lr=lr_g, betas=(0.5, 0.9))
+ opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(),
+ lr=lr_d, betas=(0.5, 0.9))
+
+ if self.scheduler_config is not None:
+ scheduler = instantiate_from_config(self.scheduler_config)
+
+ print("Setting up LambdaLR scheduler...")
+ scheduler = [
+ {
+ 'scheduler': LambdaLR(opt_ae, lr_lambda=scheduler.schedule),
+ 'interval': 'step',
+ 'frequency': 1
+ },
+ {
+ 'scheduler': LambdaLR(opt_disc, lr_lambda=scheduler.schedule),
+ 'interval': 'step',
+ 'frequency': 1
+ },
+ ]
+ return [opt_ae, opt_disc], scheduler
+ return [opt_ae, opt_disc], []
+
+ def get_last_layer(self):
+ return self.decoder.conv_out.weight
+
+ def log_images(self, batch, only_inputs=False, plot_ema=False, **kwargs):
+ log = dict()
+ x = self.get_input(batch, self.image_key)
+ x = x.to(self.device)
+ if only_inputs:
+ log["inputs"] = x
+ return log
+ xrec, _ = self(x)
+ if x.shape[1] > 3:
+ # colorize with random projection
+ assert xrec.shape[1] > 3
+ x = self.to_rgb(x)
+ xrec = self.to_rgb(xrec)
+ log["inputs"] = x
+ log["reconstructions"] = xrec
+ if plot_ema:
+ with self.ema_scope():
+ xrec_ema, _ = self(x)
+ if x.shape[1] > 3: xrec_ema = self.to_rgb(xrec_ema)
+ log["reconstructions_ema"] = xrec_ema
+ return log
+
+ def to_rgb(self, x):
+ assert self.image_key == "segmentation"
+ if not hasattr(self, "colorize"):
+ self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
+ x = F.conv2d(x, weight=self.colorize)
+ x = 2.*(x-x.min())/(x.max()-x.min()) - 1.
+ return x
+
+
+class VQModelInterface(VQModel):
+ def __init__(self, embed_dim, *args, **kwargs):
+ super().__init__(embed_dim=embed_dim, *args, **kwargs)
+ self.embed_dim = embed_dim
+
+ def encode(self, x):
+ h = self.encoder(x)
+ h = self.quant_conv(h)
+ return h
+
+ def decode(self, h, force_not_quantize=False):
+ # also go through quantization layer
+ if not force_not_quantize:
+ quant, emb_loss, info = self.quantize(h)
+ else:
+ quant = h
+ quant = self.post_quant_conv(quant)
+ dec = self.decoder(quant)
+ return dec
+
+
+class AutoencoderKL(pl.LightningModule):
+ def __init__(self,
+ ddconfig,
+ lossconfig,
+ embed_dim,
+ ckpt_path=None,
+ ignore_keys=[],
+ image_key="image",
+ colorize_nlabels=None,
+ monitor=None,
+ ):
+ super().__init__()
+ self.image_key = image_key
+ self.encoder = Encoder(**ddconfig)
+ self.decoder = Decoder(**ddconfig)
+ self.loss = instantiate_from_config(lossconfig)
+ assert ddconfig["double_z"]
+ self.quant_conv = torch.nn.Conv2d(2*ddconfig["z_channels"], 2*embed_dim, 1)
+ self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
+ self.embed_dim = embed_dim
+ if colorize_nlabels is not None:
+ assert type(colorize_nlabels)==int
+ self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
+ if monitor is not None:
+ self.monitor = monitor
+ if ckpt_path is not None:
+ self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
+
+ def init_from_ckpt(self, path, ignore_keys=list()):
+ sd = torch.load(path, map_location="cpu")["state_dict"]
+ keys = list(sd.keys())
+ for k in keys:
+ for ik in ignore_keys:
+ if k.startswith(ik):
+ print("Deleting key {} from state_dict.".format(k))
+ del sd[k]
+ self.load_state_dict(sd, strict=False)
+ print(f"Restored from {path}")
+
+ def encode(self, x):
+ h = self.encoder(x)
+ moments = self.quant_conv(h)
+ posterior = DiagonalGaussianDistribution(moments)
+ return posterior
+
+ def decode(self, z):
+ z = self.post_quant_conv(z)
+ dec = self.decoder(z)
+ return dec
+
+ def forward(self, input, sample_posterior=True):
+ posterior = self.encode(input)
+ if sample_posterior:
+ z = posterior.sample()
+ else:
+ z = posterior.mode()
+ dec = self.decode(z)
+ return dec, posterior
+
+ def get_input(self, batch, k):
+ x = batch[k]
+ if len(x.shape) == 3:
+ x = x[..., None]
+ x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
+ return x
+
+ def training_step(self, batch, batch_idx, optimizer_idx):
+ inputs = self.get_input(batch, self.image_key)
+ reconstructions, posterior = self(inputs)
+
+ if optimizer_idx == 0:
+ # train encoder+decoder+logvar
+ aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
+ last_layer=self.get_last_layer(), split="train")
+ self.log("aeloss", aeloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
+ self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=False)
+ return aeloss
+
+ if optimizer_idx == 1:
+ # train the discriminator
+ discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
+ last_layer=self.get_last_layer(), split="train")
+
+ self.log("discloss", discloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
+ self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=False)
+ return discloss
+
+ def validation_step(self, batch, batch_idx):
+ inputs = self.get_input(batch, self.image_key)
+ reconstructions, posterior = self(inputs)
+ aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, 0, self.global_step,
+ last_layer=self.get_last_layer(), split="val")
+
+ discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, 1, self.global_step,
+ last_layer=self.get_last_layer(), split="val")
+
+ self.log("val/rec_loss", log_dict_ae["val/rec_loss"])
+ self.log_dict(log_dict_ae)
+ self.log_dict(log_dict_disc)
+ return self.log_dict
+
+ def configure_optimizers(self):
+ lr = self.learning_rate
+ opt_ae = torch.optim.Adam(list(self.encoder.parameters())+
+ list(self.decoder.parameters())+
+ list(self.quant_conv.parameters())+
+ list(self.post_quant_conv.parameters()),
+ lr=lr, betas=(0.5, 0.9))
+ opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(),
+ lr=lr, betas=(0.5, 0.9))
+ return [opt_ae, opt_disc], []
+
+ def get_last_layer(self):
+ return self.decoder.conv_out.weight
+
+ @torch.no_grad()
+ def log_images(self, batch, only_inputs=False, **kwargs):
+ log = dict()
+ x = self.get_input(batch, self.image_key)
+ x = x.to(self.device)
+ if not only_inputs:
+ xrec, posterior = self(x)
+ if x.shape[1] > 3:
+ # colorize with random projection
+ assert xrec.shape[1] > 3
+ x = self.to_rgb(x)
+ xrec = self.to_rgb(xrec)
+ log["samples"] = self.decode(torch.randn_like(posterior.sample()))
+ log["reconstructions"] = xrec
+ log["inputs"] = x
+ return log
+
+ def to_rgb(self, x):
+ assert self.image_key == "segmentation"
+ if not hasattr(self, "colorize"):
+ self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
+ x = F.conv2d(x, weight=self.colorize)
+ x = 2.*(x-x.min())/(x.max()-x.min()) - 1.
+ return x
+
+
+class IdentityFirstStage(torch.nn.Module):
+ def __init__(self, *args, vq_interface=False, **kwargs):
+ self.vq_interface = vq_interface # TODO: Should be true by default but check to not break older stuff
+ super().__init__()
+
+ def encode(self, x, *args, **kwargs):
+ return x
+
+ def decode(self, x, *args, **kwargs):
+ return x
+
+ def quantize(self, x, *args, **kwargs):
+ if self.vq_interface:
+ return x, None, [None, None, None]
+ return x
+
+ def forward(self, x, *args, **kwargs):
+ return x
diff --git a/sd1/ldm/models/diffusion/__init__.py b/sd1/ldm/models/diffusion/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/sd1/ldm/models/diffusion/classifier.py b/sd1/ldm/models/diffusion/classifier.py
new file mode 100644
index 0000000000000000000000000000000000000000..67e98b9d8ffb96a150b517497ace0a242d7163ef
--- /dev/null
+++ b/sd1/ldm/models/diffusion/classifier.py
@@ -0,0 +1,267 @@
+import os
+import torch
+import pytorch_lightning as pl
+from omegaconf import OmegaConf
+from torch.nn import functional as F
+from torch.optim import AdamW
+from torch.optim.lr_scheduler import LambdaLR
+from copy import deepcopy
+from einops import rearrange
+from glob import glob
+from natsort import natsorted
+
+from ldm.modules.diffusionmodules.openaimodel import EncoderUNetModel, UNetModel
+from ldm.util import log_txt_as_img, default, ismap, instantiate_from_config
+
+__models__ = {
+ 'class_label': EncoderUNetModel,
+ 'segmentation': UNetModel
+}
+
+
+def disabled_train(self, mode=True):
+ """Overwrite model.train with this function to make sure train/eval mode
+ does not change anymore."""
+ return self
+
+
+class NoisyLatentImageClassifier(pl.LightningModule):
+
+ def __init__(self,
+ diffusion_path,
+ num_classes,
+ ckpt_path=None,
+ pool='attention',
+ label_key=None,
+ diffusion_ckpt_path=None,
+ scheduler_config=None,
+ weight_decay=1.e-2,
+ log_steps=10,
+ monitor='val/loss',
+ *args,
+ **kwargs):
+ super().__init__(*args, **kwargs)
+ self.num_classes = num_classes
+ # get latest config of diffusion model
+ diffusion_config = natsorted(glob(os.path.join(diffusion_path, 'configs', '*-project.yaml')))[-1]
+ self.diffusion_config = OmegaConf.load(diffusion_config).model
+ self.diffusion_config.params.ckpt_path = diffusion_ckpt_path
+ self.load_diffusion()
+
+ self.monitor = monitor
+ self.numd = self.diffusion_model.first_stage_model.encoder.num_resolutions - 1
+ self.log_time_interval = self.diffusion_model.num_timesteps // log_steps
+ self.log_steps = log_steps
+
+ self.label_key = label_key if not hasattr(self.diffusion_model, 'cond_stage_key') \
+ else self.diffusion_model.cond_stage_key
+
+ assert self.label_key is not None, 'label_key neither in diffusion model nor in model.params'
+
+ if self.label_key not in __models__:
+ raise NotImplementedError()
+
+ self.load_classifier(ckpt_path, pool)
+
+ self.scheduler_config = scheduler_config
+ self.use_scheduler = self.scheduler_config is not None
+ self.weight_decay = weight_decay
+
+ def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
+ sd = torch.load(path, map_location="cpu")
+ if "state_dict" in list(sd.keys()):
+ sd = sd["state_dict"]
+ keys = list(sd.keys())
+ for k in keys:
+ for ik in ignore_keys:
+ if k.startswith(ik):
+ print("Deleting key {} from state_dict.".format(k))
+ del sd[k]
+ missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(
+ sd, strict=False)
+ print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
+ if len(missing) > 0:
+ print(f"Missing Keys: {missing}")
+ if len(unexpected) > 0:
+ print(f"Unexpected Keys: {unexpected}")
+
+ def load_diffusion(self):
+ model = instantiate_from_config(self.diffusion_config)
+ self.diffusion_model = model.eval()
+ self.diffusion_model.train = disabled_train
+ for param in self.diffusion_model.parameters():
+ param.requires_grad = False
+
+ def load_classifier(self, ckpt_path, pool):
+ model_config = deepcopy(self.diffusion_config.params.unet_config.params)
+ model_config.in_channels = self.diffusion_config.params.unet_config.params.out_channels
+ model_config.out_channels = self.num_classes
+ if self.label_key == 'class_label':
+ model_config.pool = pool
+
+ self.model = __models__[self.label_key](**model_config)
+ if ckpt_path is not None:
+ print('#####################################################################')
+ print(f'load from ckpt "{ckpt_path}"')
+ print('#####################################################################')
+ self.init_from_ckpt(ckpt_path)
+
+ @torch.no_grad()
+ def get_x_noisy(self, x, t, noise=None):
+ noise = default(noise, lambda: torch.randn_like(x))
+ continuous_sqrt_alpha_cumprod = None
+ if self.diffusion_model.use_continuous_noise:
+ continuous_sqrt_alpha_cumprod = self.diffusion_model.sample_continuous_noise_level(x.shape[0], t + 1)
+ # todo: make sure t+1 is correct here
+
+ return self.diffusion_model.q_sample(x_start=x, t=t, noise=noise,
+ continuous_sqrt_alpha_cumprod=continuous_sqrt_alpha_cumprod)
+
+ def forward(self, x_noisy, t, *args, **kwargs):
+ return self.model(x_noisy, t)
+
+ @torch.no_grad()
+ def get_input(self, batch, k):
+ x = batch[k]
+ if len(x.shape) == 3:
+ x = x[..., None]
+ x = rearrange(x, 'b h w c -> b c h w')
+ x = x.to(memory_format=torch.contiguous_format).float()
+ return x
+
+ @torch.no_grad()
+ def get_conditioning(self, batch, k=None):
+ if k is None:
+ k = self.label_key
+ assert k is not None, 'Needs to provide label key'
+
+ targets = batch[k].to(self.device)
+
+ if self.label_key == 'segmentation':
+ targets = rearrange(targets, 'b h w c -> b c h w')
+ for down in range(self.numd):
+ h, w = targets.shape[-2:]
+ targets = F.interpolate(targets, size=(h // 2, w // 2), mode='nearest')
+
+ # targets = rearrange(targets,'b c h w -> b h w c')
+
+ return targets
+
+ def compute_top_k(self, logits, labels, k, reduction="mean"):
+ _, top_ks = torch.topk(logits, k, dim=1)
+ if reduction == "mean":
+ return (top_ks == labels[:, None]).float().sum(dim=-1).mean().item()
+ elif reduction == "none":
+ return (top_ks == labels[:, None]).float().sum(dim=-1)
+
+ def on_train_epoch_start(self):
+ # save some memory
+ self.diffusion_model.model.to('cpu')
+
+ @torch.no_grad()
+ def write_logs(self, loss, logits, targets):
+ log_prefix = 'train' if self.training else 'val'
+ log = {}
+ log[f"{log_prefix}/loss"] = loss.mean()
+ log[f"{log_prefix}/acc@1"] = self.compute_top_k(
+ logits, targets, k=1, reduction="mean"
+ )
+ log[f"{log_prefix}/acc@5"] = self.compute_top_k(
+ logits, targets, k=5, reduction="mean"
+ )
+
+ self.log_dict(log, prog_bar=False, logger=True, on_step=self.training, on_epoch=True)
+ self.log('loss', log[f"{log_prefix}/loss"], prog_bar=True, logger=False)
+ self.log('global_step', self.global_step, logger=False, on_epoch=False, prog_bar=True)
+ lr = self.optimizers().param_groups[0]['lr']
+ self.log('lr_abs', lr, on_step=True, logger=True, on_epoch=False, prog_bar=True)
+
+ def shared_step(self, batch, t=None):
+ x, *_ = self.diffusion_model.get_input(batch, k=self.diffusion_model.first_stage_key)
+ targets = self.get_conditioning(batch)
+ if targets.dim() == 4:
+ targets = targets.argmax(dim=1)
+ if t is None:
+ t = torch.randint(0, self.diffusion_model.num_timesteps, (x.shape[0],), device=self.device).long()
+ else:
+ t = torch.full(size=(x.shape[0],), fill_value=t, device=self.device).long()
+ x_noisy = self.get_x_noisy(x, t)
+ logits = self(x_noisy, t)
+
+ loss = F.cross_entropy(logits, targets, reduction='none')
+
+ self.write_logs(loss.detach(), logits.detach(), targets.detach())
+
+ loss = loss.mean()
+ return loss, logits, x_noisy, targets
+
+ def training_step(self, batch, batch_idx):
+ loss, *_ = self.shared_step(batch)
+ return loss
+
+ def reset_noise_accs(self):
+ self.noisy_acc = {t: {'acc@1': [], 'acc@5': []} for t in
+ range(0, self.diffusion_model.num_timesteps, self.diffusion_model.log_every_t)}
+
+ def on_validation_start(self):
+ self.reset_noise_accs()
+
+ @torch.no_grad()
+ def validation_step(self, batch, batch_idx):
+ loss, *_ = self.shared_step(batch)
+
+ for t in self.noisy_acc:
+ _, logits, _, targets = self.shared_step(batch, t)
+ self.noisy_acc[t]['acc@1'].append(self.compute_top_k(logits, targets, k=1, reduction='mean'))
+ self.noisy_acc[t]['acc@5'].append(self.compute_top_k(logits, targets, k=5, reduction='mean'))
+
+ return loss
+
+ def configure_optimizers(self):
+ optimizer = AdamW(self.model.parameters(), lr=self.learning_rate, weight_decay=self.weight_decay)
+
+ if self.use_scheduler:
+ scheduler = instantiate_from_config(self.scheduler_config)
+
+ print("Setting up LambdaLR scheduler...")
+ scheduler = [
+ {
+ 'scheduler': LambdaLR(optimizer, lr_lambda=scheduler.schedule),
+ 'interval': 'step',
+ 'frequency': 1
+ }]
+ return [optimizer], scheduler
+
+ return optimizer
+
+ @torch.no_grad()
+ def log_images(self, batch, N=8, *args, **kwargs):
+ log = dict()
+ x = self.get_input(batch, self.diffusion_model.first_stage_key)
+ log['inputs'] = x
+
+ y = self.get_conditioning(batch)
+
+ if self.label_key == 'class_label':
+ y = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"])
+ log['labels'] = y
+
+ if ismap(y):
+ log['labels'] = self.diffusion_model.to_rgb(y)
+
+ for step in range(self.log_steps):
+ current_time = step * self.log_time_interval
+
+ _, logits, x_noisy, _ = self.shared_step(batch, t=current_time)
+
+ log[f'inputs@t{current_time}'] = x_noisy
+
+ pred = F.one_hot(logits.argmax(dim=1), num_classes=self.num_classes)
+ pred = rearrange(pred, 'b h w c -> b c h w')
+
+ log[f'pred@t{current_time}'] = self.diffusion_model.to_rgb(pred)
+
+ for key in log:
+ log[key] = log[key][:N]
+
+ return log
diff --git a/sd1/ldm/models/diffusion/ddim.py b/sd1/ldm/models/diffusion/ddim.py
new file mode 100644
index 0000000000000000000000000000000000000000..fb31215db5c3f3f703f15987d7eee6a179c9f7ec
--- /dev/null
+++ b/sd1/ldm/models/diffusion/ddim.py
@@ -0,0 +1,241 @@
+"""SAMPLING ONLY."""
+
+import torch
+import numpy as np
+from tqdm import tqdm
+from functools import partial
+
+from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like, \
+ extract_into_tensor
+
+
+class DDIMSampler(object):
+ def __init__(self, model, schedule="linear", **kwargs):
+ super().__init__()
+ self.model = model
+ self.ddpm_num_timesteps = model.num_timesteps
+ self.schedule = schedule
+
+ def register_buffer(self, name, attr):
+ if type(attr) == torch.Tensor:
+ if attr.device != torch.device("cuda"):
+ attr = attr.to(torch.device("cuda"))
+ setattr(self, name, attr)
+
+ def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
+ self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
+ num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
+ alphas_cumprod = self.model.alphas_cumprod
+ assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
+ to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
+
+ self.register_buffer('betas', to_torch(self.model.betas))
+ self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
+ self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev))
+
+ # calculations for diffusion q(x_t | x_{t-1}) and others
+ self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
+ self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
+ self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
+ self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
+ self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))
+
+ # ddim sampling parameters
+ ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
+ ddim_timesteps=self.ddim_timesteps,
+ eta=ddim_eta,verbose=verbose)
+ self.register_buffer('ddim_sigmas', ddim_sigmas)
+ self.register_buffer('ddim_alphas', ddim_alphas)
+ self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
+ self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
+ sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
+ (1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
+ 1 - self.alphas_cumprod / self.alphas_cumprod_prev))
+ self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
+
+ @torch.no_grad()
+ def sample(self,
+ S,
+ batch_size,
+ shape,
+ conditioning=None,
+ callback=None,
+ normals_sequence=None,
+ img_callback=None,
+ quantize_x0=False,
+ eta=0.,
+ mask=None,
+ x0=None,
+ temperature=1.,
+ noise_dropout=0.,
+ score_corrector=None,
+ corrector_kwargs=None,
+ verbose=True,
+ x_T=None,
+ log_every_t=100,
+ unconditional_guidance_scale=1.,
+ unconditional_conditioning=None,
+ # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
+ **kwargs
+ ):
+ if conditioning is not None:
+ if isinstance(conditioning, dict):
+ cbs = conditioning[list(conditioning.keys())[0]].shape[0]
+ if cbs != batch_size:
+ print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
+ else:
+ if conditioning.shape[0] != batch_size:
+ print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
+
+ self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
+ # sampling
+ C, H, W = shape
+ size = (batch_size, C, H, W)
+ print(f'Data shape for DDIM sampling is {size}, eta {eta}')
+
+ samples, intermediates = self.ddim_sampling(conditioning, size,
+ callback=callback,
+ img_callback=img_callback,
+ quantize_denoised=quantize_x0,
+ mask=mask, x0=x0,
+ ddim_use_original_steps=False,
+ noise_dropout=noise_dropout,
+ temperature=temperature,
+ score_corrector=score_corrector,
+ corrector_kwargs=corrector_kwargs,
+ x_T=x_T,
+ log_every_t=log_every_t,
+ unconditional_guidance_scale=unconditional_guidance_scale,
+ unconditional_conditioning=unconditional_conditioning,
+ )
+ return samples, intermediates
+
+ @torch.no_grad()
+ def ddim_sampling(self, cond, shape,
+ x_T=None, ddim_use_original_steps=False,
+ callback=None, timesteps=None, quantize_denoised=False,
+ mask=None, x0=None, img_callback=None, log_every_t=100,
+ temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
+ unconditional_guidance_scale=1., unconditional_conditioning=None,):
+ device = self.model.betas.device
+ b = shape[0]
+ if x_T is None:
+ img = torch.randn(shape, device=device)
+ else:
+ img = x_T
+
+ if timesteps is None:
+ timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
+ elif timesteps is not None and not ddim_use_original_steps:
+ subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
+ timesteps = self.ddim_timesteps[:subset_end]
+
+ intermediates = {'x_inter': [img], 'pred_x0': [img]}
+ time_range = reversed(range(0,timesteps)) if ddim_use_original_steps else np.flip(timesteps)
+ total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
+ print(f"Running DDIM Sampling with {total_steps} timesteps")
+
+ iterator = tqdm(time_range, desc='DDIM Sampler', total=total_steps)
+
+ for i, step in enumerate(iterator):
+ index = total_steps - i - 1
+ ts = torch.full((b,), step, device=device, dtype=torch.long)
+
+ if mask is not None:
+ assert x0 is not None
+ img_orig = self.model.q_sample(x0, ts) # TODO: deterministic forward pass?
+ img = img_orig * mask + (1. - mask) * img
+
+ outs = self.p_sample_ddim(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps,
+ quantize_denoised=quantize_denoised, temperature=temperature,
+ noise_dropout=noise_dropout, score_corrector=score_corrector,
+ corrector_kwargs=corrector_kwargs,
+ unconditional_guidance_scale=unconditional_guidance_scale,
+ unconditional_conditioning=unconditional_conditioning)
+ img, pred_x0 = outs
+ if callback: callback(i)
+ if img_callback: img_callback(pred_x0, i)
+
+ if index % log_every_t == 0 or index == total_steps - 1:
+ intermediates['x_inter'].append(img)
+ intermediates['pred_x0'].append(pred_x0)
+
+ return img, intermediates
+
+ @torch.no_grad()
+ def p_sample_ddim(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
+ temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
+ unconditional_guidance_scale=1., unconditional_conditioning=None):
+ b, *_, device = *x.shape, x.device
+
+ if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
+ e_t = self.model.apply_model(x, t, c)
+ else:
+ x_in = torch.cat([x] * 2)
+ t_in = torch.cat([t] * 2)
+ c_in = torch.cat([unconditional_conditioning, c])
+ e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
+ e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
+
+ if score_corrector is not None:
+ assert self.model.parameterization == "eps"
+ e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
+
+ alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
+ alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
+ sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
+ sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
+ # select parameters corresponding to the currently considered timestep
+ a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
+ a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
+ sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
+ sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)
+
+ # current prediction for x_0
+ pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
+ if quantize_denoised:
+ pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
+ # direction pointing to x_t
+ dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
+ noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
+ if noise_dropout > 0.:
+ noise = torch.nn.functional.dropout(noise, p=noise_dropout)
+ x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
+ return x_prev, pred_x0
+
+ @torch.no_grad()
+ def stochastic_encode(self, x0, t, use_original_steps=False, noise=None):
+ # fast, but does not allow for exact reconstruction
+ # t serves as an index to gather the correct alphas
+ if use_original_steps:
+ sqrt_alphas_cumprod = self.sqrt_alphas_cumprod
+ sqrt_one_minus_alphas_cumprod = self.sqrt_one_minus_alphas_cumprod
+ else:
+ sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas)
+ sqrt_one_minus_alphas_cumprod = self.ddim_sqrt_one_minus_alphas
+
+ if noise is None:
+ noise = torch.randn_like(x0)
+ return (extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0 +
+ extract_into_tensor(sqrt_one_minus_alphas_cumprod, t, x0.shape) * noise)
+
+ @torch.no_grad()
+ def decode(self, x_latent, cond, t_start, unconditional_guidance_scale=1.0, unconditional_conditioning=None,
+ use_original_steps=False):
+
+ timesteps = np.arange(self.ddpm_num_timesteps) if use_original_steps else self.ddim_timesteps
+ timesteps = timesteps[:t_start]
+
+ time_range = np.flip(timesteps)
+ total_steps = timesteps.shape[0]
+ print(f"Running DDIM Sampling with {total_steps} timesteps")
+
+ iterator = tqdm(time_range, desc='Decoding image', total=total_steps)
+ x_dec = x_latent
+ for i, step in enumerate(iterator):
+ index = total_steps - i - 1
+ ts = torch.full((x_latent.shape[0],), step, device=x_latent.device, dtype=torch.long)
+ x_dec, _ = self.p_sample_ddim(x_dec, cond, ts, index=index, use_original_steps=use_original_steps,
+ unconditional_guidance_scale=unconditional_guidance_scale,
+ unconditional_conditioning=unconditional_conditioning)
+ return x_dec
\ No newline at end of file
diff --git a/sd1/ldm/models/diffusion/ddpm_original.py b/sd1/ldm/models/diffusion/ddpm_original.py
new file mode 100644
index 0000000000000000000000000000000000000000..bbedd04cfd6f736ac066434a75618b9ba5125be7
--- /dev/null
+++ b/sd1/ldm/models/diffusion/ddpm_original.py
@@ -0,0 +1,1445 @@
+"""
+wild mixture of
+https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
+https://github.com/openai/improved-diffusion/blob/e94489283bb876ac1477d5dd7709bbbd2d9902ce/improved_diffusion/gaussian_diffusion.py
+https://github.com/CompVis/taming-transformers
+-- merci
+"""
+
+import torch
+import torch.nn as nn
+import numpy as np
+import pytorch_lightning as pl
+from torch.optim.lr_scheduler import LambdaLR
+from einops import rearrange, repeat
+from contextlib import contextmanager
+from functools import partial
+from tqdm import tqdm
+from torchvision.utils import make_grid
+from pytorch_lightning.utilities.distributed import rank_zero_only
+
+from ldm.util import log_txt_as_img, exists, default, ismap, isimage, mean_flat, count_params, instantiate_from_config
+from ldm.modules.ema import LitEma
+from ldm.modules.distributions.distributions import normal_kl, DiagonalGaussianDistribution
+from ldm.models.autoencoder import VQModelInterface, IdentityFirstStage, AutoencoderKL
+from ldm.modules.diffusionmodules.util import make_beta_schedule, extract_into_tensor, noise_like
+from ldm.models.diffusion.ddim import DDIMSampler
+
+
+__conditioning_keys__ = {'concat': 'c_concat',
+ 'crossattn': 'c_crossattn',
+ 'adm': 'y'}
+
+
+def disabled_train(self, mode=True):
+ """Overwrite model.train with this function to make sure train/eval mode
+ does not change anymore."""
+ return self
+
+
+def uniform_on_device(r1, r2, shape, device):
+ return (r1 - r2) * torch.rand(*shape, device=device) + r2
+
+
+class DDPM(pl.LightningModule):
+ # classic DDPM with Gaussian diffusion, in image space
+ def __init__(self,
+ unet_config,
+ timesteps=1000,
+ beta_schedule="linear",
+ loss_type="l2",
+ ckpt_path=None,
+ ignore_keys=[],
+ load_only_unet=False,
+ monitor="val/loss",
+ use_ema=True,
+ first_stage_key="image",
+ image_size=256,
+ channels=3,
+ log_every_t=100,
+ clip_denoised=True,
+ linear_start=1e-4,
+ linear_end=2e-2,
+ cosine_s=8e-3,
+ given_betas=None,
+ original_elbo_weight=0.,
+ v_posterior=0., # weight for choosing posterior variance as sigma = (1-v) * beta_tilde + v * beta
+ l_simple_weight=1.,
+ conditioning_key=None,
+ parameterization="eps", # all assuming fixed variance schedules
+ scheduler_config=None,
+ use_positional_encodings=False,
+ learn_logvar=False,
+ logvar_init=0.,
+ ):
+ super().__init__()
+ assert parameterization in ["eps", "x0"], 'currently only supporting "eps" and "x0"'
+ self.parameterization = parameterization
+ print(f"{self.__class__.__name__}: Running in {self.parameterization}-prediction mode")
+ self.cond_stage_model = None
+ self.clip_denoised = clip_denoised
+ self.log_every_t = log_every_t
+ self.first_stage_key = first_stage_key
+ self.image_size = image_size # try conv?
+ self.channels = channels
+ self.use_positional_encodings = use_positional_encodings
+ self.model = DiffusionWrapper(unet_config, conditioning_key)
+ count_params(self.model, verbose=True)
+ self.use_ema = use_ema
+ if self.use_ema:
+ self.model_ema = LitEma(self.model)
+ print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
+
+ self.use_scheduler = scheduler_config is not None
+ if self.use_scheduler:
+ self.scheduler_config = scheduler_config
+
+ self.v_posterior = v_posterior
+ self.original_elbo_weight = original_elbo_weight
+ self.l_simple_weight = l_simple_weight
+
+ if monitor is not None:
+ self.monitor = monitor
+ if ckpt_path is not None:
+ self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys, only_model=load_only_unet)
+
+ self.register_schedule(given_betas=given_betas, beta_schedule=beta_schedule, timesteps=timesteps,
+ linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s)
+
+ self.loss_type = loss_type
+
+ self.learn_logvar = learn_logvar
+ self.logvar = torch.full(fill_value=logvar_init, size=(self.num_timesteps,))
+ if self.learn_logvar:
+ self.logvar = nn.Parameter(self.logvar, requires_grad=True)
+
+
+ def register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000,
+ linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
+ if exists(given_betas):
+ betas = given_betas
+ else:
+ betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end,
+ cosine_s=cosine_s)
+ alphas = 1. - betas
+ alphas_cumprod = np.cumprod(alphas, axis=0)
+ alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
+
+ timesteps, = betas.shape
+ self.num_timesteps = int(timesteps)
+ self.linear_start = linear_start
+ self.linear_end = linear_end
+ assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep'
+
+ to_torch = partial(torch.tensor, dtype=torch.float32)
+
+ self.register_buffer('betas', to_torch(betas))
+ self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
+ self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
+
+ # calculations for diffusion q(x_t | x_{t-1}) and others
+ self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
+ self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
+ self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
+ self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
+ self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
+
+ # calculations for posterior q(x_{t-1} | x_t, x_0)
+ posterior_variance = (1 - self.v_posterior) * betas * (1. - alphas_cumprod_prev) / (
+ 1. - alphas_cumprod) + self.v_posterior * betas
+ # above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
+ self.register_buffer('posterior_variance', to_torch(posterior_variance))
+ # below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
+ self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20))))
+ self.register_buffer('posterior_mean_coef1', to_torch(
+ betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod)))
+ self.register_buffer('posterior_mean_coef2', to_torch(
+ (1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod)))
+
+ if self.parameterization == "eps":
+ lvlb_weights = self.betas ** 2 / (
+ 2 * self.posterior_variance * to_torch(alphas) * (1 - self.alphas_cumprod))
+ elif self.parameterization == "x0":
+ lvlb_weights = 0.5 * np.sqrt(torch.Tensor(alphas_cumprod)) / (2. * 1 - torch.Tensor(alphas_cumprod))
+ else:
+ raise NotImplementedError("mu not supported")
+ # TODO how to choose this term
+ lvlb_weights[0] = lvlb_weights[1]
+ self.register_buffer('lvlb_weights', lvlb_weights, persistent=False)
+ assert not torch.isnan(self.lvlb_weights).all()
+
+ @contextmanager
+ def ema_scope(self, context=None):
+ if self.use_ema:
+ self.model_ema.store(self.model.parameters())
+ self.model_ema.copy_to(self.model)
+ if context is not None:
+ print(f"{context}: Switched to EMA weights")
+ try:
+ yield None
+ finally:
+ if self.use_ema:
+ self.model_ema.restore(self.model.parameters())
+ if context is not None:
+ print(f"{context}: Restored training weights")
+
+ def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
+ sd = torch.load(path, map_location="cpu")
+ if "state_dict" in list(sd.keys()):
+ sd = sd["state_dict"]
+ keys = list(sd.keys())
+ for k in keys:
+ for ik in ignore_keys:
+ if k.startswith(ik):
+ print("Deleting key {} from state_dict.".format(k))
+ del sd[k]
+ missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(
+ sd, strict=False)
+ print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
+ if len(missing) > 0:
+ print(f"Missing Keys: {missing}")
+ if len(unexpected) > 0:
+ print(f"Unexpected Keys: {unexpected}")
+
+ def q_mean_variance(self, x_start, t):
+ """
+ Get the distribution q(x_t | x_0).
+ :param x_start: the [N x C x ...] tensor of noiseless inputs.
+ :param t: the number of diffusion steps (minus 1). Here, 0 means one step.
+ :return: A tuple (mean, variance, log_variance), all of x_start's shape.
+ """
+ mean = (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start)
+ variance = extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape)
+ log_variance = extract_into_tensor(self.log_one_minus_alphas_cumprod, t, x_start.shape)
+ return mean, variance, log_variance
+
+ def predict_start_from_noise(self, x_t, t, noise):
+ return (
+ extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t -
+ extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise
+ )
+
+ def q_posterior(self, x_start, x_t, t):
+ posterior_mean = (
+ extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start +
+ extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t
+ )
+ posterior_variance = extract_into_tensor(self.posterior_variance, t, x_t.shape)
+ posterior_log_variance_clipped = extract_into_tensor(self.posterior_log_variance_clipped, t, x_t.shape)
+ return posterior_mean, posterior_variance, posterior_log_variance_clipped
+
+ def p_mean_variance(self, x, t, clip_denoised: bool):
+ model_out = self.model(x, t)
+ if self.parameterization == "eps":
+ x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
+ elif self.parameterization == "x0":
+ x_recon = model_out
+ if clip_denoised:
+ x_recon.clamp_(-1., 1.)
+
+ model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
+ return model_mean, posterior_variance, posterior_log_variance
+
+ @torch.no_grad()
+ def p_sample(self, x, t, clip_denoised=True, repeat_noise=False):
+ b, *_, device = *x.shape, x.device
+ model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, clip_denoised=clip_denoised)
+ noise = noise_like(x.shape, device, repeat_noise)
+ # no noise when t == 0
+ nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
+ return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
+
+ @torch.no_grad()
+ def p_sample_loop(self, shape, return_intermediates=False):
+ device = self.betas.device
+ b = shape[0]
+ img = torch.randn(shape, device=device)
+ intermediates = [img]
+ for i in tqdm(reversed(range(0, self.num_timesteps)), desc='Sampling t', total=self.num_timesteps):
+ img = self.p_sample(img, torch.full((b,), i, device=device, dtype=torch.long),
+ clip_denoised=self.clip_denoised)
+ if i % self.log_every_t == 0 or i == self.num_timesteps - 1:
+ intermediates.append(img)
+ if return_intermediates:
+ return img, intermediates
+ return img
+
+ @torch.no_grad()
+ def sample(self, batch_size=16, return_intermediates=False):
+ image_size = self.image_size
+ channels = self.channels
+ return self.p_sample_loop((batch_size, channels, image_size, image_size),
+ return_intermediates=return_intermediates)
+
+ def q_sample(self, x_start, t, noise=None):
+ noise = default(noise, lambda: torch.randn_like(x_start))
+ return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
+ extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise)
+
+ def get_loss(self, pred, target, mean=True):
+ if self.loss_type == 'l1':
+ loss = (target - pred).abs()
+ if mean:
+ loss = loss.mean()
+ elif self.loss_type == 'l2':
+ if mean:
+ loss = torch.nn.functional.mse_loss(target, pred)
+ else:
+ loss = torch.nn.functional.mse_loss(target, pred, reduction='none')
+ else:
+ raise NotImplementedError("unknown loss type '{loss_type}'")
+
+ return loss
+
+ def p_losses(self, x_start, t, noise=None):
+ noise = default(noise, lambda: torch.randn_like(x_start))
+ x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
+ model_out = self.model(x_noisy, t)
+
+ loss_dict = {}
+ if self.parameterization == "eps":
+ target = noise
+ elif self.parameterization == "x0":
+ target = x_start
+ else:
+ raise NotImplementedError(f"Paramterization {self.parameterization} not yet supported")
+
+ loss = self.get_loss(model_out, target, mean=False).mean(dim=[1, 2, 3])
+
+ log_prefix = 'train' if self.training else 'val'
+
+ loss_dict.update({f'{log_prefix}/loss_simple': loss.mean()})
+ loss_simple = loss.mean() * self.l_simple_weight
+
+ loss_vlb = (self.lvlb_weights[t] * loss).mean()
+ loss_dict.update({f'{log_prefix}/loss_vlb': loss_vlb})
+
+ loss = loss_simple + self.original_elbo_weight * loss_vlb
+
+ loss_dict.update({f'{log_prefix}/loss': loss})
+
+ return loss, loss_dict
+
+ def forward(self, x, *args, **kwargs):
+ # b, c, h, w, device, img_size, = *x.shape, x.device, self.image_size
+ # assert h == img_size and w == img_size, f'height and width of image must be {img_size}'
+ t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long()
+ return self.p_losses(x, t, *args, **kwargs)
+
+ def get_input(self, batch, k):
+ x = batch[k]
+ if len(x.shape) == 3:
+ x = x[..., None]
+ x = rearrange(x, 'b h w c -> b c h w')
+ x = x.to(memory_format=torch.contiguous_format).float()
+ return x
+
+ def shared_step(self, batch):
+ x = self.get_input(batch, self.first_stage_key)
+ loss, loss_dict = self(x)
+ return loss, loss_dict
+
+ def training_step(self, batch, batch_idx):
+ loss, loss_dict = self.shared_step(batch)
+
+ self.log_dict(loss_dict, prog_bar=True,
+ logger=True, on_step=True, on_epoch=True)
+
+ self.log("global_step", self.global_step,
+ prog_bar=True, logger=True, on_step=True, on_epoch=False)
+
+ if self.use_scheduler:
+ lr = self.optimizers().param_groups[0]['lr']
+ self.log('lr_abs', lr, prog_bar=True, logger=True, on_step=True, on_epoch=False)
+
+ return loss
+
+ @torch.no_grad()
+ def validation_step(self, batch, batch_idx):
+ _, loss_dict_no_ema = self.shared_step(batch)
+ with self.ema_scope():
+ _, loss_dict_ema = self.shared_step(batch)
+ loss_dict_ema = {key + '_ema': loss_dict_ema[key] for key in loss_dict_ema}
+ self.log_dict(loss_dict_no_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True)
+ self.log_dict(loss_dict_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True)
+
+ def on_train_batch_end(self, *args, **kwargs):
+ if self.use_ema:
+ self.model_ema(self.model)
+
+ def _get_rows_from_list(self, samples):
+ n_imgs_per_row = len(samples)
+ denoise_grid = rearrange(samples, 'n b c h w -> b n c h w')
+ denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
+ denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
+ return denoise_grid
+
+ @torch.no_grad()
+ def log_images(self, batch, N=8, n_row=2, sample=True, return_keys=None, **kwargs):
+ log = dict()
+ x = self.get_input(batch, self.first_stage_key)
+ N = min(x.shape[0], N)
+ n_row = min(x.shape[0], n_row)
+ x = x.to(self.device)[:N]
+ log["inputs"] = x
+
+ # get diffusion row
+ diffusion_row = list()
+ x_start = x[:n_row]
+
+ for t in range(self.num_timesteps):
+ if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
+ t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
+ t = t.to(self.device).long()
+ noise = torch.randn_like(x_start)
+ x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
+ diffusion_row.append(x_noisy)
+
+ log["diffusion_row"] = self._get_rows_from_list(diffusion_row)
+
+ if sample:
+ # get denoise row
+ with self.ema_scope("Plotting"):
+ samples, denoise_row = self.sample(batch_size=N, return_intermediates=True)
+
+ log["samples"] = samples
+ log["denoise_row"] = self._get_rows_from_list(denoise_row)
+
+ if return_keys:
+ if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
+ return log
+ else:
+ return {key: log[key] for key in return_keys}
+ return log
+
+ def configure_optimizers(self):
+ lr = self.learning_rate
+ params = list(self.model.parameters())
+ if self.learn_logvar:
+ params = params + [self.logvar]
+ opt = torch.optim.AdamW(params, lr=lr)
+ return opt
+
+
+class LatentDiffusion(DDPM):
+ """main class"""
+ def __init__(self,
+ first_stage_config,
+ cond_stage_config,
+ num_timesteps_cond=None,
+ cond_stage_key="image",
+ cond_stage_trainable=False,
+ concat_mode=True,
+ cond_stage_forward=None,
+ conditioning_key=None,
+ scale_factor=1.0,
+ scale_by_std=False,
+ *args, **kwargs):
+ self.num_timesteps_cond = default(num_timesteps_cond, 1)
+ self.scale_by_std = scale_by_std
+ assert self.num_timesteps_cond <= kwargs['timesteps']
+ # for backwards compatibility after implementation of DiffusionWrapper
+ if conditioning_key is None:
+ conditioning_key = 'concat' if concat_mode else 'crossattn'
+ if cond_stage_config == '__is_unconditional__':
+ conditioning_key = None
+ ckpt_path = kwargs.pop("ckpt_path", None)
+ ignore_keys = kwargs.pop("ignore_keys", [])
+ super().__init__(conditioning_key=conditioning_key, *args, **kwargs)
+ self.concat_mode = concat_mode
+ self.cond_stage_trainable = cond_stage_trainable
+ self.cond_stage_key = cond_stage_key
+ try:
+ self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1
+ except:
+ self.num_downs = 0
+ if not scale_by_std:
+ self.scale_factor = scale_factor
+ else:
+ self.register_buffer('scale_factor', torch.tensor(scale_factor))
+ self.instantiate_first_stage(first_stage_config)
+ self.instantiate_cond_stage(cond_stage_config)
+ self.cond_stage_forward = cond_stage_forward
+ self.clip_denoised = False
+ self.bbox_tokenizer = None
+
+ self.restarted_from_ckpt = False
+ if ckpt_path is not None:
+ self.init_from_ckpt(ckpt_path, ignore_keys)
+ self.restarted_from_ckpt = True
+
+ def make_cond_schedule(self, ):
+ self.cond_ids = torch.full(size=(self.num_timesteps,), fill_value=self.num_timesteps - 1, dtype=torch.long)
+ ids = torch.round(torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)).long()
+ self.cond_ids[:self.num_timesteps_cond] = ids
+
+ @rank_zero_only
+ @torch.no_grad()
+ def on_train_batch_start(self, batch, batch_idx, dataloader_idx):
+ # only for very first batch
+ if self.scale_by_std and self.current_epoch == 0 and self.global_step == 0 and batch_idx == 0 and not self.restarted_from_ckpt:
+ assert self.scale_factor == 1., 'rather not use custom rescaling and std-rescaling simultaneously'
+ # set rescale weight to 1./std of encodings
+ print("### USING STD-RESCALING ###")
+ x = super().get_input(batch, self.first_stage_key)
+ x = x.to(self.device)
+ encoder_posterior = self.encode_first_stage(x)
+ z = self.get_first_stage_encoding(encoder_posterior).detach()
+ del self.scale_factor
+ self.register_buffer('scale_factor', 1. / z.flatten().std())
+ print(f"setting self.scale_factor to {self.scale_factor}")
+ print("### USING STD-RESCALING ###")
+
+ def register_schedule(self,
+ given_betas=None, beta_schedule="linear", timesteps=1000,
+ linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
+ super().register_schedule(given_betas, beta_schedule, timesteps, linear_start, linear_end, cosine_s)
+
+ self.shorten_cond_schedule = self.num_timesteps_cond > 1
+ if self.shorten_cond_schedule:
+ self.make_cond_schedule()
+
+ def instantiate_first_stage(self, config):
+ model = instantiate_from_config(config)
+ self.first_stage_model = model.eval()
+ self.first_stage_model.train = disabled_train
+ for param in self.first_stage_model.parameters():
+ param.requires_grad = False
+
+ def instantiate_cond_stage(self, config):
+ if not self.cond_stage_trainable:
+ if config == "__is_first_stage__":
+ print("Using first stage also as cond stage.")
+ self.cond_stage_model = self.first_stage_model
+ elif config == "__is_unconditional__":
+ print(f"Training {self.__class__.__name__} as an unconditional model.")
+ self.cond_stage_model = None
+ # self.be_unconditional = True
+ else:
+ model = instantiate_from_config(config)
+ self.cond_stage_model = model.eval()
+ self.cond_stage_model.train = disabled_train
+ for param in self.cond_stage_model.parameters():
+ param.requires_grad = False
+ else:
+ assert config != '__is_first_stage__'
+ assert config != '__is_unconditional__'
+ model = instantiate_from_config(config)
+ self.cond_stage_model = model
+
+ def _get_denoise_row_from_list(self, samples, desc='', force_no_decoder_quantization=False):
+ denoise_row = []
+ for zd in tqdm(samples, desc=desc):
+ denoise_row.append(self.decode_first_stage(zd.to(self.device),
+ force_not_quantize=force_no_decoder_quantization))
+ n_imgs_per_row = len(denoise_row)
+ denoise_row = torch.stack(denoise_row) # n_log_step, n_row, C, H, W
+ denoise_grid = rearrange(denoise_row, 'n b c h w -> b n c h w')
+ denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
+ denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
+ return denoise_grid
+
+ def get_first_stage_encoding(self, encoder_posterior):
+ if isinstance(encoder_posterior, DiagonalGaussianDistribution):
+ z = encoder_posterior.sample()
+ elif isinstance(encoder_posterior, torch.Tensor):
+ z = encoder_posterior
+ else:
+ raise NotImplementedError(f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented")
+ return self.scale_factor * z
+
+ def get_learned_conditioning(self, c):
+ if self.cond_stage_forward is None:
+ if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode):
+ c = self.cond_stage_model.encode(c)
+ if isinstance(c, DiagonalGaussianDistribution):
+ c = c.mode()
+ else:
+ c = self.cond_stage_model(c)
+ else:
+ assert hasattr(self.cond_stage_model, self.cond_stage_forward)
+ c = getattr(self.cond_stage_model, self.cond_stage_forward)(c)
+ return c
+
+ def meshgrid(self, h, w):
+ y = torch.arange(0, h).view(h, 1, 1).repeat(1, w, 1)
+ x = torch.arange(0, w).view(1, w, 1).repeat(h, 1, 1)
+
+ arr = torch.cat([y, x], dim=-1)
+ return arr
+
+ def delta_border(self, h, w):
+ """
+ :param h: height
+ :param w: width
+ :return: normalized distance to image border,
+ wtith min distance = 0 at border and max dist = 0.5 at image center
+ """
+ lower_right_corner = torch.tensor([h - 1, w - 1]).view(1, 1, 2)
+ arr = self.meshgrid(h, w) / lower_right_corner
+ dist_left_up = torch.min(arr, dim=-1, keepdims=True)[0]
+ dist_right_down = torch.min(1 - arr, dim=-1, keepdims=True)[0]
+ edge_dist = torch.min(torch.cat([dist_left_up, dist_right_down], dim=-1), dim=-1)[0]
+ return edge_dist
+
+ def get_weighting(self, h, w, Ly, Lx, device):
+ weighting = self.delta_border(h, w)
+ weighting = torch.clip(weighting, self.split_input_params["clip_min_weight"],
+ self.split_input_params["clip_max_weight"], )
+ weighting = weighting.view(1, h * w, 1).repeat(1, 1, Ly * Lx).to(device)
+
+ if self.split_input_params["tie_braker"]:
+ L_weighting = self.delta_border(Ly, Lx)
+ L_weighting = torch.clip(L_weighting,
+ self.split_input_params["clip_min_tie_weight"],
+ self.split_input_params["clip_max_tie_weight"])
+
+ L_weighting = L_weighting.view(1, 1, Ly * Lx).to(device)
+ weighting = weighting * L_weighting
+ return weighting
+
+ def get_fold_unfold(self, x, kernel_size, stride, uf=1, df=1): # todo load once not every time, shorten code
+ """
+ :param x: img of size (bs, c, h, w)
+ :return: n img crops of size (n, bs, c, kernel_size[0], kernel_size[1])
+ """
+ bs, nc, h, w = x.shape
+
+ # number of crops in image
+ Ly = (h - kernel_size[0]) // stride[0] + 1
+ Lx = (w - kernel_size[1]) // stride[1] + 1
+
+ if uf == 1 and df == 1:
+ fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
+ unfold = torch.nn.Unfold(**fold_params)
+
+ fold = torch.nn.Fold(output_size=x.shape[2:], **fold_params)
+
+ weighting = self.get_weighting(kernel_size[0], kernel_size[1], Ly, Lx, x.device).to(x.dtype)
+ normalization = fold(weighting).view(1, 1, h, w) # normalizes the overlap
+ weighting = weighting.view((1, 1, kernel_size[0], kernel_size[1], Ly * Lx))
+
+ elif uf > 1 and df == 1:
+ fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
+ unfold = torch.nn.Unfold(**fold_params)
+
+ fold_params2 = dict(kernel_size=(kernel_size[0] * uf, kernel_size[0] * uf),
+ dilation=1, padding=0,
+ stride=(stride[0] * uf, stride[1] * uf))
+ fold = torch.nn.Fold(output_size=(x.shape[2] * uf, x.shape[3] * uf), **fold_params2)
+
+ weighting = self.get_weighting(kernel_size[0] * uf, kernel_size[1] * uf, Ly, Lx, x.device).to(x.dtype)
+ normalization = fold(weighting).view(1, 1, h * uf, w * uf) # normalizes the overlap
+ weighting = weighting.view((1, 1, kernel_size[0] * uf, kernel_size[1] * uf, Ly * Lx))
+
+ elif df > 1 and uf == 1:
+ fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
+ unfold = torch.nn.Unfold(**fold_params)
+
+ fold_params2 = dict(kernel_size=(kernel_size[0] // df, kernel_size[0] // df),
+ dilation=1, padding=0,
+ stride=(stride[0] // df, stride[1] // df))
+ fold = torch.nn.Fold(output_size=(x.shape[2] // df, x.shape[3] // df), **fold_params2)
+
+ weighting = self.get_weighting(kernel_size[0] // df, kernel_size[1] // df, Ly, Lx, x.device).to(x.dtype)
+ normalization = fold(weighting).view(1, 1, h // df, w // df) # normalizes the overlap
+ weighting = weighting.view((1, 1, kernel_size[0] // df, kernel_size[1] // df, Ly * Lx))
+
+ else:
+ raise NotImplementedError
+
+ return fold, unfold, normalization, weighting
+
+ @torch.no_grad()
+ def get_input(self, batch, k, return_first_stage_outputs=False, force_c_encode=False,
+ cond_key=None, return_original_cond=False, bs=None):
+ x = super().get_input(batch, k)
+ if bs is not None:
+ x = x[:bs]
+ x = x.to(self.device)
+ encoder_posterior = self.encode_first_stage(x)
+ z = self.get_first_stage_encoding(encoder_posterior).detach()
+
+ if self.model.conditioning_key is not None:
+ if cond_key is None:
+ cond_key = self.cond_stage_key
+ if cond_key != self.first_stage_key:
+ if cond_key in ['caption', 'coordinates_bbox']:
+ xc = batch[cond_key]
+ elif cond_key == 'class_label':
+ xc = batch
+ else:
+ xc = super().get_input(batch, cond_key).to(self.device)
+ else:
+ xc = x
+ if not self.cond_stage_trainable or force_c_encode:
+ if isinstance(xc, dict) or isinstance(xc, list):
+ # import pudb; pudb.set_trace()
+ c = self.get_learned_conditioning(xc)
+ else:
+ c = self.get_learned_conditioning(xc.to(self.device))
+ else:
+ c = xc
+ if bs is not None:
+ c = c[:bs]
+
+ if self.use_positional_encodings:
+ pos_x, pos_y = self.compute_latent_shifts(batch)
+ ckey = __conditioning_keys__[self.model.conditioning_key]
+ c = {ckey: c, 'pos_x': pos_x, 'pos_y': pos_y}
+
+ else:
+ c = None
+ xc = None
+ if self.use_positional_encodings:
+ pos_x, pos_y = self.compute_latent_shifts(batch)
+ c = {'pos_x': pos_x, 'pos_y': pos_y}
+ out = [z, c]
+ if return_first_stage_outputs:
+ xrec = self.decode_first_stage(z)
+ out.extend([x, xrec])
+ if return_original_cond:
+ out.append(xc)
+ return out
+
+ @torch.no_grad()
+ def decode_first_stage(self, z, predict_cids=False, force_not_quantize=False):
+ if predict_cids:
+ if z.dim() == 4:
+ z = torch.argmax(z.exp(), dim=1).long()
+ z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)
+ z = rearrange(z, 'b h w c -> b c h w').contiguous()
+
+ z = 1. / self.scale_factor * z
+
+ if hasattr(self, "split_input_params"):
+ if self.split_input_params["patch_distributed_vq"]:
+ ks = self.split_input_params["ks"] # eg. (128, 128)
+ stride = self.split_input_params["stride"] # eg. (64, 64)
+ uf = self.split_input_params["vqf"]
+ bs, nc, h, w = z.shape
+ if ks[0] > h or ks[1] > w:
+ ks = (min(ks[0], h), min(ks[1], w))
+ print("reducing Kernel")
+
+ if stride[0] > h or stride[1] > w:
+ stride = (min(stride[0], h), min(stride[1], w))
+ print("reducing stride")
+
+ fold, unfold, normalization, weighting = self.get_fold_unfold(z, ks, stride, uf=uf)
+
+ z = unfold(z) # (bn, nc * prod(**ks), L)
+ # 1. Reshape to img shape
+ z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
+
+ # 2. apply model loop over last dim
+ if isinstance(self.first_stage_model, VQModelInterface):
+ output_list = [self.first_stage_model.decode(z[:, :, :, :, i],
+ force_not_quantize=predict_cids or force_not_quantize)
+ for i in range(z.shape[-1])]
+ else:
+
+ output_list = [self.first_stage_model.decode(z[:, :, :, :, i])
+ for i in range(z.shape[-1])]
+
+ o = torch.stack(output_list, axis=-1) # # (bn, nc, ks[0], ks[1], L)
+ o = o * weighting
+ # Reverse 1. reshape to img shape
+ o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
+ # stitch crops together
+ decoded = fold(o)
+ decoded = decoded / normalization # norm is shape (1, 1, h, w)
+ return decoded
+ else:
+ if isinstance(self.first_stage_model, VQModelInterface):
+ return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
+ else:
+ return self.first_stage_model.decode(z)
+
+ else:
+ if isinstance(self.first_stage_model, VQModelInterface):
+ return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
+ else:
+ return self.first_stage_model.decode(z)
+
+ # same as above but without decorator
+ def differentiable_decode_first_stage(self, z, predict_cids=False, force_not_quantize=False):
+ if predict_cids:
+ if z.dim() == 4:
+ z = torch.argmax(z.exp(), dim=1).long()
+ z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)
+ z = rearrange(z, 'b h w c -> b c h w').contiguous()
+
+ z = 1. / self.scale_factor * z
+
+ if hasattr(self, "split_input_params"):
+ if self.split_input_params["patch_distributed_vq"]:
+ ks = self.split_input_params["ks"] # eg. (128, 128)
+ stride = self.split_input_params["stride"] # eg. (64, 64)
+ uf = self.split_input_params["vqf"]
+ bs, nc, h, w = z.shape
+ if ks[0] > h or ks[1] > w:
+ ks = (min(ks[0], h), min(ks[1], w))
+ print("reducing Kernel")
+
+ if stride[0] > h or stride[1] > w:
+ stride = (min(stride[0], h), min(stride[1], w))
+ print("reducing stride")
+
+ fold, unfold, normalization, weighting = self.get_fold_unfold(z, ks, stride, uf=uf)
+
+ z = unfold(z) # (bn, nc * prod(**ks), L)
+ # 1. Reshape to img shape
+ z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
+
+ # 2. apply model loop over last dim
+ if isinstance(self.first_stage_model, VQModelInterface):
+ output_list = [self.first_stage_model.decode(z[:, :, :, :, i],
+ force_not_quantize=predict_cids or force_not_quantize)
+ for i in range(z.shape[-1])]
+ else:
+
+ output_list = [self.first_stage_model.decode(z[:, :, :, :, i])
+ for i in range(z.shape[-1])]
+
+ o = torch.stack(output_list, axis=-1) # # (bn, nc, ks[0], ks[1], L)
+ o = o * weighting
+ # Reverse 1. reshape to img shape
+ o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
+ # stitch crops together
+ decoded = fold(o)
+ decoded = decoded / normalization # norm is shape (1, 1, h, w)
+ return decoded
+ else:
+ if isinstance(self.first_stage_model, VQModelInterface):
+ return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
+ else:
+ return self.first_stage_model.decode(z)
+
+ else:
+ if isinstance(self.first_stage_model, VQModelInterface):
+ return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
+ else:
+ return self.first_stage_model.decode(z)
+
+ @torch.no_grad()
+ def encode_first_stage(self, x):
+ if hasattr(self, "split_input_params"):
+ if self.split_input_params["patch_distributed_vq"]:
+ ks = self.split_input_params["ks"] # eg. (128, 128)
+ stride = self.split_input_params["stride"] # eg. (64, 64)
+ df = self.split_input_params["vqf"]
+ self.split_input_params['original_image_size'] = x.shape[-2:]
+ bs, nc, h, w = x.shape
+ if ks[0] > h or ks[1] > w:
+ ks = (min(ks[0], h), min(ks[1], w))
+ print("reducing Kernel")
+
+ if stride[0] > h or stride[1] > w:
+ stride = (min(stride[0], h), min(stride[1], w))
+ print("reducing stride")
+
+ fold, unfold, normalization, weighting = self.get_fold_unfold(x, ks, stride, df=df)
+ z = unfold(x) # (bn, nc * prod(**ks), L)
+ # Reshape to img shape
+ z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
+
+ output_list = [self.first_stage_model.encode(z[:, :, :, :, i])
+ for i in range(z.shape[-1])]
+
+ o = torch.stack(output_list, axis=-1)
+ o = o * weighting
+
+ # Reverse reshape to img shape
+ o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
+ # stitch crops together
+ decoded = fold(o)
+ decoded = decoded / normalization
+ return decoded
+
+ else:
+ return self.first_stage_model.encode(x)
+ else:
+ return self.first_stage_model.encode(x)
+
+ def shared_step(self, batch, **kwargs):
+ x, c = self.get_input(batch, self.first_stage_key)
+ loss = self(x, c)
+ return loss
+
+ def forward(self, x, c, *args, **kwargs):
+ t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long()
+ if self.model.conditioning_key is not None:
+ assert c is not None
+ if self.cond_stage_trainable:
+ c = self.get_learned_conditioning(c)
+ if self.shorten_cond_schedule: # TODO: drop this option
+ tc = self.cond_ids[t].to(self.device)
+ c = self.q_sample(x_start=c, t=tc, noise=torch.randn_like(c.float()))
+ return self.p_losses(x, c, t, *args, **kwargs)
+
+ def _rescale_annotations(self, bboxes, crop_coordinates): # TODO: move to dataset
+ def rescale_bbox(bbox):
+ x0 = clamp((bbox[0] - crop_coordinates[0]) / crop_coordinates[2])
+ y0 = clamp((bbox[1] - crop_coordinates[1]) / crop_coordinates[3])
+ w = min(bbox[2] / crop_coordinates[2], 1 - x0)
+ h = min(bbox[3] / crop_coordinates[3], 1 - y0)
+ return x0, y0, w, h
+
+ return [rescale_bbox(b) for b in bboxes]
+
+ def apply_model(self, x_noisy, t, cond, return_ids=False):
+
+ if isinstance(cond, dict):
+ # hybrid case, cond is exptected to be a dict
+ pass
+ else:
+ if not isinstance(cond, list):
+ cond = [cond]
+ key = 'c_concat' if self.model.conditioning_key == 'concat' else 'c_crossattn'
+ cond = {key: cond}
+
+ if hasattr(self, "split_input_params"):
+ assert len(cond) == 1 # todo can only deal with one conditioning atm
+ assert not return_ids
+ ks = self.split_input_params["ks"] # eg. (128, 128)
+ stride = self.split_input_params["stride"] # eg. (64, 64)
+
+ h, w = x_noisy.shape[-2:]
+
+ fold, unfold, normalization, weighting = self.get_fold_unfold(x_noisy, ks, stride)
+
+ z = unfold(x_noisy) # (bn, nc * prod(**ks), L)
+ # Reshape to img shape
+ z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
+ z_list = [z[:, :, :, :, i] for i in range(z.shape[-1])]
+
+ if self.cond_stage_key in ["image", "LR_image", "segmentation",
+ 'bbox_img'] and self.model.conditioning_key: # todo check for completeness
+ c_key = next(iter(cond.keys())) # get key
+ c = next(iter(cond.values())) # get value
+ assert (len(c) == 1) # todo extend to list with more than one elem
+ c = c[0] # get element
+
+ c = unfold(c)
+ c = c.view((c.shape[0], -1, ks[0], ks[1], c.shape[-1])) # (bn, nc, ks[0], ks[1], L )
+
+ cond_list = [{c_key: [c[:, :, :, :, i]]} for i in range(c.shape[-1])]
+
+ elif self.cond_stage_key == 'coordinates_bbox':
+ assert 'original_image_size' in self.split_input_params, 'BoudingBoxRescaling is missing original_image_size'
+
+ # assuming padding of unfold is always 0 and its dilation is always 1
+ n_patches_per_row = int((w - ks[0]) / stride[0] + 1)
+ full_img_h, full_img_w = self.split_input_params['original_image_size']
+ # as we are operating on latents, we need the factor from the original image size to the
+ # spatial latent size to properly rescale the crops for regenerating the bbox annotations
+ num_downs = self.first_stage_model.encoder.num_resolutions - 1
+ rescale_latent = 2 ** (num_downs)
+
+ # get top left postions of patches as conforming for the bbbox tokenizer, therefore we
+ # need to rescale the tl patch coordinates to be in between (0,1)
+ tl_patch_coordinates = [(rescale_latent * stride[0] * (patch_nr % n_patches_per_row) / full_img_w,
+ rescale_latent * stride[1] * (patch_nr // n_patches_per_row) / full_img_h)
+ for patch_nr in range(z.shape[-1])]
+
+ # patch_limits are tl_coord, width and height coordinates as (x_tl, y_tl, h, w)
+ patch_limits = [(x_tl, y_tl,
+ rescale_latent * ks[0] / full_img_w,
+ rescale_latent * ks[1] / full_img_h) for x_tl, y_tl in tl_patch_coordinates]
+ # patch_values = [(np.arange(x_tl,min(x_tl+ks, 1.)),np.arange(y_tl,min(y_tl+ks, 1.))) for x_tl, y_tl in tl_patch_coordinates]
+
+ # tokenize crop coordinates for the bounding boxes of the respective patches
+ patch_limits_tknzd = [torch.LongTensor(self.bbox_tokenizer._crop_encoder(bbox))[None].to(self.device)
+ for bbox in patch_limits] # list of length l with tensors of shape (1, 2)
+ print(patch_limits_tknzd[0].shape)
+ # cut tknzd crop position from conditioning
+ assert isinstance(cond, dict), 'cond must be dict to be fed into model'
+ cut_cond = cond['c_crossattn'][0][..., :-2].to(self.device)
+ print(cut_cond.shape)
+
+ adapted_cond = torch.stack([torch.cat([cut_cond, p], dim=1) for p in patch_limits_tknzd])
+ adapted_cond = rearrange(adapted_cond, 'l b n -> (l b) n')
+ print(adapted_cond.shape)
+ adapted_cond = self.get_learned_conditioning(adapted_cond)
+ print(adapted_cond.shape)
+ adapted_cond = rearrange(adapted_cond, '(l b) n d -> l b n d', l=z.shape[-1])
+ print(adapted_cond.shape)
+
+ cond_list = [{'c_crossattn': [e]} for e in adapted_cond]
+
+ else:
+ cond_list = [cond for i in range(z.shape[-1])] # Todo make this more efficient
+
+ # apply model by loop over crops
+ output_list = [self.model(z_list[i], t, **cond_list[i]) for i in range(z.shape[-1])]
+ assert not isinstance(output_list[0],
+ tuple) # todo cant deal with multiple model outputs check this never happens
+
+ o = torch.stack(output_list, axis=-1)
+ o = o * weighting
+ # Reverse reshape to img shape
+ o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
+ # stitch crops together
+ x_recon = fold(o) / normalization
+
+ else:
+ x_recon = self.model(x_noisy, t, **cond)
+
+ if isinstance(x_recon, tuple) and not return_ids:
+ return x_recon[0]
+ else:
+ return x_recon
+
+ def _predict_eps_from_xstart(self, x_t, t, pred_xstart):
+ return (extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - pred_xstart) / \
+ extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
+
+ def _prior_bpd(self, x_start):
+ """
+ Get the prior KL term for the variational lower-bound, measured in
+ bits-per-dim.
+ This term can't be optimized, as it only depends on the encoder.
+ :param x_start: the [N x C x ...] tensor of inputs.
+ :return: a batch of [N] KL values (in bits), one per batch element.
+ """
+ batch_size = x_start.shape[0]
+ t = torch.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device)
+ qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t)
+ kl_prior = normal_kl(mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0)
+ return mean_flat(kl_prior) / np.log(2.0)
+
+ def p_losses(self, x_start, cond, t, noise=None):
+ noise = default(noise, lambda: torch.randn_like(x_start))
+ x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
+ model_output = self.apply_model(x_noisy, t, cond)
+
+ loss_dict = {}
+ prefix = 'train' if self.training else 'val'
+
+ if self.parameterization == "x0":
+ target = x_start
+ elif self.parameterization == "eps":
+ target = noise
+ else:
+ raise NotImplementedError()
+
+ loss_simple = self.get_loss(model_output, target, mean=False).mean([1, 2, 3])
+ loss_dict.update({f'{prefix}/loss_simple': loss_simple.mean()})
+
+ logvar_t = self.logvar[t].to(self.device)
+ loss = loss_simple / torch.exp(logvar_t) + logvar_t
+ # loss = loss_simple / torch.exp(self.logvar) + self.logvar
+ if self.learn_logvar:
+ loss_dict.update({f'{prefix}/loss_gamma': loss.mean()})
+ loss_dict.update({'logvar': self.logvar.data.mean()})
+
+ loss = self.l_simple_weight * loss.mean()
+
+ loss_vlb = self.get_loss(model_output, target, mean=False).mean(dim=(1, 2, 3))
+ loss_vlb = (self.lvlb_weights[t] * loss_vlb).mean()
+ loss_dict.update({f'{prefix}/loss_vlb': loss_vlb})
+ loss += (self.original_elbo_weight * loss_vlb)
+ loss_dict.update({f'{prefix}/loss': loss})
+
+ return loss, loss_dict
+
+ def p_mean_variance(self, x, c, t, clip_denoised: bool, return_codebook_ids=False, quantize_denoised=False,
+ return_x0=False, score_corrector=None, corrector_kwargs=None):
+ t_in = t
+ model_out = self.apply_model(x, t_in, c, return_ids=return_codebook_ids)
+
+ if score_corrector is not None:
+ assert self.parameterization == "eps"
+ model_out = score_corrector.modify_score(self, model_out, x, t, c, **corrector_kwargs)
+
+ if return_codebook_ids:
+ model_out, logits = model_out
+
+ if self.parameterization == "eps":
+ x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
+ elif self.parameterization == "x0":
+ x_recon = model_out
+ else:
+ raise NotImplementedError()
+
+ if clip_denoised:
+ x_recon.clamp_(-1., 1.)
+ if quantize_denoised:
+ x_recon, _, [_, _, indices] = self.first_stage_model.quantize(x_recon)
+ model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
+ if return_codebook_ids:
+ return model_mean, posterior_variance, posterior_log_variance, logits
+ elif return_x0:
+ return model_mean, posterior_variance, posterior_log_variance, x_recon
+ else:
+ return model_mean, posterior_variance, posterior_log_variance
+
+ @torch.no_grad()
+ def p_sample(self, x, c, t, clip_denoised=False, repeat_noise=False,
+ return_codebook_ids=False, quantize_denoised=False, return_x0=False,
+ temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None):
+ b, *_, device = *x.shape, x.device
+ outputs = self.p_mean_variance(x=x, c=c, t=t, clip_denoised=clip_denoised,
+ return_codebook_ids=return_codebook_ids,
+ quantize_denoised=quantize_denoised,
+ return_x0=return_x0,
+ score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
+ if return_codebook_ids:
+ raise DeprecationWarning("Support dropped.")
+ model_mean, _, model_log_variance, logits = outputs
+ elif return_x0:
+ model_mean, _, model_log_variance, x0 = outputs
+ else:
+ model_mean, _, model_log_variance = outputs
+
+ noise = noise_like(x.shape, device, repeat_noise) * temperature
+ if noise_dropout > 0.:
+ noise = torch.nn.functional.dropout(noise, p=noise_dropout)
+ # no noise when t == 0
+ nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
+
+ if return_codebook_ids:
+ return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, logits.argmax(dim=1)
+ if return_x0:
+ return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, x0
+ else:
+ return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
+
+ @torch.no_grad()
+ def progressive_denoising(self, cond, shape, verbose=True, callback=None, quantize_denoised=False,
+ img_callback=None, mask=None, x0=None, temperature=1., noise_dropout=0.,
+ score_corrector=None, corrector_kwargs=None, batch_size=None, x_T=None, start_T=None,
+ log_every_t=None):
+ if not log_every_t:
+ log_every_t = self.log_every_t
+ timesteps = self.num_timesteps
+ if batch_size is not None:
+ b = batch_size if batch_size is not None else shape[0]
+ shape = [batch_size] + list(shape)
+ else:
+ b = batch_size = shape[0]
+ if x_T is None:
+ img = torch.randn(shape, device=self.device)
+ else:
+ img = x_T
+ intermediates = []
+ if cond is not None:
+ if isinstance(cond, dict):
+ cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
+ list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
+ else:
+ cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
+
+ if start_T is not None:
+ timesteps = min(timesteps, start_T)
+ iterator = tqdm(reversed(range(0, timesteps)), desc='Progressive Generation',
+ total=timesteps) if verbose else reversed(
+ range(0, timesteps))
+ if type(temperature) == float:
+ temperature = [temperature] * timesteps
+
+ for i in iterator:
+ ts = torch.full((b,), i, device=self.device, dtype=torch.long)
+ if self.shorten_cond_schedule:
+ assert self.model.conditioning_key != 'hybrid'
+ tc = self.cond_ids[ts].to(cond.device)
+ cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
+
+ img, x0_partial = self.p_sample(img, cond, ts,
+ clip_denoised=self.clip_denoised,
+ quantize_denoised=quantize_denoised, return_x0=True,
+ temperature=temperature[i], noise_dropout=noise_dropout,
+ score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
+ if mask is not None:
+ assert x0 is not None
+ img_orig = self.q_sample(x0, ts)
+ img = img_orig * mask + (1. - mask) * img
+
+ if i % log_every_t == 0 or i == timesteps - 1:
+ intermediates.append(x0_partial)
+ if callback: callback(i)
+ if img_callback: img_callback(img, i)
+ return img, intermediates
+
+ @torch.no_grad()
+ def p_sample_loop(self, cond, shape, return_intermediates=False,
+ x_T=None, verbose=True, callback=None, timesteps=None, quantize_denoised=False,
+ mask=None, x0=None, img_callback=None, start_T=None,
+ log_every_t=None):
+
+ if not log_every_t:
+ log_every_t = self.log_every_t
+ device = self.betas.device
+ b = shape[0]
+ if x_T is None:
+ img = torch.randn(shape, device=device)
+ else:
+ img = x_T
+
+ intermediates = [img]
+ if timesteps is None:
+ timesteps = self.num_timesteps
+
+ if start_T is not None:
+ timesteps = min(timesteps, start_T)
+ iterator = tqdm(reversed(range(0, timesteps)), desc='Sampling t', total=timesteps) if verbose else reversed(
+ range(0, timesteps))
+
+ if mask is not None:
+ assert x0 is not None
+ assert x0.shape[2:3] == mask.shape[2:3] # spatial size has to match
+
+ for i in iterator:
+ ts = torch.full((b,), i, device=device, dtype=torch.long)
+ if self.shorten_cond_schedule:
+ assert self.model.conditioning_key != 'hybrid'
+ tc = self.cond_ids[ts].to(cond.device)
+ cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
+
+ img = self.p_sample(img, cond, ts,
+ clip_denoised=self.clip_denoised,
+ quantize_denoised=quantize_denoised)
+ if mask is not None:
+ img_orig = self.q_sample(x0, ts)
+ img = img_orig * mask + (1. - mask) * img
+
+ if i % log_every_t == 0 or i == timesteps - 1:
+ intermediates.append(img)
+ if callback: callback(i)
+ if img_callback: img_callback(img, i)
+
+ if return_intermediates:
+ return img, intermediates
+ return img
+
+ @torch.no_grad()
+ def sample(self, cond, batch_size=16, return_intermediates=False, x_T=None,
+ verbose=True, timesteps=None, quantize_denoised=False,
+ mask=None, x0=None, shape=None,**kwargs):
+ if shape is None:
+ shape = (batch_size, self.channels, self.image_size, self.image_size)
+ if cond is not None:
+ if isinstance(cond, dict):
+ cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
+ list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
+ else:
+ cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
+ return self.p_sample_loop(cond,
+ shape,
+ return_intermediates=return_intermediates, x_T=x_T,
+ verbose=verbose, timesteps=timesteps, quantize_denoised=quantize_denoised,
+ mask=mask, x0=x0)
+
+ @torch.no_grad()
+ def sample_log(self,cond,batch_size,ddim, ddim_steps,**kwargs):
+
+ if ddim:
+ ddim_sampler = DDIMSampler(self)
+ shape = (self.channels, self.image_size, self.image_size)
+ samples, intermediates =ddim_sampler.sample(ddim_steps,batch_size,
+ shape,cond,verbose=False,**kwargs)
+
+ else:
+ samples, intermediates = self.sample(cond=cond, batch_size=batch_size,
+ return_intermediates=True,**kwargs)
+
+ return samples, intermediates
+
+
+ @torch.no_grad()
+ def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None,
+ quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True,
+ plot_diffusion_rows=True, **kwargs):
+
+ use_ddim = ddim_steps is not None
+
+ log = dict()
+ z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key,
+ return_first_stage_outputs=True,
+ force_c_encode=True,
+ return_original_cond=True,
+ bs=N)
+ N = min(x.shape[0], N)
+ n_row = min(x.shape[0], n_row)
+ log["inputs"] = x
+ log["reconstruction"] = xrec
+ if self.model.conditioning_key is not None:
+ if hasattr(self.cond_stage_model, "decode"):
+ xc = self.cond_stage_model.decode(c)
+ log["conditioning"] = xc
+ elif self.cond_stage_key in ["caption"]:
+ xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["caption"])
+ log["conditioning"] = xc
+ elif self.cond_stage_key == 'class_label':
+ xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"])
+ log['conditioning'] = xc
+ elif isimage(xc):
+ log["conditioning"] = xc
+ if ismap(xc):
+ log["original_conditioning"] = self.to_rgb(xc)
+
+ if plot_diffusion_rows:
+ # get diffusion row
+ diffusion_row = list()
+ z_start = z[:n_row]
+ for t in range(self.num_timesteps):
+ if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
+ t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
+ t = t.to(self.device).long()
+ noise = torch.randn_like(z_start)
+ z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
+ diffusion_row.append(self.decode_first_stage(z_noisy))
+
+ diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W
+ diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
+ diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
+ diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
+ log["diffusion_row"] = diffusion_grid
+
+ if sample:
+ # get denoise row
+ with self.ema_scope("Plotting"):
+ samples, z_denoise_row = self.sample_log(cond=c,batch_size=N,ddim=use_ddim,
+ ddim_steps=ddim_steps,eta=ddim_eta)
+ # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
+ x_samples = self.decode_first_stage(samples)
+ log["samples"] = x_samples
+ if plot_denoise_rows:
+ denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
+ log["denoise_row"] = denoise_grid
+
+ if quantize_denoised and not isinstance(self.first_stage_model, AutoencoderKL) and not isinstance(
+ self.first_stage_model, IdentityFirstStage):
+ # also display when quantizing x0 while sampling
+ with self.ema_scope("Plotting Quantized Denoised"):
+ samples, z_denoise_row = self.sample_log(cond=c,batch_size=N,ddim=use_ddim,
+ ddim_steps=ddim_steps,eta=ddim_eta,
+ quantize_denoised=True)
+ # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True,
+ # quantize_denoised=True)
+ x_samples = self.decode_first_stage(samples.to(self.device))
+ log["samples_x0_quantized"] = x_samples
+
+ if inpaint:
+ # make a simple center square
+ b, h, w = z.shape[0], z.shape[2], z.shape[3]
+ mask = torch.ones(N, h, w).to(self.device)
+ # zeros will be filled in
+ mask[:, h // 4:3 * h // 4, w // 4:3 * w // 4] = 0.
+ mask = mask[:, None, ...]
+ with self.ema_scope("Plotting Inpaint"):
+
+ samples, _ = self.sample_log(cond=c,batch_size=N,ddim=use_ddim, eta=ddim_eta,
+ ddim_steps=ddim_steps, x0=z[:N], mask=mask)
+ x_samples = self.decode_first_stage(samples.to(self.device))
+ log["samples_inpainting"] = x_samples
+ log["mask"] = mask
+
+ # outpaint
+ with self.ema_scope("Plotting Outpaint"):
+ samples, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,eta=ddim_eta,
+ ddim_steps=ddim_steps, x0=z[:N], mask=mask)
+ x_samples = self.decode_first_stage(samples.to(self.device))
+ log["samples_outpainting"] = x_samples
+
+ if plot_progressive_rows:
+ with self.ema_scope("Plotting Progressives"):
+ img, progressives = self.progressive_denoising(c,
+ shape=(self.channels, self.image_size, self.image_size),
+ batch_size=N)
+ prog_row = self._get_denoise_row_from_list(progressives, desc="Progressive Generation")
+ log["progressive_row"] = prog_row
+
+ if return_keys:
+ if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
+ return log
+ else:
+ return {key: log[key] for key in return_keys}
+ return log
+
+ def configure_optimizers(self):
+ lr = self.learning_rate
+ params = list(self.model.parameters())
+ if self.cond_stage_trainable:
+ print(f"{self.__class__.__name__}: Also optimizing conditioner params!")
+ params = params + list(self.cond_stage_model.parameters())
+ if self.learn_logvar:
+ print('Diffusion model optimizing logvar')
+ params.append(self.logvar)
+ opt = torch.optim.AdamW(params, lr=lr)
+ if self.use_scheduler:
+ assert 'target' in self.scheduler_config
+ scheduler = instantiate_from_config(self.scheduler_config)
+
+ print("Setting up LambdaLR scheduler...")
+ scheduler = [
+ {
+ 'scheduler': LambdaLR(opt, lr_lambda=scheduler.schedule),
+ 'interval': 'step',
+ 'frequency': 1
+ }]
+ return [opt], scheduler
+ return opt
+
+ @torch.no_grad()
+ def to_rgb(self, x):
+ x = x.float()
+ if not hasattr(self, "colorize"):
+ self.colorize = torch.randn(3, x.shape[1], 1, 1).to(x)
+ x = nn.functional.conv2d(x, weight=self.colorize)
+ x = 2. * (x - x.min()) / (x.max() - x.min()) - 1.
+ return x
+
+
+class DiffusionWrapper(pl.LightningModule):
+ def __init__(self, diff_model_config, conditioning_key):
+ super().__init__()
+ self.diffusion_model = instantiate_from_config(diff_model_config)
+ self.conditioning_key = conditioning_key
+ assert self.conditioning_key in [None, 'concat', 'crossattn', 'hybrid', 'adm']
+
+ def forward(self, x, t, c_concat: list = None, c_crossattn: list = None):
+ if self.conditioning_key is None:
+ out = self.diffusion_model(x, t)
+ elif self.conditioning_key == 'concat':
+ xc = torch.cat([x] + c_concat, dim=1)
+ out = self.diffusion_model(xc, t)
+ elif self.conditioning_key == 'crossattn':
+ cc = torch.cat(c_crossattn, 1)
+ out = self.diffusion_model(x, t, context=cc)
+ elif self.conditioning_key == 'hybrid':
+ xc = torch.cat([x] + c_concat, dim=1)
+ cc = torch.cat(c_crossattn, 1)
+ out = self.diffusion_model(xc, t, context=cc)
+ elif self.conditioning_key == 'adm':
+ cc = c_crossattn[0]
+ out = self.diffusion_model(x, t, y=cc)
+ else:
+ raise NotImplementedError()
+
+ return out
+
+
+class Layout2ImgDiffusion(LatentDiffusion):
+ # TODO: move all layout-specific hacks to this class
+ def __init__(self, cond_stage_key, *args, **kwargs):
+ assert cond_stage_key == 'coordinates_bbox', 'Layout2ImgDiffusion only for cond_stage_key="coordinates_bbox"'
+ super().__init__(cond_stage_key=cond_stage_key, *args, **kwargs)
+
+ def log_images(self, batch, N=8, *args, **kwargs):
+ logs = super().log_images(batch=batch, N=N, *args, **kwargs)
+
+ key = 'train' if self.training else 'validation'
+ dset = self.trainer.datamodule.datasets[key]
+ mapper = dset.conditional_builders[self.cond_stage_key]
+
+ bbox_imgs = []
+ map_fn = lambda catno: dset.get_textual_label(dset.get_category_id(catno))
+ for tknzd_bbox in batch[self.cond_stage_key][:N]:
+ bboximg = mapper.plot(tknzd_bbox.detach().cpu(), map_fn, (256, 256))
+ bbox_imgs.append(bboximg)
+
+ cond_img = torch.stack(bbox_imgs, dim=0)
+ logs['bbox_image'] = cond_img
+ return logs
diff --git a/sd1/ldm/models/diffusion/ddpm_textual_inversion.py b/sd1/ldm/models/diffusion/ddpm_textual_inversion.py
new file mode 100644
index 0000000000000000000000000000000000000000..193c13595eac153edd8ba65b7813f80e5af22b91
--- /dev/null
+++ b/sd1/ldm/models/diffusion/ddpm_textual_inversion.py
@@ -0,0 +1,1519 @@
+"""
+wild mixture of
+https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
+https://github.com/openai/improved-diffusion/blob/e94489283bb876ac1477d5dd7709bbbd2d9902ce/improved_diffusion/gaussian_diffusion.py
+https://github.com/CompVis/taming-transformers
+-- merci
+"""
+
+import torch
+
+import torch.nn as nn
+import os
+import numpy as np
+import pytorch_lightning as pl
+from torch.optim.lr_scheduler import LambdaLR
+from einops import rearrange, repeat
+from contextlib import contextmanager
+from functools import partial
+from tqdm import tqdm
+from torchvision.utils import make_grid
+from pytorch_lightning.utilities.distributed import rank_zero_only
+
+from ldm.util import log_txt_as_img, exists, default, ismap, isimage, mean_flat, count_params, instantiate_from_config
+from ldm.modules.ema import LitEma
+from ldm.modules.distributions.distributions import normal_kl, DiagonalGaussianDistribution
+from ldm.models.autoencoder import VQModelInterface, IdentityFirstStage, AutoencoderKL
+from ldm.modules.diffusionmodules.util import make_beta_schedule, extract_into_tensor, noise_like
+from ldm.models.diffusion.ddim import DDIMSampler
+from pdb import set_trace
+
+__conditioning_keys__ = {'concat': 'c_concat',
+ 'crossattn': 'c_crossattn',
+ 'adm': 'y'}
+
+
+def disabled_train(self, mode=True):
+ """Overwrite model.train with this function to make sure train/eval mode
+ does not change anymore."""
+ return self
+
+
+def uniform_on_device(r1, r2, shape, device):
+ return (r1 - r2) * torch.rand(*shape, device=device) + r2
+
+
+class DDPM(pl.LightningModule):
+ # classic DDPM with Gaussian diffusion, in image space
+ def __init__(self,
+ unet_config,
+ timesteps=1000,
+ beta_schedule="linear",
+ loss_type="l2",
+ ckpt_path=None,
+ ignore_keys=[],
+ load_only_unet=False,
+ monitor="val/loss",
+ use_ema=True,
+ first_stage_key="image",
+ image_size=256,
+ channels=3,
+ log_every_t=100,
+ clip_denoised=True,
+ linear_start=1e-4,
+ linear_end=2e-2,
+ cosine_s=8e-3,
+ given_betas=None,
+ original_elbo_weight=0.,
+ embedding_reg_weight=0.,
+ v_posterior=0., # weight for choosing posterior variance as sigma = (1-v) * beta_tilde + v * beta
+ l_simple_weight=1.,
+ conditioning_key=None,
+ parameterization="eps", # all assuming fixed variance schedules
+ scheduler_config=None,
+ use_positional_encodings=False,
+ learn_logvar=False,
+ logvar_init=0.,
+ ):
+ super().__init__()
+ assert parameterization in ["eps", "x0"], 'currently only supporting "eps" and "x0"'
+ self.parameterization = parameterization
+ print(f"{self.__class__.__name__}: Running in {self.parameterization}-prediction mode")
+ self.cond_stage_model = None
+ self.clip_denoised = clip_denoised
+ self.log_every_t = log_every_t
+ self.first_stage_key = first_stage_key
+ self.image_size = image_size # try conv?
+ self.channels = channels
+ self.use_positional_encodings = use_positional_encodings
+ self.model = DiffusionWrapper(unet_config, conditioning_key)
+ count_params(self.model, verbose=True)
+ self.use_ema = use_ema
+ breakpoint()
+ if self.use_ema:
+ self.model_ema = LitEma(self.model)
+ print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
+
+ self.use_scheduler = scheduler_config is not None
+ if self.use_scheduler:
+ self.scheduler_config = scheduler_config
+
+ self.v_posterior = v_posterior
+ self.original_elbo_weight = original_elbo_weight
+ self.l_simple_weight = l_simple_weight
+ self.embedding_reg_weight = embedding_reg_weight
+
+ if monitor is not None:
+ self.monitor = monitor
+ if ckpt_path is not None:
+ self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys, only_model=load_only_unet)
+
+ self.register_schedule(given_betas=given_betas, beta_schedule=beta_schedule, timesteps=timesteps,
+ linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s)
+
+ self.loss_type = loss_type
+
+ self.learn_logvar = learn_logvar
+ self.logvar = torch.full(fill_value=logvar_init, size=(self.num_timesteps,))
+ if self.learn_logvar:
+ self.logvar = nn.Parameter(self.logvar, requires_grad=True)
+
+
+ def register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000,
+ linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
+ if exists(given_betas):
+ betas = given_betas
+ else:
+ betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end,
+ cosine_s=cosine_s)
+ alphas = 1. - betas
+ alphas_cumprod = np.cumprod(alphas, axis=0)
+ alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
+
+ timesteps, = betas.shape
+ self.num_timesteps = int(timesteps)
+ self.linear_start = linear_start
+ self.linear_end = linear_end
+ assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep'
+
+ to_torch = partial(torch.tensor, dtype=torch.float32)
+
+ self.register_buffer('betas', to_torch(betas))
+ self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
+ self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
+
+ # calculations for diffusion q(x_t | x_{t-1}) and others
+ self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
+ self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
+ self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
+ self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
+ self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
+
+ # calculations for posterior q(x_{t-1} | x_t, x_0)
+ posterior_variance = (1 - self.v_posterior) * betas * (1. - alphas_cumprod_prev) / (
+ 1. - alphas_cumprod) + self.v_posterior * betas
+ # above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
+ self.register_buffer('posterior_variance', to_torch(posterior_variance))
+ # below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
+ self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20))))
+ self.register_buffer('posterior_mean_coef1', to_torch(
+ betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod)))
+ self.register_buffer('posterior_mean_coef2', to_torch(
+ (1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod)))
+
+ if self.parameterization == "eps":
+ lvlb_weights = self.betas ** 2 / (
+ 2 * self.posterior_variance * to_torch(alphas) * (1 - self.alphas_cumprod))
+ elif self.parameterization == "x0":
+ lvlb_weights = 0.5 * np.sqrt(torch.Tensor(alphas_cumprod)) / (2. * 1 - torch.Tensor(alphas_cumprod))
+ else:
+ raise NotImplementedError("mu not supported")
+ # TODO how to choose this term
+ lvlb_weights[0] = lvlb_weights[1]
+ self.register_buffer('lvlb_weights', lvlb_weights, persistent=False)
+ assert not torch.isnan(self.lvlb_weights).all()
+
+ @contextmanager
+ def ema_scope(self, context=None):
+ if self.use_ema:
+ self.model_ema.store(self.model.parameters())
+ self.model_ema.copy_to(self.model)
+ if context is not None:
+ print(f"{context}: Switched to EMA weights")
+ try:
+ yield None
+ finally:
+ if self.use_ema:
+ self.model_ema.restore(self.model.parameters())
+ if context is not None:
+ print(f"{context}: Restored training weights")
+
+ def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
+ sd = torch.load(path, map_location="cpu")
+ if "state_dict" in list(sd.keys()):
+ sd = sd["state_dict"]
+ keys = list(sd.keys())
+ for k in keys:
+ for ik in ignore_keys:
+ if k.startswith(ik):
+ print("Deleting key {} from state_dict.".format(k))
+ del sd[k]
+ missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(
+ sd, strict=False)
+ print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
+ if len(missing) > 0:
+ print(f"Missing Keys: {missing}")
+ if len(unexpected) > 0:
+ print(f"Unexpected Keys: {unexpected}")
+
+ def q_mean_variance(self, x_start, t):
+ """
+ Get the distribution q(x_t | x_0).
+ :param x_start: the [N x C x ...] tensor of noiseless inputs.
+ :param t: the number of diffusion steps (minus 1). Here, 0 means one step.
+ :return: A tuple (mean, variance, log_variance), all of x_start's shape.
+ """
+ mean = (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start)
+ variance = extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape)
+ log_variance = extract_into_tensor(self.log_one_minus_alphas_cumprod, t, x_start.shape)
+ return mean, variance, log_variance
+
+ def predict_start_from_noise(self, x_t, t, noise):
+ return (
+ extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t -
+ extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise
+ )
+
+ def q_posterior(self, x_start, x_t, t):
+ posterior_mean = (
+ extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start +
+ extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t
+ )
+ posterior_variance = extract_into_tensor(self.posterior_variance, t, x_t.shape)
+ posterior_log_variance_clipped = extract_into_tensor(self.posterior_log_variance_clipped, t, x_t.shape)
+ return posterior_mean, posterior_variance, posterior_log_variance_clipped
+
+ def p_mean_variance(self, x, t, clip_denoised: bool):
+ model_out = self.model(x, t)
+ if self.parameterization == "eps":
+ x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
+ elif self.parameterization == "x0":
+ x_recon = model_out
+ if clip_denoised:
+ x_recon.clamp_(-1., 1.)
+
+ model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
+ return model_mean, posterior_variance, posterior_log_variance
+
+ @torch.no_grad()
+ def p_sample(self, x, t, clip_denoised=True, repeat_noise=False):
+ b, *_, device = *x.shape, x.device
+ model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, clip_denoised=clip_denoised)
+ noise = noise_like(x.shape, device, repeat_noise)
+ # no noise when t == 0
+ nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
+ return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
+
+ @torch.no_grad()
+ def p_sample_loop(self, shape, return_intermediates=False):
+ device = self.betas.device
+ b = shape[0]
+ img = torch.randn(shape, device=device)
+ intermediates = [img]
+ for i in tqdm(reversed(range(0, self.num_timesteps)), desc='Sampling t', total=self.num_timesteps):
+ img = self.p_sample(img, torch.full((b,), i, device=device, dtype=torch.long),
+ clip_denoised=self.clip_denoised)
+ if i % self.log_every_t == 0 or i == self.num_timesteps - 1:
+ intermediates.append(img)
+ if return_intermediates:
+ return img, intermediates
+ return img
+
+ @torch.no_grad()
+ def sample(self, batch_size=16, return_intermediates=False):
+ image_size = self.image_size
+ channels = self.channels
+ return self.p_sample_loop((batch_size, channels, image_size, image_size),
+ return_intermediates=return_intermediates)
+
+ def q_sample(self, x_start, t, noise=None):
+ noise = default(noise, lambda: torch.randn_like(x_start))
+ return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
+ extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise)
+
+ def get_loss(self, pred, target, mean=True):
+ if self.loss_type == 'l1':
+ loss = (target - pred).abs()
+ if mean:
+ loss = loss.mean()
+ elif self.loss_type == 'l2':
+ if mean:
+ loss = torch.nn.functional.mse_loss(target, pred)
+ else:
+ loss = torch.nn.functional.mse_loss(target, pred, reduction='none')
+ else:
+ raise NotImplementedError("unknown loss type '{loss_type}'")
+
+ return loss
+
+ def p_losses(self, x_start, t, noise=None):
+ noise = default(noise, lambda: torch.randn_like(x_start))
+ x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
+ model_out = self.model(x_noisy, t)
+
+ loss_dict = {}
+ if self.parameterization == "eps":
+ target = noise
+ elif self.parameterization == "x0":
+ target = x_start
+ else:
+ raise NotImplementedError(f"Paramterization {self.parameterization} not yet supported")
+
+ loss = self.get_loss(model_out, target, mean=False).mean(dim=[1, 2, 3])
+
+ log_prefix = 'train' if self.training else 'val'
+
+ loss_dict.update({f'{log_prefix}/loss_simple': loss.mean()})
+ loss_simple = loss.mean() * self.l_simple_weight
+
+ loss_vlb = (self.lvlb_weights[t] * loss).mean()
+ loss_dict.update({f'{log_prefix}/loss_vlb': loss_vlb})
+
+ loss = loss_simple + self.original_elbo_weight * loss_vlb
+
+ loss_dict.update({f'{log_prefix}/loss': loss})
+
+ return loss, loss_dict
+
+ def forward(self, x, *args, **kwargs):
+ # b, c, h, w, device, img_size, = *x.shape, x.device, self.image_size
+ # assert h == img_size and w == img_size, f'height and width of image must be {img_size}'
+ t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long()
+ return self.p_losses(x, t, *args, **kwargs)
+
+ def get_input(self, batch, k):
+ x = batch[k]
+ if len(x.shape) == 3:
+ x = x[..., None]
+ x = rearrange(x, 'b h w c -> b c h w')
+ x = x.to(memory_format=torch.contiguous_format).float()
+ return x
+
+ def shared_step(self, batch):
+ x = self.get_input(batch, self.first_stage_key)
+ loss, loss_dict = self(x)
+ return loss, loss_dict
+
+ def training_step(self, batch, batch_idx):
+ loss, loss_dict = self.shared_step(batch)
+
+ self.log_dict(loss_dict, prog_bar=True,
+ logger=True, on_step=True, on_epoch=True)
+
+ self.log("global_step", self.global_step,
+ prog_bar=True, logger=True, on_step=True, on_epoch=False)
+
+ if self.use_scheduler:
+ lr = self.optimizers().param_groups[0]['lr']
+ self.log('lr_abs', lr, prog_bar=True, logger=True, on_step=True, on_epoch=False)
+
+ return loss
+
+ @torch.no_grad()
+ def validation_step(self, batch, batch_idx):
+ _, loss_dict_no_ema = self.shared_step(batch)
+ with self.ema_scope():
+ _, loss_dict_ema = self.shared_step(batch)
+ loss_dict_ema = {key + '_ema': loss_dict_ema[key] for key in loss_dict_ema}
+ self.log_dict(loss_dict_no_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True)
+ self.log_dict(loss_dict_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True)
+
+ def on_train_batch_end(self, *args, **kwargs):
+ if self.use_ema:
+ self.model_ema(self.model)
+
+ def _get_rows_from_list(self, samples):
+ n_imgs_per_row = len(samples)
+ denoise_grid = rearrange(samples, 'n b c h w -> b n c h w')
+ denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
+ denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
+ return denoise_grid
+
+ @torch.no_grad()
+ def log_images(self, batch, N=8, n_row=2, sample=True, return_keys=None, **kwargs):
+ log = dict()
+ x = self.get_input(batch, self.first_stage_key)
+ N = min(x.shape[0], N)
+ n_row = min(x.shape[0], n_row)
+ x = x.to(self.device)[:N]
+ log["inputs"] = x
+
+ # get diffusion row
+ diffusion_row = list()
+ x_start = x[:n_row]
+
+ for t in range(self.num_timesteps):
+ if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
+ t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
+ t = t.to(self.device).long()
+ noise = torch.randn_like(x_start)
+ x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
+ diffusion_row.append(x_noisy)
+
+ log["diffusion_row"] = self._get_rows_from_list(diffusion_row)
+
+ if sample:
+ # get denoise row
+ with self.ema_scope("Plotting"):
+ samples, denoise_row = self.sample(batch_size=N, return_intermediates=True)
+
+ log["samples"] = samples
+ log["denoise_row"] = self._get_rows_from_list(denoise_row)
+
+ if return_keys:
+ if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
+ return log
+ else:
+ return {key: log[key] for key in return_keys}
+ return log
+
+ def configure_optimizers(self):
+ lr = self.learning_rate
+ params = list(self.model.parameters())
+ if self.learn_logvar:
+ params = params + [self.logvar]
+ opt = torch.optim.AdamW(params, lr=lr)
+ return opt
+
+
+class LatentDiffusion(DDPM):
+ """main class"""
+ def __init__(self,
+ first_stage_config,
+ cond_stage_config,
+ personalization_config,
+ num_timesteps_cond=None,
+ cond_stage_key="image",
+ cond_stage_trainable=False,
+ concat_mode=True,
+ cond_stage_forward=None,
+ conditioning_key=None,
+ scale_factor=1.0,
+ scale_by_std=False,
+ *args, **kwargs):
+
+ self.num_timesteps_cond = default(num_timesteps_cond, 1)
+ self.scale_by_std = scale_by_std
+ assert self.num_timesteps_cond <= kwargs['timesteps']
+ # for backwards compatibility after implementation of DiffusionWrapper
+ if conditioning_key is None:
+ conditioning_key = 'concat' if concat_mode else 'crossattn'
+ if cond_stage_config == '__is_unconditional__':
+ conditioning_key = None
+ ckpt_path = kwargs.pop("ckpt_path", None)
+ ignore_keys = kwargs.pop("ignore_keys", [])
+ super().__init__(conditioning_key=conditioning_key, *args, **kwargs)
+ self.concat_mode = concat_mode
+ self.cond_stage_trainable = cond_stage_trainable
+ self.cond_stage_key = cond_stage_key
+
+ try:
+ self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1
+ except:
+ self.num_downs = 0
+ if not scale_by_std:
+ self.scale_factor = scale_factor
+ else:
+ self.register_buffer('scale_factor', torch.tensor(scale_factor))
+ self.instantiate_first_stage(first_stage_config)
+ self.instantiate_cond_stage(cond_stage_config)
+
+ self.cond_stage_forward = cond_stage_forward
+ self.clip_denoised = False
+ self.bbox_tokenizer = None
+
+ self.restarted_from_ckpt = False
+ if ckpt_path is not None:
+ self.init_from_ckpt(ckpt_path, ignore_keys)
+ self.restarted_from_ckpt = True
+
+ self.cond_stage_model.train = disabled_train
+ for param in self.cond_stage_model.parameters():
+ param.requires_grad = False
+
+ self.model.eval()
+ self.model.train = disabled_train
+ for param in self.model.parameters():
+ param.requires_grad = False
+
+ self.embedding_manager = self.instantiate_embedding_manager(personalization_config, self.cond_stage_model)
+
+ self.emb_ckpt_counter = 0
+
+ # if self.embedding_manager.is_clip:
+ # self.cond_stage_model.update_embedding_func(self.embedding_manager)
+
+ for param in self.embedding_manager.embedding_parameters():
+ param.requires_grad = True
+
+ def make_cond_schedule(self, ):
+ self.cond_ids = torch.full(size=(self.num_timesteps,), fill_value=self.num_timesteps - 1, dtype=torch.long)
+ ids = torch.round(torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)).long()
+ self.cond_ids[:self.num_timesteps_cond] = ids
+
+ @rank_zero_only
+ @torch.no_grad()
+ def on_train_batch_start(self, batch, batch_idx, dataloader_idx):
+ # only for very first batch
+ if self.scale_by_std and self.current_epoch == 0 and self.global_step == 0 and batch_idx == 0 and not self.restarted_from_ckpt:
+ assert self.scale_factor == 1., 'rather not use custom rescaling and std-rescaling simultaneously'
+ # set rescale weight to 1./std of encodings
+ print("### USING STD-RESCALING ###")
+ x = super().get_input(batch, self.first_stage_key)
+ x = x.to(self.device)
+ encoder_posterior = self.encode_first_stage(x)
+ z = self.get_first_stage_encoding(encoder_posterior).detach()
+ del self.scale_factor
+ self.register_buffer('scale_factor', 1. / z.flatten().std())
+ print(f"setting self.scale_factor to {self.scale_factor}")
+ print("### USING STD-RESCALING ###")
+
+ def register_schedule(self,
+ given_betas=None, beta_schedule="linear", timesteps=1000,
+ linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
+ super().register_schedule(given_betas, beta_schedule, timesteps, linear_start, linear_end, cosine_s)
+
+ self.shorten_cond_schedule = self.num_timesteps_cond > 1
+ if self.shorten_cond_schedule:
+ self.make_cond_schedule()
+
+ def instantiate_first_stage(self, config):
+ model = instantiate_from_config(config)
+ self.first_stage_model = model.eval()
+ self.first_stage_model.train = disabled_train
+ for param in self.first_stage_model.parameters():
+ param.requires_grad = False
+
+ def instantiate_cond_stage(self, config):
+ if not self.cond_stage_trainable:
+ if config == "__is_first_stage__":
+ print("Using first stage also as cond stage.")
+ self.cond_stage_model = self.first_stage_model
+ elif config == "__is_unconditional__":
+ print(f"Training {self.__class__.__name__} as an unconditional model.")
+ self.cond_stage_model = None
+ # self.be_unconditional = True
+ else:
+ model = instantiate_from_config(config)
+ self.cond_stage_model = model.eval()
+ self.cond_stage_model.train = disabled_train
+ # set_trace()
+ for param in self.cond_stage_model.parameters():
+ param.requires_grad = False
+ else:
+ assert config != '__is_first_stage__'
+ assert config != '__is_unconditional__'
+ model = instantiate_from_config(config)
+ self.cond_stage_model = model
+
+
+ def instantiate_embedding_manager(self, config, embedder):
+ model = instantiate_from_config(config, embedder=embedder)
+
+ if config.params.get("embedding_manager_ckpt", None): # do not load if missing OR empty string
+ model.load(config.params.embedding_manager_ckpt)
+
+ return model
+
+ def _get_denoise_row_from_list(self, samples, desc='', force_no_decoder_quantization=False):
+ denoise_row = []
+ for zd in tqdm(samples, desc=desc):
+ denoise_row.append(self.decode_first_stage(zd.to(self.device),
+ force_not_quantize=force_no_decoder_quantization))
+ n_imgs_per_row = len(denoise_row)
+ denoise_row = torch.stack(denoise_row) # n_log_step, n_row, C, H, W
+ denoise_grid = rearrange(denoise_row, 'n b c h w -> b n c h w')
+ denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
+ denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
+ return denoise_grid
+
+ def get_first_stage_encoding(self, encoder_posterior):
+ if isinstance(encoder_posterior, DiagonalGaussianDistribution):
+ z = encoder_posterior.sample()
+ elif isinstance(encoder_posterior, torch.Tensor):
+ z = encoder_posterior
+ else:
+ raise NotImplementedError(f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented")
+ return self.scale_factor * z
+
+ def get_learned_conditioning(self, c):
+ # set_trace()
+ if self.cond_stage_forward is None:
+ if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode):
+ c = self.cond_stage_model.encode(c, embedding_manager=self.embedding_manager)
+ if isinstance(c, DiagonalGaussianDistribution):
+ c = c.mode()
+ else:
+ c = self.cond_stage_model(c)
+ else:
+ assert hasattr(self.cond_stage_model, self.cond_stage_forward)
+ c = getattr(self.cond_stage_model, self.cond_stage_forward)(c)
+ return c
+
+ def meshgrid(self, h, w):
+ y = torch.arange(0, h).view(h, 1, 1).repeat(1, w, 1)
+ x = torch.arange(0, w).view(1, w, 1).repeat(h, 1, 1)
+
+ arr = torch.cat([y, x], dim=-1)
+ return arr
+
+ def delta_border(self, h, w):
+ """
+ :param h: height
+ :param w: width
+ :return: normalized distance to image border,
+ wtith min distance = 0 at border and max dist = 0.5 at image center
+ """
+ lower_right_corner = torch.tensor([h - 1, w - 1]).view(1, 1, 2)
+ arr = self.meshgrid(h, w) / lower_right_corner
+ dist_left_up = torch.min(arr, dim=-1, keepdims=True)[0]
+ dist_right_down = torch.min(1 - arr, dim=-1, keepdims=True)[0]
+ edge_dist = torch.min(torch.cat([dist_left_up, dist_right_down], dim=-1), dim=-1)[0]
+ return edge_dist
+
+ def get_weighting(self, h, w, Ly, Lx, device):
+ weighting = self.delta_border(h, w)
+ weighting = torch.clip(weighting, self.split_input_params["clip_min_weight"],
+ self.split_input_params["clip_max_weight"], )
+ weighting = weighting.view(1, h * w, 1).repeat(1, 1, Ly * Lx).to(device)
+
+ if self.split_input_params["tie_braker"]:
+ L_weighting = self.delta_border(Ly, Lx)
+ L_weighting = torch.clip(L_weighting,
+ self.split_input_params["clip_min_tie_weight"],
+ self.split_input_params["clip_max_tie_weight"])
+
+ L_weighting = L_weighting.view(1, 1, Ly * Lx).to(device)
+ weighting = weighting * L_weighting
+ return weighting
+
+ def get_fold_unfold(self, x, kernel_size, stride, uf=1, df=1): # todo load once not every time, shorten code
+ """
+ :param x: img of size (bs, c, h, w)
+ :return: n img crops of size (n, bs, c, kernel_size[0], kernel_size[1])
+ """
+ bs, nc, h, w = x.shape
+
+ # number of crops in image
+ Ly = (h - kernel_size[0]) // stride[0] + 1
+ Lx = (w - kernel_size[1]) // stride[1] + 1
+
+ if uf == 1 and df == 1:
+ fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
+ unfold = torch.nn.Unfold(**fold_params)
+
+ fold = torch.nn.Fold(output_size=x.shape[2:], **fold_params)
+
+ weighting = self.get_weighting(kernel_size[0], kernel_size[1], Ly, Lx, x.device).to(x.dtype)
+ normalization = fold(weighting).view(1, 1, h, w) # normalizes the overlap
+ weighting = weighting.view((1, 1, kernel_size[0], kernel_size[1], Ly * Lx))
+
+ elif uf > 1 and df == 1:
+ fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
+ unfold = torch.nn.Unfold(**fold_params)
+
+ fold_params2 = dict(kernel_size=(kernel_size[0] * uf, kernel_size[0] * uf),
+ dilation=1, padding=0,
+ stride=(stride[0] * uf, stride[1] * uf))
+ fold = torch.nn.Fold(output_size=(x.shape[2] * uf, x.shape[3] * uf), **fold_params2)
+
+ weighting = self.get_weighting(kernel_size[0] * uf, kernel_size[1] * uf, Ly, Lx, x.device).to(x.dtype)
+ normalization = fold(weighting).view(1, 1, h * uf, w * uf) # normalizes the overlap
+ weighting = weighting.view((1, 1, kernel_size[0] * uf, kernel_size[1] * uf, Ly * Lx))
+
+ elif df > 1 and uf == 1:
+ fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
+ unfold = torch.nn.Unfold(**fold_params)
+
+ fold_params2 = dict(kernel_size=(kernel_size[0] // df, kernel_size[0] // df),
+ dilation=1, padding=0,
+ stride=(stride[0] // df, stride[1] // df))
+ fold = torch.nn.Fold(output_size=(x.shape[2] // df, x.shape[3] // df), **fold_params2)
+
+ weighting = self.get_weighting(kernel_size[0] // df, kernel_size[1] // df, Ly, Lx, x.device).to(x.dtype)
+ normalization = fold(weighting).view(1, 1, h // df, w // df) # normalizes the overlap
+ weighting = weighting.view((1, 1, kernel_size[0] // df, kernel_size[1] // df, Ly * Lx))
+
+ else:
+ raise NotImplementedError
+
+ return fold, unfold, normalization, weighting
+
+ @torch.no_grad()
+ def get_input(self, batch, k, return_first_stage_outputs=False, force_c_encode=False,
+ cond_key=None, return_original_cond=False, bs=None):
+ x = super().get_input(batch, k)
+ if bs is not None:
+ x = x[:bs]
+ x = x.to(self.device)
+ encoder_posterior = self.encode_first_stage(x)
+ z = self.get_first_stage_encoding(encoder_posterior).detach()
+
+ if self.model.conditioning_key is not None:
+ if cond_key is None:
+ cond_key = self.cond_stage_key
+ if cond_key != self.first_stage_key:
+ if cond_key in ['caption', 'coordinates_bbox']:
+ xc = batch[cond_key]
+ elif cond_key == 'class_label':
+ xc = batch
+ else:
+ xc = super().get_input(batch, cond_key).to(self.device)
+ else:
+ xc = x
+ if not self.cond_stage_trainable or force_c_encode:
+ if isinstance(xc, dict) or isinstance(xc, list):
+ # import pudb; pudb.set_trace()
+ c = self.get_learned_conditioning(xc)
+ else:
+ c = self.get_learned_conditioning(xc.to(self.device))
+ else:
+ c = xc
+ if bs is not None:
+ c = c[:bs]
+
+ if self.use_positional_encodings:
+ pos_x, pos_y = self.compute_latent_shifts(batch)
+ ckey = __conditioning_keys__[self.model.conditioning_key]
+ c = {ckey: c, 'pos_x': pos_x, 'pos_y': pos_y}
+
+ else:
+ c = None
+ xc = None
+ if self.use_positional_encodings:
+ pos_x, pos_y = self.compute_latent_shifts(batch)
+ c = {'pos_x': pos_x, 'pos_y': pos_y}
+ out = [z, c]
+ if return_first_stage_outputs:
+ xrec = self.decode_first_stage(z)
+ out.extend([x, xrec])
+ if return_original_cond:
+ out.append(xc)
+ return out
+
+ @torch.no_grad()
+ def decode_first_stage(self, z, predict_cids=False, force_not_quantize=False):
+ if predict_cids:
+ if z.dim() == 4:
+ z = torch.argmax(z.exp(), dim=1).long()
+ z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)
+ z = rearrange(z, 'b h w c -> b c h w').contiguous()
+
+ z = 1. / self.scale_factor * z
+
+ if hasattr(self, "split_input_params"):
+ if self.split_input_params["patch_distributed_vq"]:
+ ks = self.split_input_params["ks"] # eg. (128, 128)
+ stride = self.split_input_params["stride"] # eg. (64, 64)
+ uf = self.split_input_params["vqf"]
+ bs, nc, h, w = z.shape
+ if ks[0] > h or ks[1] > w:
+ ks = (min(ks[0], h), min(ks[1], w))
+ print("reducing Kernel")
+
+ if stride[0] > h or stride[1] > w:
+ stride = (min(stride[0], h), min(stride[1], w))
+ print("reducing stride")
+
+ fold, unfold, normalization, weighting = self.get_fold_unfold(z, ks, stride, uf=uf)
+
+ z = unfold(z) # (bn, nc * prod(**ks), L)
+ # 1. Reshape to img shape
+ z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
+
+ # 2. apply model loop over last dim
+ if isinstance(self.first_stage_model, VQModelInterface):
+ output_list = [self.first_stage_model.decode(z[:, :, :, :, i],
+ force_not_quantize=predict_cids or force_not_quantize)
+ for i in range(z.shape[-1])]
+ else:
+
+ output_list = [self.first_stage_model.decode(z[:, :, :, :, i])
+ for i in range(z.shape[-1])]
+
+ o = torch.stack(output_list, axis=-1) # # (bn, nc, ks[0], ks[1], L)
+ o = o * weighting
+ # Reverse 1. reshape to img shape
+ o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
+ # stitch crops together
+ decoded = fold(o)
+ decoded = decoded / normalization # norm is shape (1, 1, h, w)
+ return decoded
+ else:
+ if isinstance(self.first_stage_model, VQModelInterface):
+ return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
+ else:
+ return self.first_stage_model.decode(z)
+
+ else:
+ if isinstance(self.first_stage_model, VQModelInterface):
+ return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
+ else:
+ return self.first_stage_model.decode(z)
+
+ # same as above but without decorator
+ def differentiable_decode_first_stage(self, z, predict_cids=False, force_not_quantize=False):
+ if predict_cids:
+ if z.dim() == 4:
+ z = torch.argmax(z.exp(), dim=1).long()
+ z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)
+ z = rearrange(z, 'b h w c -> b c h w').contiguous()
+
+ z = 1. / self.scale_factor * z
+
+ if hasattr(self, "split_input_params"):
+ if self.split_input_params["patch_distributed_vq"]:
+ ks = self.split_input_params["ks"] # eg. (128, 128)
+ stride = self.split_input_params["stride"] # eg. (64, 64)
+ uf = self.split_input_params["vqf"]
+ bs, nc, h, w = z.shape
+ if ks[0] > h or ks[1] > w:
+ ks = (min(ks[0], h), min(ks[1], w))
+ print("reducing Kernel")
+
+ if stride[0] > h or stride[1] > w:
+ stride = (min(stride[0], h), min(stride[1], w))
+ print("reducing stride")
+
+ fold, unfold, normalization, weighting = self.get_fold_unfold(z, ks, stride, uf=uf)
+
+ z = unfold(z) # (bn, nc * prod(**ks), L)
+ # 1. Reshape to img shape
+ z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
+
+ # 2. apply model loop over last dim
+ if isinstance(self.first_stage_model, VQModelInterface):
+ output_list = [self.first_stage_model.decode(z[:, :, :, :, i],
+ force_not_quantize=predict_cids or force_not_quantize)
+ for i in range(z.shape[-1])]
+ else:
+
+ output_list = [self.first_stage_model.decode(z[:, :, :, :, i])
+ for i in range(z.shape[-1])]
+
+ o = torch.stack(output_list, axis=-1) # # (bn, nc, ks[0], ks[1], L)
+ o = o * weighting
+ # Reverse 1. reshape to img shape
+ o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
+ # stitch crops together
+ decoded = fold(o)
+ decoded = decoded / normalization # norm is shape (1, 1, h, w)
+ return decoded
+ else:
+ if isinstance(self.first_stage_model, VQModelInterface):
+ return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
+ else:
+ return self.first_stage_model.decode(z)
+
+ else:
+ if isinstance(self.first_stage_model, VQModelInterface):
+ return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
+ else:
+ return self.first_stage_model.decode(z)
+
+ @torch.no_grad()
+ def encode_first_stage(self, x):
+ if hasattr(self, "split_input_params"):
+ if self.split_input_params["patch_distributed_vq"]:
+ ks = self.split_input_params["ks"] # eg. (128, 128)
+ stride = self.split_input_params["stride"] # eg. (64, 64)
+ df = self.split_input_params["vqf"]
+ self.split_input_params['original_image_size'] = x.shape[-2:]
+ bs, nc, h, w = x.shape
+ if ks[0] > h or ks[1] > w:
+ ks = (min(ks[0], h), min(ks[1], w))
+ print("reducing Kernel")
+
+ if stride[0] > h or stride[1] > w:
+ stride = (min(stride[0], h), min(stride[1], w))
+ print("reducing stride")
+
+ fold, unfold, normalization, weighting = self.get_fold_unfold(x, ks, stride, df=df)
+ z = unfold(x) # (bn, nc * prod(**ks), L)
+ # Reshape to img shape
+ z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
+
+ output_list = [self.first_stage_model.encode(z[:, :, :, :, i])
+ for i in range(z.shape[-1])]
+
+ o = torch.stack(output_list, axis=-1)
+ o = o * weighting
+
+ # Reverse reshape to img shape
+ o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
+ # stitch crops together
+ decoded = fold(o)
+ decoded = decoded / normalization
+ return decoded
+
+ else:
+ return self.first_stage_model.encode(x)
+ else:
+ return self.first_stage_model.encode(x)
+
+ def shared_step(self, batch, **kwargs):
+ x, c = self.get_input(batch, self.first_stage_key)
+ loss = self(x, c)
+ return loss
+
+ def forward(self, x, c, *args, **kwargs):
+ t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long()
+ if self.model.conditioning_key is not None:
+ assert c is not None
+ if self.cond_stage_trainable:
+ c = self.get_learned_conditioning(c)
+ if self.shorten_cond_schedule: # TODO: drop this option
+ tc = self.cond_ids[t].to(self.device)
+ c = self.q_sample(x_start=c, t=tc, noise=torch.randn_like(c.float()))
+
+ return self.p_losses(x, c, t, *args, **kwargs)
+
+ def _rescale_annotations(self, bboxes, crop_coordinates): # TODO: move to dataset
+ def rescale_bbox(bbox):
+ x0 = clamp((bbox[0] - crop_coordinates[0]) / crop_coordinates[2])
+ y0 = clamp((bbox[1] - crop_coordinates[1]) / crop_coordinates[3])
+ w = min(bbox[2] / crop_coordinates[2], 1 - x0)
+ h = min(bbox[3] / crop_coordinates[3], 1 - y0)
+ return x0, y0, w, h
+
+ return [rescale_bbox(b) for b in bboxes]
+
+ def apply_model(self, x_noisy, t, cond, return_ids=False):
+
+ if isinstance(cond, dict):
+ # hybrid case, cond is exptected to be a dict
+ pass
+ else:
+ if not isinstance(cond, list):
+ cond = [cond]
+ key = 'c_concat' if self.model.conditioning_key == 'concat' else 'c_crossattn'
+ cond = {key: cond}
+ # set_trace() # The key for default setup of stable diffusion is c_crossattn
+ if hasattr(self, "split_input_params"):
+ assert len(cond) == 1 # todo can only deal with one conditioning atm
+ assert not return_ids
+ ks = self.split_input_params["ks"] # eg. (128, 128)
+ stride = self.split_input_params["stride"] # eg. (64, 64)
+
+ h, w = x_noisy.shape[-2:]
+
+ fold, unfold, normalization, weighting = self.get_fold_unfold(x_noisy, ks, stride)
+
+ z = unfold(x_noisy) # (bn, nc * prod(**ks), L)
+ # Reshape to img shape
+ z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L )
+ z_list = [z[:, :, :, :, i] for i in range(z.shape[-1])]
+
+ if self.cond_stage_key in ["image", "LR_image", "segmentation",
+ 'bbox_img'] and self.model.conditioning_key: # todo check for completeness
+ c_key = next(iter(cond.keys())) # get key
+ c = next(iter(cond.values())) # get value
+ assert (len(c) == 1) # todo extend to list with more than one elem
+ c = c[0] # get element
+
+ c = unfold(c)
+ c = c.view((c.shape[0], -1, ks[0], ks[1], c.shape[-1])) # (bn, nc, ks[0], ks[1], L )
+
+ cond_list = [{c_key: [c[:, :, :, :, i]]} for i in range(c.shape[-1])]
+
+ elif self.cond_stage_key == 'coordinates_bbox':
+ assert 'original_image_size' in self.split_input_params, 'BoudingBoxRescaling is missing original_image_size'
+
+ # assuming padding of unfold is always 0 and its dilation is always 1
+ n_patches_per_row = int((w - ks[0]) / stride[0] + 1)
+ full_img_h, full_img_w = self.split_input_params['original_image_size']
+ # as we are operating on latents, we need the factor from the original image size to the
+ # spatial latent size to properly rescale the crops for regenerating the bbox annotations
+ num_downs = self.first_stage_model.encoder.num_resolutions - 1
+ rescale_latent = 2 ** (num_downs)
+
+ # get top left postions of patches as conforming for the bbbox tokenizer, therefore we
+ # need to rescale the tl patch coordinates to be in between (0,1)
+ tl_patch_coordinates = [(rescale_latent * stride[0] * (patch_nr % n_patches_per_row) / full_img_w,
+ rescale_latent * stride[1] * (patch_nr // n_patches_per_row) / full_img_h)
+ for patch_nr in range(z.shape[-1])]
+
+ # patch_limits are tl_coord, width and height coordinates as (x_tl, y_tl, h, w)
+ patch_limits = [(x_tl, y_tl,
+ rescale_latent * ks[0] / full_img_w,
+ rescale_latent * ks[1] / full_img_h) for x_tl, y_tl in tl_patch_coordinates]
+ # patch_values = [(np.arange(x_tl,min(x_tl+ks, 1.)),np.arange(y_tl,min(y_tl+ks, 1.))) for x_tl, y_tl in tl_patch_coordinates]
+
+ # tokenize crop coordinates for the bounding boxes of the respective patches
+ patch_limits_tknzd = [torch.LongTensor(self.bbox_tokenizer._crop_encoder(bbox))[None].to(self.device)
+ for bbox in patch_limits] # list of length l with tensors of shape (1, 2)
+ print(patch_limits_tknzd[0].shape)
+ # cut tknzd crop position from conditioning
+ assert isinstance(cond, dict), 'cond must be dict to be fed into model'
+ cut_cond = cond['c_crossattn'][0][..., :-2].to(self.device)
+ print(cut_cond.shape)
+
+ adapted_cond = torch.stack([torch.cat([cut_cond, p], dim=1) for p in patch_limits_tknzd])
+ adapted_cond = rearrange(adapted_cond, 'l b n -> (l b) n')
+ print(adapted_cond.shape)
+ adapted_cond = self.get_learned_conditioning(adapted_cond)
+ print(adapted_cond.shape)
+ adapted_cond = rearrange(adapted_cond, '(l b) n d -> l b n d', l=z.shape[-1])
+ print(adapted_cond.shape)
+
+ cond_list = [{'c_crossattn': [e]} for e in adapted_cond]
+
+ else:
+ cond_list = [cond for i in range(z.shape[-1])] # Todo make this more efficient
+
+ # apply model by loop over crops
+ output_list = [self.model(z_list[i], t, **cond_list[i]) for i in range(z.shape[-1])]
+ assert not isinstance(output_list[0],
+ tuple) # todo cant deal with multiple model outputs check this never happens
+
+ o = torch.stack(output_list, axis=-1)
+ o = o * weighting
+ # Reverse reshape to img shape
+ o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
+ # stitch crops together
+ x_recon = fold(o) / normalization
+
+ else:
+ x_recon = self.model(x_noisy, t, **cond)
+
+ if isinstance(x_recon, tuple) and not return_ids:
+ return x_recon[0]
+ else:
+ return x_recon
+
+ def _predict_eps_from_xstart(self, x_t, t, pred_xstart):
+ return (extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - pred_xstart) / \
+ extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
+
+ def _prior_bpd(self, x_start):
+ """
+ Get the prior KL term for the variational lower-bound, measured in
+ bits-per-dim.
+ This term can't be optimized, as it only depends on the encoder.
+ :param x_start: the [N x C x ...] tensor of inputs.
+ :return: a batch of [N] KL values (in bits), one per batch element.
+ """
+ batch_size = x_start.shape[0]
+ t = torch.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device)
+ qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t)
+ kl_prior = normal_kl(mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0)
+ return mean_flat(kl_prior) / np.log(2.0)
+
+ def p_losses(self, x_start, cond, t, noise=None):
+ noise = default(noise, lambda: torch.randn_like(x_start))
+ x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
+ model_output = self.apply_model(x_noisy, t, cond)
+
+ loss_dict = {}
+ prefix = 'train' if self.training else 'val'
+
+ if self.parameterization == "x0":
+ target = x_start
+ elif self.parameterization == "eps":
+ target = noise
+ else:
+ raise NotImplementedError()
+
+ loss_simple = self.get_loss(model_output, target, mean=False).mean([1, 2, 3])
+ loss_dict.update({f'{prefix}/loss_simple': loss_simple.mean()})
+
+ logvar_t = self.logvar[t].to(self.device)
+ loss = loss_simple / torch.exp(logvar_t) + logvar_t
+ # loss = loss_simple / torch.exp(self.logvar) + self.logvar
+ if self.learn_logvar:
+ loss_dict.update({f'{prefix}/loss_gamma': loss.mean()})
+ loss_dict.update({'logvar': self.logvar.data.mean()})
+
+ loss = self.l_simple_weight * loss.mean()
+
+ loss_vlb = self.get_loss(model_output, target, mean=False).mean(dim=(1, 2, 3))
+ loss_vlb = (self.lvlb_weights[t] * loss_vlb).mean()
+ loss_dict.update({f'{prefix}/loss_vlb': loss_vlb})
+ loss += (self.original_elbo_weight * loss_vlb)
+ loss_dict.update({f'{prefix}/loss': loss})
+
+ if self.embedding_reg_weight > 0:
+ loss_embedding_reg = self.embedding_manager.embedding_to_coarse_loss().mean()
+
+ loss_dict.update({f'{prefix}/loss_emb_reg': loss_embedding_reg})
+
+ loss += (self.embedding_reg_weight * loss_embedding_reg)
+ loss_dict.update({f'{prefix}/loss': loss})
+
+ return loss, loss_dict
+
+ def p_mean_variance(self, x, c, t, clip_denoised: bool, return_codebook_ids=False, quantize_denoised=False,
+ return_x0=False, score_corrector=None, corrector_kwargs=None):
+ t_in = t
+ model_out = self.apply_model(x, t_in, c, return_ids=return_codebook_ids)
+
+ if score_corrector is not None:
+ assert self.parameterization == "eps"
+ model_out = score_corrector.modify_score(self, model_out, x, t, c, **corrector_kwargs)
+
+ if return_codebook_ids:
+ model_out, logits = model_out
+
+ if self.parameterization == "eps":
+ x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
+ elif self.parameterization == "x0":
+ x_recon = model_out
+ else:
+ raise NotImplementedError()
+
+ if clip_denoised:
+ x_recon.clamp_(-1., 1.)
+ if quantize_denoised:
+ x_recon, _, [_, _, indices] = self.first_stage_model.quantize(x_recon)
+ model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
+ if return_codebook_ids:
+ return model_mean, posterior_variance, posterior_log_variance, logits
+ elif return_x0:
+ return model_mean, posterior_variance, posterior_log_variance, x_recon
+ else:
+ return model_mean, posterior_variance, posterior_log_variance
+
+ @torch.no_grad()
+ def p_sample(self, x, c, t, clip_denoised=False, repeat_noise=False,
+ return_codebook_ids=False, quantize_denoised=False, return_x0=False,
+ temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None):
+ b, *_, device = *x.shape, x.device
+ outputs = self.p_mean_variance(x=x, c=c, t=t, clip_denoised=clip_denoised,
+ return_codebook_ids=return_codebook_ids,
+ quantize_denoised=quantize_denoised,
+ return_x0=return_x0,
+ score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
+ if return_codebook_ids:
+ raise DeprecationWarning("Support dropped.")
+ model_mean, _, model_log_variance, logits = outputs
+ elif return_x0:
+ model_mean, _, model_log_variance, x0 = outputs
+ else:
+ model_mean, _, model_log_variance = outputs
+
+ noise = noise_like(x.shape, device, repeat_noise) * temperature
+ if noise_dropout > 0.:
+ noise = torch.nn.functional.dropout(noise, p=noise_dropout)
+ # no noise when t == 0
+ nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
+
+ if return_codebook_ids:
+ return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, logits.argmax(dim=1)
+ if return_x0:
+ return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, x0
+ else:
+ return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
+
+ @torch.no_grad()
+ def progressive_denoising(self, cond, shape, verbose=True, callback=None, quantize_denoised=False,
+ img_callback=None, mask=None, x0=None, temperature=1., noise_dropout=0.,
+ score_corrector=None, corrector_kwargs=None, batch_size=None, x_T=None, start_T=None,
+ log_every_t=None):
+ if not log_every_t:
+ log_every_t = self.log_every_t
+ timesteps = self.num_timesteps
+ if batch_size is not None:
+ b = batch_size if batch_size is not None else shape[0]
+ shape = [batch_size] + list(shape)
+ else:
+ b = batch_size = shape[0]
+ if x_T is None:
+ img = torch.randn(shape, device=self.device)
+ else:
+ img = x_T
+ intermediates = []
+ if cond is not None:
+ if isinstance(cond, dict):
+ cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
+ list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
+ else:
+ cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
+
+ if start_T is not None:
+ timesteps = min(timesteps, start_T)
+ iterator = tqdm(reversed(range(0, timesteps)), desc='Progressive Generation',
+ total=timesteps) if verbose else reversed(
+ range(0, timesteps))
+ if type(temperature) == float:
+ temperature = [temperature] * timesteps
+
+ for i in iterator:
+ ts = torch.full((b,), i, device=self.device, dtype=torch.long)
+ if self.shorten_cond_schedule:
+ assert self.model.conditioning_key != 'hybrid'
+ tc = self.cond_ids[ts].to(cond.device)
+ cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
+
+ img, x0_partial = self.p_sample(img, cond, ts,
+ clip_denoised=self.clip_denoised,
+ quantize_denoised=quantize_denoised, return_x0=True,
+ temperature=temperature[i], noise_dropout=noise_dropout,
+ score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
+ if mask is not None:
+ assert x0 is not None
+ img_orig = self.q_sample(x0, ts)
+ img = img_orig * mask + (1. - mask) * img
+
+ if i % log_every_t == 0 or i == timesteps - 1:
+ intermediates.append(x0_partial)
+ if callback: callback(i)
+ if img_callback: img_callback(img, i)
+ return img, intermediates
+
+ @torch.no_grad()
+ def p_sample_loop(self, cond, shape, return_intermediates=False,
+ x_T=None, verbose=True, callback=None, timesteps=None, quantize_denoised=False,
+ mask=None, x0=None, img_callback=None, start_T=None,
+ log_every_t=None):
+
+ if not log_every_t:
+ log_every_t = self.log_every_t
+ device = self.betas.device
+ b = shape[0]
+ if x_T is None:
+ img = torch.randn(shape, device=device)
+ else:
+ img = x_T
+
+ intermediates = [img]
+ if timesteps is None:
+ timesteps = self.num_timesteps
+
+ if start_T is not None:
+ timesteps = min(timesteps, start_T)
+ iterator = tqdm(reversed(range(0, timesteps)), desc='Sampling t', total=timesteps) if verbose else reversed(
+ range(0, timesteps))
+
+ if mask is not None:
+ assert x0 is not None
+ assert x0.shape[2:3] == mask.shape[2:3] # spatial size has to match
+
+ for i in iterator:
+ ts = torch.full((b,), i, device=device, dtype=torch.long)
+ if self.shorten_cond_schedule:
+ assert self.model.conditioning_key != 'hybrid'
+ tc = self.cond_ids[ts].to(cond.device)
+ cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
+
+ img = self.p_sample(img, cond, ts,
+ clip_denoised=self.clip_denoised,
+ quantize_denoised=quantize_denoised)
+ if mask is not None:
+ img_orig = self.q_sample(x0, ts)
+ img = img_orig * mask + (1. - mask) * img
+
+ if i % log_every_t == 0 or i == timesteps - 1:
+ intermediates.append(img)
+ if callback: callback(i)
+ if img_callback: img_callback(img, i)
+
+ if return_intermediates:
+ return img, intermediates
+ return img
+
+ @torch.no_grad()
+ def sample(self, cond, batch_size=16, return_intermediates=False, x_T=None,
+ verbose=True, timesteps=None, quantize_denoised=False,
+ mask=None, x0=None, shape=None,**kwargs):
+ if shape is None:
+ shape = (batch_size, self.channels, self.image_size, self.image_size)
+ if cond is not None:
+ if isinstance(cond, dict):
+ cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
+ list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
+ else:
+ cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
+ return self.p_sample_loop(cond,
+ shape,
+ return_intermediates=return_intermediates, x_T=x_T,
+ verbose=verbose, timesteps=timesteps, quantize_denoised=quantize_denoised,
+ mask=mask, x0=x0)
+
+ @torch.no_grad()
+ def sample_log(self,cond,batch_size,ddim, ddim_steps,**kwargs):
+
+ if ddim:
+ ddim_sampler = DDIMSampler(self)
+ shape = (self.channels, self.image_size, self.image_size)
+ samples, intermediates =ddim_sampler.sample(ddim_steps,batch_size,
+ shape,cond,verbose=False,**kwargs)
+
+ else:
+ samples, intermediates = self.sample(cond=cond, batch_size=batch_size,
+ return_intermediates=True,**kwargs)
+
+ return samples, intermediates
+
+ @torch.no_grad()
+ def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None,
+ quantize_denoised=True, inpaint=False, plot_denoise_rows=False, plot_progressive_rows=False,
+ plot_diffusion_rows=False, **kwargs):
+
+ use_ddim = ddim_steps is not None
+
+ log = dict()
+ z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key,
+ return_first_stage_outputs=True,
+ force_c_encode=True,
+ return_original_cond=True,
+ bs=N)
+ N = min(x.shape[0], N)
+ n_row = min(x.shape[0], n_row)
+ log["inputs"] = x
+ log["reconstruction"] = xrec
+ if self.model.conditioning_key is not None:
+ if hasattr(self.cond_stage_model, "decode"):
+ xc = self.cond_stage_model.decode(c)
+ log["conditioning"] = xc
+ elif self.cond_stage_key in ["caption"]:
+ xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["caption"])
+ log["conditioning"] = xc
+ elif self.cond_stage_key == 'class_label':
+ xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"])
+ log['conditioning'] = xc
+ elif isimage(xc):
+ log["conditioning"] = xc
+ if ismap(xc):
+ log["original_conditioning"] = self.to_rgb(xc)
+
+ if plot_diffusion_rows:
+ # get diffusion row
+ diffusion_row = list()
+ z_start = z[:n_row]
+ for t in range(self.num_timesteps):
+ if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
+ t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
+ t = t.to(self.device).long()
+ noise = torch.randn_like(z_start)
+ z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
+ diffusion_row.append(self.decode_first_stage(z_noisy))
+
+ diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W
+ diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
+ diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
+ diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
+ log["diffusion_row"] = diffusion_grid
+
+ if sample:
+ # get denoise row
+ with self.ema_scope("Plotting"):
+ samples, z_denoise_row = self.sample_log(cond=c,batch_size=N,ddim=use_ddim,
+ ddim_steps=ddim_steps,eta=ddim_eta)
+ # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
+ x_samples = self.decode_first_stage(samples)
+ log["samples"] = x_samples
+ if plot_denoise_rows:
+ denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
+ log["denoise_row"] = denoise_grid
+
+ uc = self.get_learned_conditioning(len(c) * [""])
+ sample_scaled, _ = self.sample_log(cond=c,
+ batch_size=N,
+ ddim=use_ddim,
+ ddim_steps=ddim_steps,
+ eta=ddim_eta,
+ unconditional_guidance_scale=5.0,
+ unconditional_conditioning=uc)
+ log["samples_scaled"] = self.decode_first_stage(sample_scaled)
+
+ if quantize_denoised and not isinstance(self.first_stage_model, AutoencoderKL) and not isinstance(
+ self.first_stage_model, IdentityFirstStage):
+ # also display when quantizing x0 while sampling
+ with self.ema_scope("Plotting Quantized Denoised"):
+ samples, z_denoise_row = self.sample_log(cond=c,batch_size=N,ddim=use_ddim,
+ ddim_steps=ddim_steps,eta=ddim_eta,
+ quantize_denoised=True)
+ # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True,
+ # quantize_denoised=True)
+ x_samples = self.decode_first_stage(samples.to(self.device))
+ log["samples_x0_quantized"] = x_samples
+
+ if inpaint:
+ # make a simple center square
+ b, h, w = z.shape[0], z.shape[2], z.shape[3]
+ mask = torch.ones(N, h, w).to(self.device)
+ # zeros will be filled in
+ mask[:, h // 4:3 * h // 4, w // 4:3 * w // 4] = 0.
+ mask = mask[:, None, ...]
+ with self.ema_scope("Plotting Inpaint"):
+
+ samples, _ = self.sample_log(cond=c,batch_size=N,ddim=use_ddim, eta=ddim_eta,
+ ddim_steps=ddim_steps, x0=z[:N], mask=mask)
+ x_samples = self.decode_first_stage(samples.to(self.device))
+ log["samples_inpainting"] = x_samples
+ log["mask"] = mask
+
+ # outpaint
+ with self.ema_scope("Plotting Outpaint"):
+ samples, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,eta=ddim_eta,
+ ddim_steps=ddim_steps, x0=z[:N], mask=mask)
+ x_samples = self.decode_first_stage(samples.to(self.device))
+ log["samples_outpainting"] = x_samples
+
+ if plot_progressive_rows:
+ with self.ema_scope("Plotting Progressives"):
+ img, progressives = self.progressive_denoising(c,
+ shape=(self.channels, self.image_size, self.image_size),
+ batch_size=N)
+ prog_row = self._get_denoise_row_from_list(progressives, desc="Progressive Generation")
+ log["progressive_row"] = prog_row
+
+ if return_keys:
+ if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
+ return log
+ else:
+ return {key: log[key] for key in return_keys}
+ return log
+
+ def configure_optimizers(self):
+ lr = self.learning_rate
+
+ if self.embedding_manager is not None:
+ params = list(self.embedding_manager.embedding_parameters())
+ # params = list(self.cond_stage_model.transformer.text_model.embeddings.embedding_manager.embedding_parameters())
+ else:
+ params = list(self.model.parameters())
+ if self.cond_stage_trainable:
+ print(f"{self.__class__.__name__}: Also optimizing conditioner params!")
+ params = params + list(self.cond_stage_model.parameters())
+ if self.learn_logvar:
+ print('Diffusion model optimizing logvar')
+ params.append(self.logvar)
+ opt = torch.optim.AdamW(params, lr=lr)
+ if False:
+ assert 'target' in self.scheduler_config
+ scheduler = instantiate_from_config(self.scheduler_config)
+
+ print("Setting up LambdaLR scheduler...")
+ scheduler = [
+ {
+ 'scheduler': LambdaLR(opt, lr_lambda=scheduler.schedule),
+ 'interval': 'step',
+ 'frequency': 1
+ }]
+ return [opt], scheduler
+ return opt
+
+ @torch.no_grad()
+ def to_rgb(self, x):
+ x = x.float()
+ if not hasattr(self, "colorize"):
+ self.colorize = torch.randn(3, x.shape[1], 1, 1).to(x)
+ x = nn.functional.conv2d(x, weight=self.colorize)
+ x = 2. * (x - x.min()) / (x.max() - x.min()) - 1.
+ return x
+
+ @rank_zero_only
+ def on_save_checkpoint(self, checkpoint):
+ checkpoint.clear()
+
+ if os.path.isdir(self.trainer.checkpoint_callback.dirpath):
+ self.embedding_manager.save(os.path.join(self.trainer.checkpoint_callback.dirpath, "embeddings.pt"))
+
+ if (self.global_step - self.emb_ckpt_counter) > 500:
+ self.embedding_manager.save(os.path.join(self.trainer.checkpoint_callback.dirpath, f"embeddings_gs-{self.global_step}.pt"))
+
+ self.emb_ckpt_counter += 500
+
+
+class DiffusionWrapper(pl.LightningModule):
+ def __init__(self, diff_model_config, conditioning_key):
+ super().__init__()
+ self.diffusion_model = instantiate_from_config(diff_model_config)
+ self.conditioning_key = conditioning_key
+ assert self.conditioning_key in [None, 'concat', 'crossattn', 'hybrid', 'adm']
+
+ def forward(self, x, t, c_concat: list = None, c_crossattn: list = None):
+ if self.conditioning_key is None:
+ out = self.diffusion_model(x, t)
+ elif self.conditioning_key == 'concat':
+ xc = torch.cat([x] + c_concat, dim=1)
+ out = self.diffusion_model(xc, t)
+ elif self.conditioning_key == 'crossattn': # Default setting of stable diffusion gets you here
+ cc = torch.cat(c_crossattn, 1)
+ out = self.diffusion_model(x, t, context=cc)
+ elif self.conditioning_key == 'hybrid':
+ xc = torch.cat([x] + c_concat, dim=1)
+ cc = torch.cat(c_crossattn, 1)
+ out = self.diffusion_model(xc, t, context=cc)
+ elif self.conditioning_key == 'adm':
+ cc = c_crossattn[0]
+ out = self.diffusion_model(x, t, y=cc)
+ else:
+ raise NotImplementedError()
+
+ return out
+
+
+class Layout2ImgDiffusion(LatentDiffusion):
+ # TODO: move all layout-specific hacks to this class
+ def __init__(self, cond_stage_key, *args, **kwargs):
+ assert cond_stage_key == 'coordinates_bbox', 'Layout2ImgDiffusion only for cond_stage_key="coordinates_bbox"'
+ super().__init__(cond_stage_key=cond_stage_key, *args, **kwargs)
+
+ def log_images(self, batch, N=8, *args, **kwargs):
+ logs = super().log_images(batch=batch, N=N, *args, **kwargs)
+
+ key = 'train' if self.training else 'validation'
+ dset = self.trainer.datamodule.datasets[key]
+ mapper = dset.conditional_builders[self.cond_stage_key]
+
+ bbox_imgs = []
+ map_fn = lambda catno: dset.get_textual_label(dset.get_category_id(catno))
+ for tknzd_bbox in batch[self.cond_stage_key][:N]:
+ bboximg = mapper.plot(tknzd_bbox.detach().cpu(), map_fn, (256, 256))
+ bbox_imgs.append(bboximg)
+
+ cond_img = torch.stack(bbox_imgs, dim=0)
+ logs['bbox_image'] = cond_img
+ return logs
diff --git a/sd1/ldm/models/diffusion/plms.py b/sd1/ldm/models/diffusion/plms.py
new file mode 100644
index 0000000000000000000000000000000000000000..78eeb1003aa45d27bdbfc6b4a1d7ccbff57cd2e3
--- /dev/null
+++ b/sd1/ldm/models/diffusion/plms.py
@@ -0,0 +1,236 @@
+"""SAMPLING ONLY."""
+
+import torch
+import numpy as np
+from tqdm import tqdm
+from functools import partial
+
+from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like
+
+
+class PLMSSampler(object):
+ def __init__(self, model, schedule="linear", **kwargs):
+ super().__init__()
+ self.model = model
+ self.ddpm_num_timesteps = model.num_timesteps
+ self.schedule = schedule
+
+ def register_buffer(self, name, attr):
+ if type(attr) == torch.Tensor:
+ if attr.device != torch.device("cuda"):
+ attr = attr.to(torch.device("cuda"))
+ setattr(self, name, attr)
+
+ def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
+ if ddim_eta != 0:
+ raise ValueError('ddim_eta must be 0 for PLMS')
+ self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
+ num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
+ alphas_cumprod = self.model.alphas_cumprod
+ assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
+ to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
+
+ self.register_buffer('betas', to_torch(self.model.betas))
+ self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
+ self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev))
+
+ # calculations for diffusion q(x_t | x_{t-1}) and others
+ self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
+ self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
+ self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
+ self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
+ self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))
+
+ # ddim sampling parameters
+ ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
+ ddim_timesteps=self.ddim_timesteps,
+ eta=ddim_eta,verbose=verbose)
+ self.register_buffer('ddim_sigmas', ddim_sigmas)
+ self.register_buffer('ddim_alphas', ddim_alphas)
+ self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
+ self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
+ sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
+ (1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
+ 1 - self.alphas_cumprod / self.alphas_cumprod_prev))
+ self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
+
+ @torch.no_grad()
+ def sample(self,
+ S,
+ batch_size,
+ shape,
+ conditioning=None,
+ callback=None,
+ normals_sequence=None,
+ img_callback=None,
+ quantize_x0=False,
+ eta=0.,
+ mask=None,
+ x0=None,
+ temperature=1.,
+ noise_dropout=0.,
+ score_corrector=None,
+ corrector_kwargs=None,
+ verbose=True,
+ x_T=None,
+ log_every_t=100,
+ unconditional_guidance_scale=1.,
+ unconditional_conditioning=None,
+ # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
+ **kwargs
+ ):
+ if conditioning is not None:
+ if isinstance(conditioning, dict):
+ cbs = conditioning[list(conditioning.keys())[0]].shape[0]
+ if cbs != batch_size:
+ print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
+ else:
+ if conditioning.shape[0] != batch_size:
+ print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
+
+ self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
+ # sampling
+ C, H, W = shape
+ size = (batch_size, C, H, W)
+ print(f'Data shape for PLMS sampling is {size}')
+
+ samples, intermediates = self.plms_sampling(conditioning, size,
+ callback=callback,
+ img_callback=img_callback,
+ quantize_denoised=quantize_x0,
+ mask=mask, x0=x0,
+ ddim_use_original_steps=False,
+ noise_dropout=noise_dropout,
+ temperature=temperature,
+ score_corrector=score_corrector,
+ corrector_kwargs=corrector_kwargs,
+ x_T=x_T,
+ log_every_t=log_every_t,
+ unconditional_guidance_scale=unconditional_guidance_scale,
+ unconditional_conditioning=unconditional_conditioning,
+ )
+ return samples, intermediates
+
+ @torch.no_grad()
+ def plms_sampling(self, cond, shape,
+ x_T=None, ddim_use_original_steps=False,
+ callback=None, timesteps=None, quantize_denoised=False,
+ mask=None, x0=None, img_callback=None, log_every_t=100,
+ temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
+ unconditional_guidance_scale=1., unconditional_conditioning=None,):
+ device = self.model.betas.device
+ b = shape[0]
+ if x_T is None:
+ img = torch.randn(shape, device=device)
+ else:
+ img = x_T
+
+ if timesteps is None:
+ timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
+ elif timesteps is not None and not ddim_use_original_steps:
+ subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
+ timesteps = self.ddim_timesteps[:subset_end]
+
+ intermediates = {'x_inter': [img], 'pred_x0': [img]}
+ time_range = list(reversed(range(0,timesteps))) if ddim_use_original_steps else np.flip(timesteps)
+ total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
+ print(f"Running PLMS Sampling with {total_steps} timesteps")
+
+ iterator = tqdm(time_range, desc='PLMS Sampler', total=total_steps)
+ old_eps = []
+
+ for i, step in enumerate(iterator):
+ index = total_steps - i - 1
+ ts = torch.full((b,), step, device=device, dtype=torch.long)
+ ts_next = torch.full((b,), time_range[min(i + 1, len(time_range) - 1)], device=device, dtype=torch.long)
+
+ if mask is not None:
+ assert x0 is not None
+ img_orig = self.model.q_sample(x0, ts) # TODO: deterministic forward pass?
+ img = img_orig * mask + (1. - mask) * img
+
+ outs = self.p_sample_plms(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps,
+ quantize_denoised=quantize_denoised, temperature=temperature,
+ noise_dropout=noise_dropout, score_corrector=score_corrector,
+ corrector_kwargs=corrector_kwargs,
+ unconditional_guidance_scale=unconditional_guidance_scale,
+ unconditional_conditioning=unconditional_conditioning,
+ old_eps=old_eps, t_next=ts_next)
+ img, pred_x0, e_t = outs
+ old_eps.append(e_t)
+ if len(old_eps) >= 4:
+ old_eps.pop(0)
+ if callback: callback(i)
+ if img_callback: img_callback(pred_x0, i)
+
+ if index % log_every_t == 0 or index == total_steps - 1:
+ intermediates['x_inter'].append(img)
+ intermediates['pred_x0'].append(pred_x0)
+
+ return img, intermediates
+
+ @torch.no_grad()
+ def p_sample_plms(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
+ temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
+ unconditional_guidance_scale=1., unconditional_conditioning=None, old_eps=None, t_next=None):
+ b, *_, device = *x.shape, x.device
+
+ def get_model_output(x, t):
+ if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
+ e_t = self.model.apply_model(x, t, c)
+ else:
+ x_in = torch.cat([x] * 2)
+ t_in = torch.cat([t] * 2)
+ c_in = torch.cat([unconditional_conditioning, c])
+ e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
+ e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
+
+ if score_corrector is not None:
+ assert self.model.parameterization == "eps"
+ e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
+
+ return e_t
+
+ alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
+ alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
+ sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
+ sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
+
+ def get_x_prev_and_pred_x0(e_t, index):
+ # select parameters corresponding to the currently considered timestep
+ a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
+ a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
+ sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
+ sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)
+
+ # current prediction for x_0
+ pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
+ if quantize_denoised:
+ pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
+ # direction pointing to x_t
+ dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
+ noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
+ if noise_dropout > 0.:
+ noise = torch.nn.functional.dropout(noise, p=noise_dropout)
+ x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
+ return x_prev, pred_x0
+
+ e_t = get_model_output(x, t)
+ if len(old_eps) == 0:
+ # Pseudo Improved Euler (2nd order)
+ x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t, index)
+ e_t_next = get_model_output(x_prev, t_next)
+ e_t_prime = (e_t + e_t_next) / 2
+ elif len(old_eps) == 1:
+ # 2nd order Pseudo Linear Multistep (Adams-Bashforth)
+ e_t_prime = (3 * e_t - old_eps[-1]) / 2
+ elif len(old_eps) == 2:
+ # 3nd order Pseudo Linear Multistep (Adams-Bashforth)
+ e_t_prime = (23 * e_t - 16 * old_eps[-1] + 5 * old_eps[-2]) / 12
+ elif len(old_eps) >= 3:
+ # 4nd order Pseudo Linear Multistep (Adams-Bashforth)
+ e_t_prime = (55 * e_t - 59 * old_eps[-1] + 37 * old_eps[-2] - 9 * old_eps[-3]) / 24
+
+ x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t_prime, index)
+
+ return x_prev, pred_x0, e_t
diff --git a/sd1/ldm/modules/attention.py b/sd1/ldm/modules/attention.py
new file mode 100644
index 0000000000000000000000000000000000000000..f4eff39ccb6d75daa764f6eb70a7cef024fb5a3f
--- /dev/null
+++ b/sd1/ldm/modules/attention.py
@@ -0,0 +1,261 @@
+from inspect import isfunction
+import math
+import torch
+import torch.nn.functional as F
+from torch import nn, einsum
+from einops import rearrange, repeat
+
+from ldm.modules.diffusionmodules.util import checkpoint
+
+
+def exists(val):
+ return val is not None
+
+
+def uniq(arr):
+ return{el: True for el in arr}.keys()
+
+
+def default(val, d):
+ if exists(val):
+ return val
+ return d() if isfunction(d) else d
+
+
+def max_neg_value(t):
+ return -torch.finfo(t.dtype).max
+
+
+def init_(tensor):
+ dim = tensor.shape[-1]
+ std = 1 / math.sqrt(dim)
+ tensor.uniform_(-std, std)
+ return tensor
+
+
+# feedforward
+class GEGLU(nn.Module):
+ def __init__(self, dim_in, dim_out):
+ super().__init__()
+ self.proj = nn.Linear(dim_in, dim_out * 2)
+
+ def forward(self, x):
+ x, gate = self.proj(x).chunk(2, dim=-1)
+ return x * F.gelu(gate)
+
+
+class FeedForward(nn.Module):
+ def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.):
+ super().__init__()
+ inner_dim = int(dim * mult)
+ dim_out = default(dim_out, dim)
+ project_in = nn.Sequential(
+ nn.Linear(dim, inner_dim),
+ nn.GELU()
+ ) if not glu else GEGLU(dim, inner_dim)
+
+ self.net = nn.Sequential(
+ project_in,
+ nn.Dropout(dropout),
+ nn.Linear(inner_dim, dim_out)
+ )
+
+ def forward(self, x):
+ return self.net(x)
+
+
+def zero_module(module):
+ """
+ Zero out the parameters of a module and return it.
+ """
+ for p in module.parameters():
+ p.detach().zero_()
+ return module
+
+
+def Normalize(in_channels):
+ return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
+
+
+class LinearAttention(nn.Module):
+ def __init__(self, dim, heads=4, dim_head=32):
+ super().__init__()
+ self.heads = heads
+ hidden_dim = dim_head * heads
+ self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias = False)
+ self.to_out = nn.Conv2d(hidden_dim, dim, 1)
+
+ def forward(self, x):
+ b, c, h, w = x.shape
+ qkv = self.to_qkv(x)
+ q, k, v = rearrange(qkv, 'b (qkv heads c) h w -> qkv b heads c (h w)', heads = self.heads, qkv=3)
+ k = k.softmax(dim=-1)
+ context = torch.einsum('bhdn,bhen->bhde', k, v)
+ out = torch.einsum('bhde,bhdn->bhen', context, q)
+ out = rearrange(out, 'b heads c (h w) -> b (heads c) h w', heads=self.heads, h=h, w=w)
+ return self.to_out(out)
+
+
+class SpatialSelfAttention(nn.Module):
+ def __init__(self, in_channels):
+ super().__init__()
+ self.in_channels = in_channels
+
+ self.norm = Normalize(in_channels)
+ self.q = torch.nn.Conv2d(in_channels,
+ in_channels,
+ kernel_size=1,
+ stride=1,
+ padding=0)
+ self.k = torch.nn.Conv2d(in_channels,
+ in_channels,
+ kernel_size=1,
+ stride=1,
+ padding=0)
+ self.v = torch.nn.Conv2d(in_channels,
+ in_channels,
+ kernel_size=1,
+ stride=1,
+ padding=0)
+ self.proj_out = torch.nn.Conv2d(in_channels,
+ in_channels,
+ kernel_size=1,
+ stride=1,
+ padding=0)
+
+ def forward(self, x):
+ h_ = x
+ h_ = self.norm(h_)
+ q = self.q(h_)
+ k = self.k(h_)
+ v = self.v(h_)
+
+ # compute attention
+ b,c,h,w = q.shape
+ q = rearrange(q, 'b c h w -> b (h w) c')
+ k = rearrange(k, 'b c h w -> b c (h w)')
+ w_ = torch.einsum('bij,bjk->bik', q, k)
+
+ w_ = w_ * (int(c)**(-0.5))
+ w_ = torch.nn.functional.softmax(w_, dim=2)
+
+ # attend to values
+ v = rearrange(v, 'b c h w -> b c (h w)')
+ w_ = rearrange(w_, 'b i j -> b j i')
+ h_ = torch.einsum('bij,bjk->bik', v, w_)
+ h_ = rearrange(h_, 'b c (h w) -> b c h w', h=h)
+ h_ = self.proj_out(h_)
+
+ return x+h_
+
+
+class CrossAttention(nn.Module):
+ def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.):
+ super().__init__()
+ inner_dim = dim_head * heads
+ context_dim = default(context_dim, query_dim)
+
+ self.scale = dim_head ** -0.5
+ self.heads = heads
+
+ self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
+ self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
+ self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
+
+ self.to_out = nn.Sequential(
+ nn.Linear(inner_dim, query_dim),
+ nn.Dropout(dropout)
+ )
+
+ def forward(self, x, context=None, mask=None):
+ h = self.heads
+
+ q = self.to_q(x)
+ context = default(context, x)
+ k = self.to_k(context)
+ v = self.to_v(context)
+
+ q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
+
+ sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
+
+ if exists(mask):
+ mask = rearrange(mask, 'b ... -> b (...)')
+ max_neg_value = -torch.finfo(sim.dtype).max
+ mask = repeat(mask, 'b j -> (b h) () j', h=h)
+ sim.masked_fill_(~mask, max_neg_value)
+
+ # attention, what we cannot get enough of
+ attn = sim.softmax(dim=-1)
+
+ out = einsum('b i j, b j d -> b i d', attn, v)
+ out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
+ return self.to_out(out)
+
+
+class BasicTransformerBlock(nn.Module):
+ def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True):
+ super().__init__()
+ self.attn1 = CrossAttention(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout) # is a self-attention
+ self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
+ self.attn2 = CrossAttention(query_dim=dim, context_dim=context_dim,
+ heads=n_heads, dim_head=d_head, dropout=dropout) # is self-attn if context is none
+ self.norm1 = nn.LayerNorm(dim)
+ self.norm2 = nn.LayerNorm(dim)
+ self.norm3 = nn.LayerNorm(dim)
+ self.checkpoint = checkpoint
+
+ def forward(self, x, context=None):
+ return checkpoint(self._forward, (x, context), self.parameters(), self.checkpoint)
+
+ def _forward(self, x, context=None):
+ x = self.attn1(self.norm1(x)) + x
+ x = self.attn2(self.norm2(x), context=context) + x
+ x = self.ff(self.norm3(x)) + x
+ return x
+
+
+class SpatialTransformer(nn.Module):
+ """
+ Transformer block for image-like data.
+ First, project the input (aka embedding)
+ and reshape to b, t, d.
+ Then apply standard transformer action.
+ Finally, reshape to image
+ """
+ def __init__(self, in_channels, n_heads, d_head,
+ depth=1, dropout=0., context_dim=None):
+ super().__init__()
+ self.in_channels = in_channels
+ inner_dim = n_heads * d_head
+ self.norm = Normalize(in_channels)
+
+ self.proj_in = nn.Conv2d(in_channels,
+ inner_dim,
+ kernel_size=1,
+ stride=1,
+ padding=0)
+
+ self.transformer_blocks = nn.ModuleList(
+ [BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim)
+ for d in range(depth)]
+ )
+
+ self.proj_out = zero_module(nn.Conv2d(inner_dim,
+ in_channels,
+ kernel_size=1,
+ stride=1,
+ padding=0))
+
+ def forward(self, x, context=None):
+ # note: if no context is given, cross-attention defaults to self-attention
+ b, c, h, w = x.shape
+ x_in = x
+ x = self.norm(x)
+ x = self.proj_in(x)
+ x = rearrange(x, 'b c h w -> b (h w) c')
+ for block in self.transformer_blocks:
+ x = block(x, context=context)
+ x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w)
+ x = self.proj_out(x)
+ return x + x_in
\ No newline at end of file
diff --git a/sd1/ldm/modules/diffusionmodules/__init__.py b/sd1/ldm/modules/diffusionmodules/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/sd1/ldm/modules/diffusionmodules/model.py b/sd1/ldm/modules/diffusionmodules/model.py
new file mode 100644
index 0000000000000000000000000000000000000000..2fa615e4e76ee0df6ad2e0341cb486f93ea1b36d
--- /dev/null
+++ b/sd1/ldm/modules/diffusionmodules/model.py
@@ -0,0 +1,843 @@
+# pytorch_diffusion + derived encoder decoder
+import math
+import torch
+import torch.nn as nn
+import numpy as np
+from einops import rearrange
+
+from ldm.util import instantiate_from_config
+from ldm.modules.attention import LinearAttention
+import torch.nn.functional as F
+
+def get_timestep_embedding(timesteps, embedding_dim):
+ """
+ This matches the implementation in Denoising Diffusion Probabilistic Models:
+ From Fairseq.
+ Build sinusoidal embeddings.
+ This matches the implementation in tensor2tensor, but differs slightly
+ from the description in Section 3.5 of "Attention Is All You Need".
+ """
+ assert len(timesteps.shape) == 1
+
+ half_dim = embedding_dim // 2
+ emb = math.log(10000) / (half_dim - 1)
+ emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb)
+ emb = emb.to(device=timesteps.device)
+ emb = timesteps.float()[:, None] * emb[None, :]
+ emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
+ if embedding_dim % 2 == 1: # zero pad
+ emb = torch.nn.functional.pad(emb, (0,1,0,0))
+ return emb
+
+
+def nonlinearity(x):
+ # swish
+ return x*torch.sigmoid(x)
+
+
+def Normalize(in_channels, num_groups=32):
+ return torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True)
+
+
+class Upsample(nn.Module):
+ def __init__(self, in_channels, with_conv):
+ super().__init__()
+ self.with_conv = with_conv
+ if self.with_conv:
+ self.conv = torch.nn.Conv2d(in_channels,
+ in_channels,
+ kernel_size=3,
+ stride=1,
+ padding=1)
+
+ def forward(self, x):
+ x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
+ if self.with_conv:
+ x = self.conv(x)
+ return x
+
+
+class Downsample(nn.Module):
+ def __init__(self, in_channels, with_conv):
+ super().__init__()
+ self.with_conv = with_conv
+ if self.with_conv:
+ # no asymmetric padding in torch conv, must do it ourselves
+ self.conv = torch.nn.Conv2d(in_channels,
+ in_channels,
+ kernel_size=3,
+ stride=2,
+ padding=0)
+
+ def forward(self, x):
+ if self.with_conv:
+ pad = (0,1,0,1)
+ x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
+ x = self.conv(x)
+ else:
+ x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
+ return x
+
+
+class ResnetBlock(nn.Module):
+ def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False,
+ dropout, temb_channels=512):
+ super().__init__()
+ self.in_channels = in_channels
+ out_channels = in_channels if out_channels is None else out_channels
+ self.out_channels = out_channels
+ self.use_conv_shortcut = conv_shortcut
+
+ self.norm1 = Normalize(in_channels)
+ self.conv1 = torch.nn.Conv2d(in_channels,
+ out_channels,
+ kernel_size=3,
+ stride=1,
+ padding=1)
+ if temb_channels > 0:
+ self.temb_proj = torch.nn.Linear(temb_channels,
+ out_channels)
+ self.norm2 = Normalize(out_channels)
+ self.dropout = torch.nn.Dropout(dropout)
+ self.conv2 = torch.nn.Conv2d(out_channels,
+ out_channels,
+ kernel_size=3,
+ stride=1,
+ padding=1)
+ if self.in_channels != self.out_channels:
+ if self.use_conv_shortcut:
+ self.conv_shortcut = torch.nn.Conv2d(in_channels,
+ out_channels,
+ kernel_size=3,
+ stride=1,
+ padding=1)
+ else:
+ self.nin_shortcut = torch.nn.Conv2d(in_channels,
+ out_channels,
+ kernel_size=1,
+ stride=1,
+ padding=0)
+
+ def forward(self, x, temb):
+ h = x
+ h = self.norm1(h)
+ h = nonlinearity(h)
+ h = self.conv1(h)
+
+ if temb is not None:
+ h = h + self.temb_proj(nonlinearity(temb))[:,:,None,None]
+
+ h = self.norm2(h)
+ h = nonlinearity(h)
+ h = self.dropout(h)
+ h = self.conv2(h)
+
+ if self.in_channels != self.out_channels:
+ if self.use_conv_shortcut:
+ x = self.conv_shortcut(x)
+ else:
+ x = self.nin_shortcut(x)
+
+ return x+h
+
+
+class LinAttnBlock(LinearAttention):
+ """to match AttnBlock usage"""
+ def __init__(self, in_channels):
+ super().__init__(dim=in_channels, heads=1, dim_head=in_channels)
+
+
+class AttnBlock(nn.Module):
+ def __init__(self, in_channels):
+ super().__init__()
+ self.in_channels = in_channels
+
+ self.norm = Normalize(in_channels)
+ self.q = torch.nn.Conv2d(in_channels,
+ in_channels,
+ kernel_size=1,
+ stride=1,
+ padding=0)
+ self.k = torch.nn.Conv2d(in_channels,
+ in_channels,
+ kernel_size=1,
+ stride=1,
+ padding=0)
+ self.v = torch.nn.Conv2d(in_channels,
+ in_channels,
+ kernel_size=1,
+ stride=1,
+ padding=0)
+ self.proj_out = torch.nn.Conv2d(in_channels,
+ in_channels,
+ kernel_size=1,
+ stride=1,
+ padding=0)
+
+
+ def forward(self, x):
+ h_ = x
+ h_ = self.norm(h_)
+ q = self.q(h_)
+ k = self.k(h_)
+ v = self.v(h_)
+
+ # compute attention
+ b,c,h,w = q.shape
+ q = q.reshape(b,c,h*w)
+ q = q.permute(0,2,1) # b,hw,c
+ k = k.reshape(b,c,h*w) # b,c,hw
+ w_ = torch.bmm(q,k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
+ w_ = w_ * (int(c)**(-0.5))
+ w_ = torch.nn.functional.softmax(w_, dim=2)
+
+ # attend to values
+ v = v.reshape(b,c,h*w)
+ w_ = w_.permute(0,2,1) # b,hw,hw (first hw of k, second of q)
+ h_ = torch.bmm(v,w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
+ h_ = h_.reshape(b,c,h,w)
+
+ h_ = self.proj_out(h_)
+
+ return x+h_
+
+
+def make_attn(in_channels, attn_type="vanilla"):
+ assert attn_type in ["vanilla", "linear", "none"], f'attn_type {attn_type} unknown'
+ print(f"making attention of type '{attn_type}' with {in_channels} in_channels")
+ if attn_type == "vanilla":
+ return AttnBlock(in_channels)
+ elif attn_type == "none":
+ return nn.Identity(in_channels)
+ else:
+ return LinAttnBlock(in_channels)
+
+
+class Model(nn.Module):
+ def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
+ attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
+ resolution, use_timestep=True, use_linear_attn=False, attn_type="vanilla"):
+ super().__init__()
+ if use_linear_attn: attn_type = "linear"
+ self.ch = ch
+ self.temb_ch = self.ch*4
+ self.num_resolutions = len(ch_mult)
+ self.num_res_blocks = num_res_blocks
+ self.resolution = resolution
+ self.in_channels = in_channels
+
+ self.use_timestep = use_timestep
+ if self.use_timestep:
+ # timestep embedding
+ self.temb = nn.Module()
+ self.temb.dense = nn.ModuleList([
+ torch.nn.Linear(self.ch,
+ self.temb_ch),
+ torch.nn.Linear(self.temb_ch,
+ self.temb_ch),
+ ])
+
+ # downsampling
+ self.conv_in = torch.nn.Conv2d(in_channels,
+ self.ch,
+ kernel_size=3,
+ stride=1,
+ padding=1)
+
+ curr_res = resolution
+ in_ch_mult = (1,)+tuple(ch_mult)
+ self.down = nn.ModuleList()
+ for i_level in range(self.num_resolutions):
+ block = nn.ModuleList()
+ attn = nn.ModuleList()
+ block_in = ch*in_ch_mult[i_level]
+ block_out = ch*ch_mult[i_level]
+ for i_block in range(self.num_res_blocks):
+ block.append(ResnetBlock(in_channels=block_in,
+ out_channels=block_out,
+ temb_channels=self.temb_ch,
+ dropout=dropout))
+ block_in = block_out
+ if curr_res in attn_resolutions:
+ attn.append(make_attn(block_in, attn_type=attn_type))
+ down = nn.Module()
+ down.block = block
+ down.attn = attn
+ if i_level != self.num_resolutions-1:
+ down.downsample = Downsample(block_in, resamp_with_conv)
+ curr_res = curr_res // 2
+ self.down.append(down)
+
+ # middle
+ self.mid = nn.Module()
+ self.mid.block_1 = ResnetBlock(in_channels=block_in,
+ out_channels=block_in,
+ temb_channels=self.temb_ch,
+ dropout=dropout)
+ self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
+ self.mid.block_2 = ResnetBlock(in_channels=block_in,
+ out_channels=block_in,
+ temb_channels=self.temb_ch,
+ dropout=dropout)
+
+ # upsampling
+ self.up = nn.ModuleList()
+ for i_level in reversed(range(self.num_resolutions)):
+ block = nn.ModuleList()
+ attn = nn.ModuleList()
+ block_out = ch*ch_mult[i_level]
+ skip_in = ch*ch_mult[i_level]
+ for i_block in range(self.num_res_blocks+1):
+ if i_block == self.num_res_blocks:
+ skip_in = ch*in_ch_mult[i_level]
+ block.append(ResnetBlock(in_channels=block_in+skip_in,
+ out_channels=block_out,
+ temb_channels=self.temb_ch,
+ dropout=dropout))
+ block_in = block_out
+ if curr_res in attn_resolutions:
+ attn.append(make_attn(block_in, attn_type=attn_type))
+ up = nn.Module()
+ up.block = block
+ up.attn = attn
+ if i_level != 0:
+ up.upsample = Upsample(block_in, resamp_with_conv)
+ curr_res = curr_res * 2
+ self.up.insert(0, up) # prepend to get consistent order
+
+ # end
+ self.norm_out = Normalize(block_in)
+ self.conv_out = torch.nn.Conv2d(block_in,
+ out_ch,
+ kernel_size=3,
+ stride=1,
+ padding=1)
+
+ def forward(self, x, t=None, context=None):
+ #assert x.shape[2] == x.shape[3] == self.resolution
+ if context is not None:
+ # assume aligned context, cat along channel axis
+ x = torch.cat((x, context), dim=1)
+ if self.use_timestep:
+ # timestep embedding
+ assert t is not None
+ temb = get_timestep_embedding(t, self.ch)
+ temb = self.temb.dense[0](temb)
+ temb = nonlinearity(temb)
+ temb = self.temb.dense[1](temb)
+ else:
+ temb = None
+
+ # downsampling
+ hs = [self.conv_in(x)]
+ for i_level in range(self.num_resolutions):
+ for i_block in range(self.num_res_blocks):
+ h = self.down[i_level].block[i_block](hs[-1], temb)
+ if len(self.down[i_level].attn) > 0:
+ h = self.down[i_level].attn[i_block](h)
+ hs.append(h)
+ if i_level != self.num_resolutions-1:
+ hs.append(self.down[i_level].downsample(hs[-1]))
+
+ # middle
+ h = hs[-1]
+ h = self.mid.block_1(h, temb)
+ h = self.mid.attn_1(h)
+ h = self.mid.block_2(h, temb)
+
+ # upsampling
+ for i_level in reversed(range(self.num_resolutions)):
+ for i_block in range(self.num_res_blocks+1):
+ h = self.up[i_level].block[i_block](
+ torch.cat([h, hs.pop()], dim=1), temb)
+ if len(self.up[i_level].attn) > 0:
+ h = self.up[i_level].attn[i_block](h)
+ if i_level != 0:
+ h = self.up[i_level].upsample(h)
+
+ # end
+ h = self.norm_out(h)
+ h = nonlinearity(h)
+ h = self.conv_out(h)
+ return h
+
+ def get_last_layer(self):
+ return self.conv_out.weight
+
+
+class Encoder(nn.Module):
+ def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
+ attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
+ resolution, z_channels, double_z=True, use_linear_attn=False, attn_type="vanilla",
+ **ignore_kwargs):
+ super().__init__()
+ if use_linear_attn: attn_type = "linear"
+ self.ch = ch
+ self.temb_ch = 0
+ self.num_resolutions = len(ch_mult)
+ self.num_res_blocks = num_res_blocks
+ self.resolution = resolution
+ self.in_channels = in_channels
+
+ # downsampling
+ self.conv_in = torch.nn.Conv2d(in_channels,
+ self.ch,
+ kernel_size=3,
+ stride=1,
+ padding=1)
+
+ curr_res = resolution
+ in_ch_mult = (1,)+tuple(ch_mult)
+ self.in_ch_mult = in_ch_mult
+ self.down = nn.ModuleList()
+ for i_level in range(self.num_resolutions):
+ block = nn.ModuleList()
+ attn = nn.ModuleList()
+ block_in = ch*in_ch_mult[i_level]
+ block_out = ch*ch_mult[i_level]
+ for i_block in range(self.num_res_blocks):
+ block.append(ResnetBlock(in_channels=block_in,
+ out_channels=block_out,
+ temb_channels=self.temb_ch,
+ dropout=dropout))
+ block_in = block_out
+ if curr_res in attn_resolutions:
+ attn.append(make_attn(block_in, attn_type=attn_type))
+ down = nn.Module()
+ down.block = block
+ down.attn = attn
+ if i_level != self.num_resolutions-1:
+ down.downsample = Downsample(block_in, resamp_with_conv)
+ curr_res = curr_res // 2
+ self.down.append(down)
+
+ # middle
+ self.mid = nn.Module()
+ self.mid.block_1 = ResnetBlock(in_channels=block_in,
+ out_channels=block_in,
+ temb_channels=self.temb_ch,
+ dropout=dropout)
+ self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
+ self.mid.block_2 = ResnetBlock(in_channels=block_in,
+ out_channels=block_in,
+ temb_channels=self.temb_ch,
+ dropout=dropout)
+
+ # end
+ self.norm_out = Normalize(block_in)
+ self.conv_out = torch.nn.Conv2d(block_in,
+ 2*z_channels if double_z else z_channels,
+ kernel_size=3,
+ stride=1,
+ padding=1)
+
+ def forward(self, x):
+ # timestep embedding
+ temb = None
+
+ # downsampling
+ hs = [self.conv_in(x)]
+ for i_level in range(self.num_resolutions):
+ for i_block in range(self.num_res_blocks):
+ h = self.down[i_level].block[i_block](hs[-1], temb)
+ if len(self.down[i_level].attn) > 0:
+ h = self.down[i_level].attn[i_block](h)
+ hs.append(h)
+ if i_level != self.num_resolutions-1:
+ hs.append(self.down[i_level].downsample(hs[-1]))
+
+ # middle
+ h = hs[-1]
+ h = self.mid.block_1(h, temb)
+ h = self.mid.attn_1(h)
+ h = self.mid.block_2(h, temb)
+
+ # end
+ h = self.norm_out(h)
+ h = nonlinearity(h)
+ h = self.conv_out(h)
+ return h
+
+
+class Decoder(nn.Module):
+ def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
+ attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
+ resolution, z_channels, give_pre_end=False, tanh_out=False, use_linear_attn=False,
+ attn_type="vanilla", **ignorekwargs):
+ super().__init__()
+ if use_linear_attn: attn_type = "linear"
+ self.ch = ch
+ self.temb_ch = 0
+ self.num_resolutions = len(ch_mult)
+ self.num_res_blocks = num_res_blocks
+ self.resolution = resolution
+ self.in_channels = in_channels
+ self.give_pre_end = give_pre_end
+ self.tanh_out = tanh_out
+
+ # compute in_ch_mult, block_in and curr_res at lowest res
+ in_ch_mult = (1,)+tuple(ch_mult)
+ block_in = ch*ch_mult[self.num_resolutions-1]
+ curr_res = resolution // 2**(self.num_resolutions-1)
+ self.z_shape = (1,z_channels,curr_res,curr_res)
+ print("Working with z of shape {} = {} dimensions.".format(
+ self.z_shape, np.prod(self.z_shape)))
+
+ # z to block_in
+ self.conv_in = torch.nn.Conv2d(z_channels,
+ block_in,
+ kernel_size=3,
+ stride=1,
+ padding=1)
+
+ # middle
+ self.mid = nn.Module()
+ self.mid.block_1 = ResnetBlock(in_channels=block_in,
+ out_channels=block_in,
+ temb_channels=self.temb_ch,
+ dropout=dropout)
+ self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
+ self.mid.block_2 = ResnetBlock(in_channels=block_in,
+ out_channels=block_in,
+ temb_channels=self.temb_ch,
+ dropout=dropout)
+
+ # upsampling
+ self.up = nn.ModuleList()
+ for i_level in reversed(range(self.num_resolutions)):
+ block = nn.ModuleList()
+ attn = nn.ModuleList()
+ block_out = ch*ch_mult[i_level]
+ for i_block in range(self.num_res_blocks+1):
+ block.append(ResnetBlock(in_channels=block_in,
+ out_channels=block_out,
+ temb_channels=self.temb_ch,
+ dropout=dropout))
+ block_in = block_out
+ if curr_res in attn_resolutions:
+ attn.append(make_attn(block_in, attn_type=attn_type))
+ up = nn.Module()
+ up.block = block
+ up.attn = attn
+ if i_level != 0:
+ up.upsample = Upsample(block_in, resamp_with_conv)
+ curr_res = curr_res * 2
+ self.up.insert(0, up) # prepend to get consistent order
+
+ # end
+ self.norm_out = Normalize(block_in)
+ self.conv_out = torch.nn.Conv2d(block_in,
+ out_ch,
+ kernel_size=3,
+ stride=1,
+ padding=1)
+
+ def forward(self, z):
+ #assert z.shape[1:] == self.z_shape[1:]
+ self.last_z_shape = z.shape
+
+ # timestep embedding
+ temb = None
+
+ # z to block_in
+ h = self.conv_in(z)
+
+ # middle
+ h = self.mid.block_1(h, temb)
+ h = self.mid.attn_1(h)
+ h = self.mid.block_2(h, temb)
+
+ # upsampling
+ for i_level in reversed(range(self.num_resolutions)):
+ for i_block in range(self.num_res_blocks+1):
+ h = self.up[i_level].block[i_block](h, temb)
+ if len(self.up[i_level].attn) > 0:
+ h = self.up[i_level].attn[i_block](h)
+ if i_level != 0:
+ h = self.up[i_level].upsample(h)
+
+ # end
+ if self.give_pre_end:
+ return h
+
+
+ h_fake = self.norm_out(h).type(torch.float16)
+ #h_fake = F.group_norm(h.float(),32,eps=1e-1).detach()
+ h = (h - h.mean([2,3],keepdims=True)) / h.std([2,3],keepdims=True)
+ #std_val = h_fake.std([2,3],keepdims=True)
+ #h = h*(0.5+h_fake.std([2,3],keepdims=True).type(torch.float16))+h_fake.mean([2,3],keepdims=True).type(torch.float16)
+ #h = h + h_fake.mean([2,3],keepdims=True).type(torch.float16)
+ h = h + (h_fake-h).detach()
+ h = nonlinearity(h)
+ h = self.conv_out(h)
+ if self.tanh_out:
+ h = torch.tanh(h)
+
+ return h
+
+
+class SimpleDecoder(nn.Module):
+ def __init__(self, in_channels, out_channels, *args, **kwargs):
+ super().__init__()
+ self.model = nn.ModuleList([nn.Conv2d(in_channels, in_channels, 1),
+ ResnetBlock(in_channels=in_channels,
+ out_channels=2 * in_channels,
+ temb_channels=0, dropout=0.0),
+ ResnetBlock(in_channels=2 * in_channels,
+ out_channels=4 * in_channels,
+ temb_channels=0, dropout=0.0),
+ ResnetBlock(in_channels=4 * in_channels,
+ out_channels=2 * in_channels,
+ temb_channels=0, dropout=0.0),
+ nn.Conv2d(2*in_channels, in_channels, 1),
+ Upsample(in_channels, with_conv=True)])
+ # end
+ self.norm_out = Normalize(in_channels)
+ self.conv_out = torch.nn.Conv2d(in_channels,
+ out_channels,
+ kernel_size=3,
+ stride=1,
+ padding=1)
+
+ def forward(self, x):
+ for i, layer in enumerate(self.model):
+ if i in [1,2,3]:
+ x = layer(x, None)
+ else:
+ x = layer(x)
+
+ h = self.norm_out(x)
+ h = nonlinearity(h)
+ x = self.conv_out(h)
+ return x
+
+
+class UpsampleDecoder(nn.Module):
+ def __init__(self, in_channels, out_channels, ch, num_res_blocks, resolution,
+ ch_mult=(2,2), dropout=0.0):
+ super().__init__()
+ # upsampling
+ self.temb_ch = 0
+ self.num_resolutions = len(ch_mult)
+ self.num_res_blocks = num_res_blocks
+ block_in = in_channels
+ curr_res = resolution // 2 ** (self.num_resolutions - 1)
+ self.res_blocks = nn.ModuleList()
+ self.upsample_blocks = nn.ModuleList()
+ for i_level in range(self.num_resolutions):
+ res_block = []
+ block_out = ch * ch_mult[i_level]
+ for i_block in range(self.num_res_blocks + 1):
+ res_block.append(ResnetBlock(in_channels=block_in,
+ out_channels=block_out,
+ temb_channels=self.temb_ch,
+ dropout=dropout))
+ block_in = block_out
+ self.res_blocks.append(nn.ModuleList(res_block))
+ if i_level != self.num_resolutions - 1:
+ self.upsample_blocks.append(Upsample(block_in, True))
+ curr_res = curr_res * 2
+
+ # end
+ self.norm_out = Normalize(block_in)
+ self.conv_out = torch.nn.Conv2d(block_in,
+ out_channels,
+ kernel_size=3,
+ stride=1,
+ padding=1)
+
+ def forward(self, x):
+ # upsampling
+ h = x
+ for k, i_level in enumerate(range(self.num_resolutions)):
+ for i_block in range(self.num_res_blocks + 1):
+ h = self.res_blocks[i_level][i_block](h, None)
+ if i_level != self.num_resolutions - 1:
+ h = self.upsample_blocks[k](h)
+ h = self.norm_out(h)
+ h = nonlinearity(h)
+ h = self.conv_out(h)
+ return h
+
+
+class LatentRescaler(nn.Module):
+ def __init__(self, factor, in_channels, mid_channels, out_channels, depth=2):
+ super().__init__()
+ # residual block, interpolate, residual block
+ self.factor = factor
+ self.conv_in = nn.Conv2d(in_channels,
+ mid_channels,
+ kernel_size=3,
+ stride=1,
+ padding=1)
+ self.res_block1 = nn.ModuleList([ResnetBlock(in_channels=mid_channels,
+ out_channels=mid_channels,
+ temb_channels=0,
+ dropout=0.0) for _ in range(depth)])
+ self.attn = AttnBlock(mid_channels)
+ self.res_block2 = nn.ModuleList([ResnetBlock(in_channels=mid_channels,
+ out_channels=mid_channels,
+ temb_channels=0,
+ dropout=0.0) for _ in range(depth)])
+
+ self.conv_out = nn.Conv2d(mid_channels,
+ out_channels,
+ kernel_size=1,
+ )
+
+ def forward(self, x):
+ x = self.conv_in(x)
+ for block in self.res_block1:
+ x = block(x, None)
+ x = torch.nn.functional.interpolate(x, size=(int(round(x.shape[2]*self.factor)), int(round(x.shape[3]*self.factor))))
+ x = self.attn(x)
+ for block in self.res_block2:
+ x = block(x, None)
+ x = self.conv_out(x)
+ return x
+
+
+class MergedRescaleEncoder(nn.Module):
+ def __init__(self, in_channels, ch, resolution, out_ch, num_res_blocks,
+ attn_resolutions, dropout=0.0, resamp_with_conv=True,
+ ch_mult=(1,2,4,8), rescale_factor=1.0, rescale_module_depth=1):
+ super().__init__()
+ intermediate_chn = ch * ch_mult[-1]
+ self.encoder = Encoder(in_channels=in_channels, num_res_blocks=num_res_blocks, ch=ch, ch_mult=ch_mult,
+ z_channels=intermediate_chn, double_z=False, resolution=resolution,
+ attn_resolutions=attn_resolutions, dropout=dropout, resamp_with_conv=resamp_with_conv,
+ out_ch=None)
+ self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=intermediate_chn,
+ mid_channels=intermediate_chn, out_channels=out_ch, depth=rescale_module_depth)
+
+ def forward(self, x):
+ x = self.encoder(x)
+ x = self.rescaler(x)
+ return x
+
+
+class MergedRescaleDecoder(nn.Module):
+ def __init__(self, z_channels, out_ch, resolution, num_res_blocks, attn_resolutions, ch, ch_mult=(1,2,4,8),
+ dropout=0.0, resamp_with_conv=True, rescale_factor=1.0, rescale_module_depth=1):
+ super().__init__()
+ tmp_chn = z_channels*ch_mult[-1]
+ self.decoder = Decoder(out_ch=out_ch, z_channels=tmp_chn, attn_resolutions=attn_resolutions, dropout=dropout,
+ resamp_with_conv=resamp_with_conv, in_channels=None, num_res_blocks=num_res_blocks,
+ ch_mult=ch_mult, resolution=resolution, ch=ch)
+ self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=z_channels, mid_channels=tmp_chn,
+ out_channels=tmp_chn, depth=rescale_module_depth)
+
+ def forward(self, x):
+ x = self.rescaler(x)
+ x = self.decoder(x)
+ return x
+
+
+class Upsampler(nn.Module):
+ def __init__(self, in_size, out_size, in_channels, out_channels, ch_mult=2):
+ super().__init__()
+ assert out_size >= in_size
+ num_blocks = int(np.log2(out_size//in_size))+1
+ factor_up = 1.+ (out_size % in_size)
+ print(f"Building {self.__class__.__name__} with in_size: {in_size} --> out_size {out_size} and factor {factor_up}")
+ self.rescaler = LatentRescaler(factor=factor_up, in_channels=in_channels, mid_channels=2*in_channels,
+ out_channels=in_channels)
+ self.decoder = Decoder(out_ch=out_channels, resolution=out_size, z_channels=in_channels, num_res_blocks=2,
+ attn_resolutions=[], in_channels=None, ch=in_channels,
+ ch_mult=[ch_mult for _ in range(num_blocks)])
+
+ def forward(self, x):
+ x = self.rescaler(x)
+ x = self.decoder(x)
+ return x
+
+
+class Resize(nn.Module):
+ def __init__(self, in_channels=None, learned=False, mode="bilinear"):
+ super().__init__()
+ self.with_conv = learned
+ self.mode = mode
+ if self.with_conv:
+ print(f"Note: {self.__class__.__name} uses learned downsampling and will ignore the fixed {mode} mode")
+ raise NotImplementedError()
+ assert in_channels is not None
+ # no asymmetric padding in torch conv, must do it ourselves
+ self.conv = torch.nn.Conv2d(in_channels,
+ in_channels,
+ kernel_size=4,
+ stride=2,
+ padding=1)
+
+ def forward(self, x, scale_factor=1.0):
+ if scale_factor==1.0:
+ return x
+ else:
+ x = torch.nn.functional.interpolate(x, mode=self.mode, align_corners=False, scale_factor=scale_factor)
+ return x
+
+class FirstStagePostProcessor(nn.Module):
+
+ def __init__(self, ch_mult:list, in_channels,
+ pretrained_model:nn.Module=None,
+ reshape=False,
+ n_channels=None,
+ dropout=0.,
+ pretrained_config=None):
+ super().__init__()
+ if pretrained_config is None:
+ assert pretrained_model is not None, 'Either "pretrained_model" or "pretrained_config" must not be None'
+ self.pretrained_model = pretrained_model
+ else:
+ assert pretrained_config is not None, 'Either "pretrained_model" or "pretrained_config" must not be None'
+ self.instantiate_pretrained(pretrained_config)
+
+ self.do_reshape = reshape
+
+ if n_channels is None:
+ n_channels = self.pretrained_model.encoder.ch
+
+ self.proj_norm = Normalize(in_channels,num_groups=in_channels//2)
+ self.proj = nn.Conv2d(in_channels,n_channels,kernel_size=3,
+ stride=1,padding=1)
+
+ blocks = []
+ downs = []
+ ch_in = n_channels
+ for m in ch_mult:
+ blocks.append(ResnetBlock(in_channels=ch_in,out_channels=m*n_channels,dropout=dropout))
+ ch_in = m * n_channels
+ downs.append(Downsample(ch_in, with_conv=False))
+
+ self.model = nn.ModuleList(blocks)
+ self.downsampler = nn.ModuleList(downs)
+
+
+ def instantiate_pretrained(self, config):
+ model = instantiate_from_config(config)
+ self.pretrained_model = model.eval()
+ # self.pretrained_model.train = False
+ for param in self.pretrained_model.parameters():
+ param.requires_grad = False
+
+
+ @torch.no_grad()
+ def encode_with_pretrained(self,x):
+ c = self.pretrained_model.encode(x)
+ if isinstance(c, DiagonalGaussianDistribution):
+ c = c.mode()
+ return c
+
+ def forward(self,x):
+ z_fs = self.encode_with_pretrained(x)
+ z = self.proj_norm(z_fs)
+ z = self.proj(z)
+ z = nonlinearity(z)
+
+ for submodel, downmodel in zip(self.model,self.downsampler):
+ z = submodel(z,temb=None)
+ z = downmodel(z)
+
+ if self.do_reshape:
+ z = rearrange(z,'b c h w -> b (h w) c')
+ return z
+
diff --git a/sd1/ldm/modules/diffusionmodules/openaimodel.py b/sd1/ldm/modules/diffusionmodules/openaimodel.py
new file mode 100644
index 0000000000000000000000000000000000000000..fcf95d1ea8a078dd259915109203789f78f0643a
--- /dev/null
+++ b/sd1/ldm/modules/diffusionmodules/openaimodel.py
@@ -0,0 +1,961 @@
+from abc import abstractmethod
+from functools import partial
+import math
+from typing import Iterable
+
+import numpy as np
+import torch as th
+import torch.nn as nn
+import torch.nn.functional as F
+
+from ldm.modules.diffusionmodules.util import (
+ checkpoint,
+ conv_nd,
+ linear,
+ avg_pool_nd,
+ zero_module,
+ normalization,
+ timestep_embedding,
+)
+from ldm.modules.attention import SpatialTransformer
+
+
+# dummy replace
+def convert_module_to_f16(x):
+ pass
+
+def convert_module_to_f32(x):
+ pass
+
+
+## go
+class AttentionPool2d(nn.Module):
+ """
+ Adapted from CLIP: https://github.com/openai/CLIP/blob/main/clip/model.py
+ """
+
+ def __init__(
+ self,
+ spacial_dim: int,
+ embed_dim: int,
+ num_heads_channels: int,
+ output_dim: int = None,
+ ):
+ super().__init__()
+ self.positional_embedding = nn.Parameter(th.randn(embed_dim, spacial_dim ** 2 + 1) / embed_dim ** 0.5)
+ self.qkv_proj = conv_nd(1, embed_dim, 3 * embed_dim, 1)
+ self.c_proj = conv_nd(1, embed_dim, output_dim or embed_dim, 1)
+ self.num_heads = embed_dim // num_heads_channels
+ self.attention = QKVAttention(self.num_heads)
+
+ def forward(self, x):
+ b, c, *_spatial = x.shape
+ x = x.reshape(b, c, -1) # NC(HW)
+ x = th.cat([x.mean(dim=-1, keepdim=True), x], dim=-1) # NC(HW+1)
+ x = x + self.positional_embedding[None, :, :].to(x.dtype) # NC(HW+1)
+ x = self.qkv_proj(x)
+ x = self.attention(x)
+ x = self.c_proj(x)
+ return x[:, :, 0]
+
+
+class TimestepBlock(nn.Module):
+ """
+ Any module where forward() takes timestep embeddings as a second argument.
+ """
+
+ @abstractmethod
+ def forward(self, x, emb):
+ """
+ Apply the module to `x` given `emb` timestep embeddings.
+ """
+
+
+class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
+ """
+ A sequential module that passes timestep embeddings to the children that
+ support it as an extra input.
+ """
+
+ def forward(self, x, emb, context=None):
+ for layer in self:
+ if isinstance(layer, TimestepBlock):
+ x = layer(x, emb)
+ elif isinstance(layer, SpatialTransformer):
+ x = layer(x, context)
+ else:
+ x = layer(x)
+ return x
+
+
+class Upsample(nn.Module):
+ """
+ An upsampling layer with an optional convolution.
+ :param channels: channels in the inputs and outputs.
+ :param use_conv: a bool determining if a convolution is applied.
+ :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
+ upsampling occurs in the inner-two dimensions.
+ """
+
+ def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
+ super().__init__()
+ self.channels = channels
+ self.out_channels = out_channels or channels
+ self.use_conv = use_conv
+ self.dims = dims
+ if use_conv:
+ self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=padding)
+
+ def forward(self, x):
+ assert x.shape[1] == self.channels
+ if self.dims == 3:
+ x = F.interpolate(
+ x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest"
+ )
+ else:
+ x = F.interpolate(x, scale_factor=2, mode="nearest")
+ if self.use_conv:
+ x = self.conv(x)
+ return x
+
+class TransposedUpsample(nn.Module):
+ 'Learned 2x upsampling without padding'
+ def __init__(self, channels, out_channels=None, ks=5):
+ super().__init__()
+ self.channels = channels
+ self.out_channels = out_channels or channels
+
+ self.up = nn.ConvTranspose2d(self.channels,self.out_channels,kernel_size=ks,stride=2)
+
+ def forward(self,x):
+ return self.up(x)
+
+
+class Downsample(nn.Module):
+ """
+ A downsampling layer with an optional convolution.
+ :param channels: channels in the inputs and outputs.
+ :param use_conv: a bool determining if a convolution is applied.
+ :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
+ downsampling occurs in the inner-two dimensions.
+ """
+
+ def __init__(self, channels, use_conv, dims=2, out_channels=None,padding=1):
+ super().__init__()
+ self.channels = channels
+ self.out_channels = out_channels or channels
+ self.use_conv = use_conv
+ self.dims = dims
+ stride = 2 if dims != 3 else (1, 2, 2)
+ if use_conv:
+ self.op = conv_nd(
+ dims, self.channels, self.out_channels, 3, stride=stride, padding=padding
+ )
+ else:
+ assert self.channels == self.out_channels
+ self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
+
+ def forward(self, x):
+ assert x.shape[1] == self.channels
+ return self.op(x)
+
+
+class ResBlock(TimestepBlock):
+ """
+ A residual block that can optionally change the number of channels.
+ :param channels: the number of input channels.
+ :param emb_channels: the number of timestep embedding channels.
+ :param dropout: the rate of dropout.
+ :param out_channels: if specified, the number of out channels.
+ :param use_conv: if True and out_channels is specified, use a spatial
+ convolution instead of a smaller 1x1 convolution to change the
+ channels in the skip connection.
+ :param dims: determines if the signal is 1D, 2D, or 3D.
+ :param use_checkpoint: if True, use gradient checkpointing on this module.
+ :param up: if True, use this block for upsampling.
+ :param down: if True, use this block for downsampling.
+ """
+
+ def __init__(
+ self,
+ channels,
+ emb_channels,
+ dropout,
+ out_channels=None,
+ use_conv=False,
+ use_scale_shift_norm=False,
+ dims=2,
+ use_checkpoint=False,
+ up=False,
+ down=False,
+ ):
+ super().__init__()
+ self.channels = channels
+ self.emb_channels = emb_channels
+ self.dropout = dropout
+ self.out_channels = out_channels or channels
+ self.use_conv = use_conv
+ self.use_checkpoint = use_checkpoint
+ self.use_scale_shift_norm = use_scale_shift_norm
+
+ self.in_layers = nn.Sequential(
+ normalization(channels),
+ nn.SiLU(),
+ conv_nd(dims, channels, self.out_channels, 3, padding=1),
+ )
+
+ self.updown = up or down
+
+ if up:
+ self.h_upd = Upsample(channels, False, dims)
+ self.x_upd = Upsample(channels, False, dims)
+ elif down:
+ self.h_upd = Downsample(channels, False, dims)
+ self.x_upd = Downsample(channels, False, dims)
+ else:
+ self.h_upd = self.x_upd = nn.Identity()
+
+ self.emb_layers = nn.Sequential(
+ nn.SiLU(),
+ linear(
+ emb_channels,
+ 2 * self.out_channels if use_scale_shift_norm else self.out_channels,
+ ),
+ )
+ self.out_layers = nn.Sequential(
+ normalization(self.out_channels),
+ nn.SiLU(),
+ nn.Dropout(p=dropout),
+ zero_module(
+ conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)
+ ),
+ )
+
+ if self.out_channels == channels:
+ self.skip_connection = nn.Identity()
+ elif use_conv:
+ self.skip_connection = conv_nd(
+ dims, channels, self.out_channels, 3, padding=1
+ )
+ else:
+ self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
+
+ def forward(self, x, emb):
+ """
+ Apply the block to a Tensor, conditioned on a timestep embedding.
+ :param x: an [N x C x ...] Tensor of features.
+ :param emb: an [N x emb_channels] Tensor of timestep embeddings.
+ :return: an [N x C x ...] Tensor of outputs.
+ """
+ return checkpoint(
+ self._forward, (x, emb), self.parameters(), self.use_checkpoint
+ )
+
+
+ def _forward(self, x, emb):
+ if self.updown:
+ in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
+ h = in_rest(x)
+ h = self.h_upd(h)
+ x = self.x_upd(x)
+ h = in_conv(h)
+ else:
+ h = self.in_layers(x)
+ emb_out = self.emb_layers(emb).type(h.dtype)
+ while len(emb_out.shape) < len(h.shape):
+ emb_out = emb_out[..., None]
+ if self.use_scale_shift_norm:
+ out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
+ scale, shift = th.chunk(emb_out, 2, dim=1)
+ h = out_norm(h) * (1 + scale) + shift
+ h = out_rest(h)
+ else:
+ h = h + emb_out
+ h = self.out_layers(h)
+ return self.skip_connection(x) + h
+
+
+class AttentionBlock(nn.Module):
+ """
+ An attention block that allows spatial positions to attend to each other.
+ Originally ported from here, but adapted to the N-d case.
+ https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
+ """
+
+ def __init__(
+ self,
+ channels,
+ num_heads=1,
+ num_head_channels=-1,
+ use_checkpoint=False,
+ use_new_attention_order=False,
+ ):
+ super().__init__()
+ self.channels = channels
+ if num_head_channels == -1:
+ self.num_heads = num_heads
+ else:
+ assert (
+ channels % num_head_channels == 0
+ ), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
+ self.num_heads = channels // num_head_channels
+ self.use_checkpoint = use_checkpoint
+ self.norm = normalization(channels)
+ self.qkv = conv_nd(1, channels, channels * 3, 1)
+ if use_new_attention_order:
+ # split qkv before split heads
+ self.attention = QKVAttention(self.num_heads)
+ else:
+ # split heads before split qkv
+ self.attention = QKVAttentionLegacy(self.num_heads)
+
+ self.proj_out = zero_module(conv_nd(1, channels, channels, 1))
+
+ def forward(self, x):
+ return checkpoint(self._forward, (x,), self.parameters(), True) # TODO: check checkpoint usage, is True # TODO: fix the .half call!!!
+ #return pt_checkpoint(self._forward, x) # pytorch
+
+ def _forward(self, x):
+ b, c, *spatial = x.shape
+ x = x.reshape(b, c, -1)
+ qkv = self.qkv(self.norm(x))
+ h = self.attention(qkv)
+ h = self.proj_out(h)
+ return (x + h).reshape(b, c, *spatial)
+
+
+def count_flops_attn(model, _x, y):
+ """
+ A counter for the `thop` package to count the operations in an
+ attention operation.
+ Meant to be used like:
+ macs, params = thop.profile(
+ model,
+ inputs=(inputs, timestamps),
+ custom_ops={QKVAttention: QKVAttention.count_flops},
+ )
+ """
+ b, c, *spatial = y[0].shape
+ num_spatial = int(np.prod(spatial))
+ # We perform two matmuls with the same number of ops.
+ # The first computes the weight matrix, the second computes
+ # the combination of the value vectors.
+ matmul_ops = 2 * b * (num_spatial ** 2) * c
+ model.total_ops += th.DoubleTensor([matmul_ops])
+
+
+class QKVAttentionLegacy(nn.Module):
+ """
+ A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping
+ """
+
+ def __init__(self, n_heads):
+ super().__init__()
+ self.n_heads = n_heads
+
+ def forward(self, qkv):
+ """
+ Apply QKV attention.
+ :param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs.
+ :return: an [N x (H * C) x T] tensor after attention.
+ """
+ bs, width, length = qkv.shape
+ assert width % (3 * self.n_heads) == 0
+ ch = width // (3 * self.n_heads)
+ q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1)
+ scale = 1 / math.sqrt(math.sqrt(ch))
+ weight = th.einsum(
+ "bct,bcs->bts", q * scale, k * scale
+ ) # More stable with f16 than dividing afterwards
+ weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
+ a = th.einsum("bts,bcs->bct", weight, v)
+ return a.reshape(bs, -1, length)
+
+ @staticmethod
+ def count_flops(model, _x, y):
+ return count_flops_attn(model, _x, y)
+
+
+class QKVAttention(nn.Module):
+ """
+ A module which performs QKV attention and splits in a different order.
+ """
+
+ def __init__(self, n_heads):
+ super().__init__()
+ self.n_heads = n_heads
+
+ def forward(self, qkv):
+ """
+ Apply QKV attention.
+ :param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs.
+ :return: an [N x (H * C) x T] tensor after attention.
+ """
+ bs, width, length = qkv.shape
+ assert width % (3 * self.n_heads) == 0
+ ch = width // (3 * self.n_heads)
+ q, k, v = qkv.chunk(3, dim=1)
+ scale = 1 / math.sqrt(math.sqrt(ch))
+ weight = th.einsum(
+ "bct,bcs->bts",
+ (q * scale).view(bs * self.n_heads, ch, length),
+ (k * scale).view(bs * self.n_heads, ch, length),
+ ) # More stable with f16 than dividing afterwards
+ weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
+ a = th.einsum("bts,bcs->bct", weight, v.reshape(bs * self.n_heads, ch, length))
+ return a.reshape(bs, -1, length)
+
+ @staticmethod
+ def count_flops(model, _x, y):
+ return count_flops_attn(model, _x, y)
+
+
+class UNetModel(nn.Module):
+ """
+ The full UNet model with attention and timestep embedding.
+ :param in_channels: channels in the input Tensor.
+ :param model_channels: base channel count for the model.
+ :param out_channels: channels in the output Tensor.
+ :param num_res_blocks: number of residual blocks per downsample.
+ :param attention_resolutions: a collection of downsample rates at which
+ attention will take place. May be a set, list, or tuple.
+ For example, if this contains 4, then at 4x downsampling, attention
+ will be used.
+ :param dropout: the dropout probability.
+ :param channel_mult: channel multiplier for each level of the UNet.
+ :param conv_resample: if True, use learned convolutions for upsampling and
+ downsampling.
+ :param dims: determines if the signal is 1D, 2D, or 3D.
+ :param num_classes: if specified (as an int), then this model will be
+ class-conditional with `num_classes` classes.
+ :param use_checkpoint: use gradient checkpointing to reduce memory usage.
+ :param num_heads: the number of attention heads in each attention layer.
+ :param num_heads_channels: if specified, ignore num_heads and instead use
+ a fixed channel width per attention head.
+ :param num_heads_upsample: works with num_heads to set a different number
+ of heads for upsampling. Deprecated.
+ :param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
+ :param resblock_updown: use residual blocks for up/downsampling.
+ :param use_new_attention_order: use a different attention pattern for potentially
+ increased efficiency.
+ """
+
+ def __init__(
+ self,
+ image_size,
+ in_channels,
+ model_channels,
+ out_channels,
+ num_res_blocks,
+ attention_resolutions,
+ dropout=0,
+ channel_mult=(1, 2, 4, 8),
+ conv_resample=True,
+ dims=2,
+ num_classes=None,
+ use_checkpoint=False,
+ use_fp16=False,
+ num_heads=-1,
+ num_head_channels=-1,
+ num_heads_upsample=-1,
+ use_scale_shift_norm=False,
+ resblock_updown=False,
+ use_new_attention_order=False,
+ use_spatial_transformer=False, # custom transformer support
+ transformer_depth=1, # custom transformer support
+ context_dim=None, # custom transformer support
+ n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
+ legacy=True,
+ ):
+ super().__init__()
+ if use_spatial_transformer:
+ assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'
+
+ if context_dim is not None:
+ assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
+ from omegaconf.listconfig import ListConfig
+ if type(context_dim) == ListConfig:
+ context_dim = list(context_dim)
+
+ if num_heads_upsample == -1:
+ num_heads_upsample = num_heads
+
+ if num_heads == -1:
+ assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
+
+ if num_head_channels == -1:
+ assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
+
+ self.image_size = image_size
+ self.in_channels = in_channels
+ self.model_channels = model_channels
+ self.out_channels = out_channels
+ self.num_res_blocks = num_res_blocks
+ self.attention_resolutions = attention_resolutions
+ self.dropout = dropout
+ self.channel_mult = channel_mult
+ self.conv_resample = conv_resample
+ self.num_classes = num_classes
+ self.use_checkpoint = use_checkpoint
+ self.dtype = th.float16 if use_fp16 else th.float32
+ self.num_heads = num_heads
+ self.num_head_channels = num_head_channels
+ self.num_heads_upsample = num_heads_upsample
+ self.predict_codebook_ids = n_embed is not None
+
+ time_embed_dim = model_channels * 4
+ self.time_embed = nn.Sequential(
+ linear(model_channels, time_embed_dim),
+ nn.SiLU(),
+ linear(time_embed_dim, time_embed_dim),
+ )
+
+ if self.num_classes is not None:
+ self.label_emb = nn.Embedding(num_classes, time_embed_dim)
+
+ self.input_blocks = nn.ModuleList(
+ [
+ TimestepEmbedSequential(
+ conv_nd(dims, in_channels, model_channels, 3, padding=1)
+ )
+ ]
+ )
+ self._feature_size = model_channels
+ input_block_chans = [model_channels]
+ ch = model_channels
+ ds = 1
+ for level, mult in enumerate(channel_mult):
+ for _ in range(num_res_blocks):
+ layers = [
+ ResBlock(
+ ch,
+ time_embed_dim,
+ dropout,
+ out_channels=mult * model_channels,
+ dims=dims,
+ use_checkpoint=use_checkpoint,
+ use_scale_shift_norm=use_scale_shift_norm,
+ )
+ ]
+ ch = mult * model_channels
+ if ds in attention_resolutions:
+ if num_head_channels == -1:
+ dim_head = ch // num_heads
+ else:
+ num_heads = ch // num_head_channels
+ dim_head = num_head_channels
+ if legacy:
+ #num_heads = 1
+ dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
+ layers.append(
+ AttentionBlock(
+ ch,
+ use_checkpoint=use_checkpoint,
+ num_heads=num_heads,
+ num_head_channels=dim_head,
+ use_new_attention_order=use_new_attention_order,
+ ) if not use_spatial_transformer else SpatialTransformer(
+ ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim
+ )
+ )
+ self.input_blocks.append(TimestepEmbedSequential(*layers))
+ self._feature_size += ch
+ input_block_chans.append(ch)
+ if level != len(channel_mult) - 1:
+ out_ch = ch
+ self.input_blocks.append(
+ TimestepEmbedSequential(
+ ResBlock(
+ ch,
+ time_embed_dim,
+ dropout,
+ out_channels=out_ch,
+ dims=dims,
+ use_checkpoint=use_checkpoint,
+ use_scale_shift_norm=use_scale_shift_norm,
+ down=True,
+ )
+ if resblock_updown
+ else Downsample(
+ ch, conv_resample, dims=dims, out_channels=out_ch
+ )
+ )
+ )
+ ch = out_ch
+ input_block_chans.append(ch)
+ ds *= 2
+ self._feature_size += ch
+
+ if num_head_channels == -1:
+ dim_head = ch // num_heads
+ else:
+ num_heads = ch // num_head_channels
+ dim_head = num_head_channels
+ if legacy:
+ #num_heads = 1
+ dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
+ self.middle_block = TimestepEmbedSequential(
+ ResBlock(
+ ch,
+ time_embed_dim,
+ dropout,
+ dims=dims,
+ use_checkpoint=use_checkpoint,
+ use_scale_shift_norm=use_scale_shift_norm,
+ ),
+ AttentionBlock(
+ ch,
+ use_checkpoint=use_checkpoint,
+ num_heads=num_heads,
+ num_head_channels=dim_head,
+ use_new_attention_order=use_new_attention_order,
+ ) if not use_spatial_transformer else SpatialTransformer(
+ ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim
+ ),
+ ResBlock(
+ ch,
+ time_embed_dim,
+ dropout,
+ dims=dims,
+ use_checkpoint=use_checkpoint,
+ use_scale_shift_norm=use_scale_shift_norm,
+ ),
+ )
+ self._feature_size += ch
+
+ self.output_blocks = nn.ModuleList([])
+ for level, mult in list(enumerate(channel_mult))[::-1]:
+ for i in range(num_res_blocks + 1):
+ ich = input_block_chans.pop()
+ layers = [
+ ResBlock(
+ ch + ich,
+ time_embed_dim,
+ dropout,
+ out_channels=model_channels * mult,
+ dims=dims,
+ use_checkpoint=use_checkpoint,
+ use_scale_shift_norm=use_scale_shift_norm,
+ )
+ ]
+ ch = model_channels * mult
+ if ds in attention_resolutions:
+ if num_head_channels == -1:
+ dim_head = ch // num_heads
+ else:
+ num_heads = ch // num_head_channels
+ dim_head = num_head_channels
+ if legacy:
+ #num_heads = 1
+ dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
+ layers.append(
+ AttentionBlock(
+ ch,
+ use_checkpoint=use_checkpoint,
+ num_heads=num_heads_upsample,
+ num_head_channels=dim_head,
+ use_new_attention_order=use_new_attention_order,
+ ) if not use_spatial_transformer else SpatialTransformer(
+ ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim
+ )
+ )
+ if level and i == num_res_blocks:
+ out_ch = ch
+ layers.append(
+ ResBlock(
+ ch,
+ time_embed_dim,
+ dropout,
+ out_channels=out_ch,
+ dims=dims,
+ use_checkpoint=use_checkpoint,
+ use_scale_shift_norm=use_scale_shift_norm,
+ up=True,
+ )
+ if resblock_updown
+ else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
+ )
+ ds //= 2
+ self.output_blocks.append(TimestepEmbedSequential(*layers))
+ self._feature_size += ch
+
+ self.out = nn.Sequential(
+ normalization(ch),
+ nn.SiLU(),
+ zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
+ )
+ if self.predict_codebook_ids:
+ self.id_predictor = nn.Sequential(
+ normalization(ch),
+ conv_nd(dims, model_channels, n_embed, 1),
+ #nn.LogSoftmax(dim=1) # change to cross_entropy and produce non-normalized logits
+ )
+
+ def convert_to_fp16(self):
+ """
+ Convert the torso of the model to float16.
+ """
+ self.input_blocks.apply(convert_module_to_f16)
+ self.middle_block.apply(convert_module_to_f16)
+ self.output_blocks.apply(convert_module_to_f16)
+
+ def convert_to_fp32(self):
+ """
+ Convert the torso of the model to float32.
+ """
+ self.input_blocks.apply(convert_module_to_f32)
+ self.middle_block.apply(convert_module_to_f32)
+ self.output_blocks.apply(convert_module_to_f32)
+
+ def forward(self, x, timesteps=None, context=None, y=None,**kwargs):
+ """
+ Apply the model to an input batch.
+ :param x: an [N x C x ...] Tensor of inputs.
+ :param timesteps: a 1-D batch of timesteps.
+ :param context: conditioning plugged in via crossattn
+ :param y: an [N] Tensor of labels, if class-conditional.
+ :return: an [N x C x ...] Tensor of outputs.
+ """
+ assert (y is not None) == (
+ self.num_classes is not None
+ ), "must specify y if and only if the model is class-conditional"
+ hs = []
+ t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
+ emb = self.time_embed(t_emb)
+
+ if self.num_classes is not None:
+ assert y.shape == (x.shape[0],)
+ emb = emb + self.label_emb(y)
+
+ h = x.type(self.dtype)
+ for module in self.input_blocks:
+ h = module(h, emb, context)
+ hs.append(h)
+ h = self.middle_block(h, emb, context)
+ for module in self.output_blocks:
+ h = th.cat([h, hs.pop()], dim=1)
+ h = module(h, emb, context)
+ h = h.type(x.dtype)
+ if self.predict_codebook_ids:
+ return self.id_predictor(h)
+ else:
+ return self.out(h)
+
+
+class EncoderUNetModel(nn.Module):
+ """
+ The half UNet model with attention and timestep embedding.
+ For usage, see UNet.
+ """
+
+ def __init__(
+ self,
+ image_size,
+ in_channels,
+ model_channels,
+ out_channels,
+ num_res_blocks,
+ attention_resolutions,
+ dropout=0,
+ channel_mult=(1, 2, 4, 8),
+ conv_resample=True,
+ dims=2,
+ use_checkpoint=False,
+ use_fp16=False,
+ num_heads=1,
+ num_head_channels=-1,
+ num_heads_upsample=-1,
+ use_scale_shift_norm=False,
+ resblock_updown=False,
+ use_new_attention_order=False,
+ pool="adaptive",
+ *args,
+ **kwargs
+ ):
+ super().__init__()
+
+ if num_heads_upsample == -1:
+ num_heads_upsample = num_heads
+
+ self.in_channels = in_channels
+ self.model_channels = model_channels
+ self.out_channels = out_channels
+ self.num_res_blocks = num_res_blocks
+ self.attention_resolutions = attention_resolutions
+ self.dropout = dropout
+ self.channel_mult = channel_mult
+ self.conv_resample = conv_resample
+ self.use_checkpoint = use_checkpoint
+ self.dtype = th.float16 if use_fp16 else th.float32
+ self.num_heads = num_heads
+ self.num_head_channels = num_head_channels
+ self.num_heads_upsample = num_heads_upsample
+
+ time_embed_dim = model_channels * 4
+ self.time_embed = nn.Sequential(
+ linear(model_channels, time_embed_dim),
+ nn.SiLU(),
+ linear(time_embed_dim, time_embed_dim),
+ )
+
+ self.input_blocks = nn.ModuleList(
+ [
+ TimestepEmbedSequential(
+ conv_nd(dims, in_channels, model_channels, 3, padding=1)
+ )
+ ]
+ )
+ self._feature_size = model_channels
+ input_block_chans = [model_channels]
+ ch = model_channels
+ ds = 1
+ for level, mult in enumerate(channel_mult):
+ for _ in range(num_res_blocks):
+ layers = [
+ ResBlock(
+ ch,
+ time_embed_dim,
+ dropout,
+ out_channels=mult * model_channels,
+ dims=dims,
+ use_checkpoint=use_checkpoint,
+ use_scale_shift_norm=use_scale_shift_norm,
+ )
+ ]
+ ch = mult * model_channels
+ if ds in attention_resolutions:
+ layers.append(
+ AttentionBlock(
+ ch,
+ use_checkpoint=use_checkpoint,
+ num_heads=num_heads,
+ num_head_channels=num_head_channels,
+ use_new_attention_order=use_new_attention_order,
+ )
+ )
+ self.input_blocks.append(TimestepEmbedSequential(*layers))
+ self._feature_size += ch
+ input_block_chans.append(ch)
+ if level != len(channel_mult) - 1:
+ out_ch = ch
+ self.input_blocks.append(
+ TimestepEmbedSequential(
+ ResBlock(
+ ch,
+ time_embed_dim,
+ dropout,
+ out_channels=out_ch,
+ dims=dims,
+ use_checkpoint=use_checkpoint,
+ use_scale_shift_norm=use_scale_shift_norm,
+ down=True,
+ )
+ if resblock_updown
+ else Downsample(
+ ch, conv_resample, dims=dims, out_channels=out_ch
+ )
+ )
+ )
+ ch = out_ch
+ input_block_chans.append(ch)
+ ds *= 2
+ self._feature_size += ch
+
+ self.middle_block = TimestepEmbedSequential(
+ ResBlock(
+ ch,
+ time_embed_dim,
+ dropout,
+ dims=dims,
+ use_checkpoint=use_checkpoint,
+ use_scale_shift_norm=use_scale_shift_norm,
+ ),
+ AttentionBlock(
+ ch,
+ use_checkpoint=use_checkpoint,
+ num_heads=num_heads,
+ num_head_channels=num_head_channels,
+ use_new_attention_order=use_new_attention_order,
+ ),
+ ResBlock(
+ ch,
+ time_embed_dim,
+ dropout,
+ dims=dims,
+ use_checkpoint=use_checkpoint,
+ use_scale_shift_norm=use_scale_shift_norm,
+ ),
+ )
+ self._feature_size += ch
+ self.pool = pool
+ if pool == "adaptive":
+ self.out = nn.Sequential(
+ normalization(ch),
+ nn.SiLU(),
+ nn.AdaptiveAvgPool2d((1, 1)),
+ zero_module(conv_nd(dims, ch, out_channels, 1)),
+ nn.Flatten(),
+ )
+ elif pool == "attention":
+ assert num_head_channels != -1
+ self.out = nn.Sequential(
+ normalization(ch),
+ nn.SiLU(),
+ AttentionPool2d(
+ (image_size // ds), ch, num_head_channels, out_channels
+ ),
+ )
+ elif pool == "spatial":
+ self.out = nn.Sequential(
+ nn.Linear(self._feature_size, 2048),
+ nn.ReLU(),
+ nn.Linear(2048, self.out_channels),
+ )
+ elif pool == "spatial_v2":
+ self.out = nn.Sequential(
+ nn.Linear(self._feature_size, 2048),
+ normalization(2048),
+ nn.SiLU(),
+ nn.Linear(2048, self.out_channels),
+ )
+ else:
+ raise NotImplementedError(f"Unexpected {pool} pooling")
+
+ def convert_to_fp16(self):
+ """
+ Convert the torso of the model to float16.
+ """
+ self.input_blocks.apply(convert_module_to_f16)
+ self.middle_block.apply(convert_module_to_f16)
+
+ def convert_to_fp32(self):
+ """
+ Convert the torso of the model to float32.
+ """
+ self.input_blocks.apply(convert_module_to_f32)
+ self.middle_block.apply(convert_module_to_f32)
+
+ def forward(self, x, timesteps):
+ """
+ Apply the model to an input batch.
+ :param x: an [N x C x ...] Tensor of inputs.
+ :param timesteps: a 1-D batch of timesteps.
+ :return: an [N x K] Tensor of outputs.
+ """
+ emb = self.time_embed(timestep_embedding(timesteps, self.model_channels))
+
+ results = []
+ h = x.type(self.dtype)
+ for module in self.input_blocks:
+ h = module(h, emb)
+ if self.pool.startswith("spatial"):
+ results.append(h.type(x.dtype).mean(dim=(2, 3)))
+ h = self.middle_block(h, emb)
+ if self.pool.startswith("spatial"):
+ results.append(h.type(x.dtype).mean(dim=(2, 3)))
+ h = th.cat(results, axis=-1)
+ return self.out(h)
+ else:
+ h = h.type(x.dtype)
+ return self.out(h)
+
diff --git a/sd1/ldm/modules/diffusionmodules/util.py b/sd1/ldm/modules/diffusionmodules/util.py
new file mode 100644
index 0000000000000000000000000000000000000000..201f6c8951a2718270742ae0f56a0688660b4716
--- /dev/null
+++ b/sd1/ldm/modules/diffusionmodules/util.py
@@ -0,0 +1,268 @@
+# adopted from
+# https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py
+# and
+# https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
+# and
+# https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py
+#
+# thanks!
+
+
+import os
+import math
+import torch
+import torch.nn as nn
+import numpy as np
+from einops import repeat
+
+from ldm.util import instantiate_from_config
+
+
+def make_beta_schedule(schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
+ if schedule == "linear":
+ betas = (
+ torch.linspace(linear_start ** 0.5, linear_end ** 0.5, n_timestep, dtype=torch.float64) ** 2
+ )
+
+ elif schedule == "cosine":
+ timesteps = (
+ torch.arange(n_timestep + 1, dtype=torch.float64) / n_timestep + cosine_s
+ )
+ alphas = timesteps / (1 + cosine_s) * np.pi / 2
+ alphas = torch.cos(alphas).pow(2)
+ alphas = alphas / alphas[0]
+ betas = 1 - alphas[1:] / alphas[:-1]
+ betas = np.clip(betas, a_min=0, a_max=0.999)
+
+ elif schedule == "sqrt_linear":
+ betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64)
+ elif schedule == "sqrt":
+ betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64) ** 0.5
+ else:
+ raise ValueError(f"schedule '{schedule}' unknown.")
+ return betas.numpy()
+
+
+def make_ddim_timesteps(ddim_discr_method, num_ddim_timesteps, num_ddpm_timesteps, verbose=True):
+ if ddim_discr_method == 'uniform':
+ c = num_ddpm_timesteps // num_ddim_timesteps
+ ddim_timesteps = np.asarray(list(range(0, num_ddpm_timesteps, c)))
+ elif ddim_discr_method == 'quad':
+ ddim_timesteps = ((np.linspace(0, np.sqrt(num_ddpm_timesteps * .8), num_ddim_timesteps)) ** 2).astype(int)
+ else:
+ raise NotImplementedError(f'There is no ddim discretization method called "{ddim_discr_method}"')
+
+ # assert ddim_timesteps.shape[0] == num_ddim_timesteps
+ # add one to get the final alpha values right (the ones from first scale to data during sampling)
+ steps_out = ddim_timesteps + 1
+ if verbose:
+ print(f'Selected timesteps for ddim sampler: {steps_out}')
+ return steps_out
+
+
+def make_ddim_sampling_parameters(alphacums, ddim_timesteps, eta, verbose=True):
+ # select alphas for computing the variance schedule
+ alphas = alphacums[ddim_timesteps]
+ alphas_prev = np.asarray([alphacums[0]] + alphacums[ddim_timesteps[:-1]].tolist())
+
+ # according the the formula provided in https://arxiv.org/abs/2010.02502
+ sigmas = eta * np.sqrt((1 - alphas_prev) / (1 - alphas) * (1 - alphas / alphas_prev))
+ if verbose:
+ print(f'Selected alphas for ddim sampler: a_t: {alphas}; a_(t-1): {alphas_prev}')
+ print(f'For the chosen value of eta, which is {eta}, '
+ f'this results in the following sigma_t schedule for ddim sampler {sigmas}')
+ return sigmas, alphas, alphas_prev
+
+
+def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999):
+ """
+ Create a beta schedule that discretizes the given alpha_t_bar function,
+ which defines the cumulative product of (1-beta) over time from t = [0,1].
+ :param num_diffusion_timesteps: the number of betas to produce.
+ :param alpha_bar: a lambda that takes an argument t from 0 to 1 and
+ produces the cumulative product of (1-beta) up to that
+ part of the diffusion process.
+ :param max_beta: the maximum beta to use; use values lower than 1 to
+ prevent singularities.
+ """
+ betas = []
+ for i in range(num_diffusion_timesteps):
+ t1 = i / num_diffusion_timesteps
+ t2 = (i + 1) / num_diffusion_timesteps
+ betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
+ return np.array(betas)
+
+
+def extract_into_tensor(a, t, x_shape):
+ b, *_ = t.shape
+ out = a.gather(-1, t)
+ return out.reshape(b, *((1,) * (len(x_shape) - 1)))
+
+
+def checkpoint(func, inputs, params, flag):
+ """
+ Evaluate a function without caching intermediate activations, allowing for
+ reduced memory at the expense of extra compute in the backward pass.
+ :param func: the function to evaluate.
+ :param inputs: the argument sequence to pass to `func`.
+ :param params: a sequence of parameters `func` depends on but does not
+ explicitly take as arguments.
+ :param flag: if False, disable gradient checkpointing.
+ """
+ # if flag:
+ if False: # Changed to False following textual-inversion's code
+ args = tuple(inputs) + tuple(params)
+ return CheckpointFunction.apply(func, len(inputs), *args)
+ else:
+ return func(*inputs)
+
+
+class CheckpointFunction(torch.autograd.Function):
+ @staticmethod
+ def forward(ctx, run_function, length, *args):
+ ctx.run_function = run_function
+ ctx.input_tensors = list(args[:length])
+ ctx.input_params = list(args[length:])
+
+ with torch.no_grad():
+ output_tensors = ctx.run_function(*ctx.input_tensors)
+ return output_tensors
+
+ @staticmethod
+ def backward(ctx, *output_grads):
+ ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors]
+ with torch.enable_grad():
+ # Fixes a bug where the first op in run_function modifies the
+ # Tensor storage in place, which is not allowed for detach()'d
+ # Tensors.
+ shallow_copies = [x.view_as(x) for x in ctx.input_tensors]
+ output_tensors = ctx.run_function(*shallow_copies)
+ input_grads = torch.autograd.grad(
+ output_tensors,
+ ctx.input_tensors + ctx.input_params,
+ output_grads,
+ allow_unused=True,
+ )
+ del ctx.input_tensors
+ del ctx.input_params
+ del output_tensors
+ return (None, None) + input_grads
+
+
+def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False):
+ """
+ Create sinusoidal timestep embeddings.
+ :param timesteps: a 1-D Tensor of N indices, one per batch element.
+ These may be fractional.
+ :param dim: the dimension of the output.
+ :param max_period: controls the minimum frequency of the embeddings.
+ :return: an [N x dim] Tensor of positional embeddings.
+ """
+ if not repeat_only:
+ half = dim // 2
+ freqs = torch.exp(
+ -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
+ ).to(device=timesteps.device)
+ args = timesteps[:, None].float() * freqs[None]
+ embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
+ if dim % 2:
+ embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
+ else:
+ embedding = repeat(timesteps, 'b -> b d', d=dim)
+ return embedding
+
+
+def zero_module(module):
+ """
+ Zero out the parameters of a module and return it.
+ """
+ for p in module.parameters():
+ p.detach().zero_()
+ return module
+
+
+def scale_module(module, scale):
+ """
+ Scale the parameters of a module and return it.
+ """
+ for p in module.parameters():
+ p.detach().mul_(scale)
+ return module
+
+
+def mean_flat(tensor):
+ """
+ Take the mean over all non-batch dimensions.
+ """
+ return tensor.mean(dim=list(range(1, len(tensor.shape))))
+
+
+def normalization(channels):
+ """
+ Make a standard normalization layer.
+ :param channels: number of input channels.
+ :return: an nn.Module for normalization.
+ """
+ return GroupNorm32(32, channels)
+
+
+# PyTorch 1.7 has SiLU, but we support PyTorch 1.5.
+class SiLU(nn.Module):
+ def forward(self, x):
+ return x * torch.sigmoid(x)
+
+
+class GroupNorm32(nn.GroupNorm):
+ def forward(self, x):
+ return super().forward(x.float()).type(x.dtype)
+
+def conv_nd(dims, *args, **kwargs):
+ """
+ Create a 1D, 2D, or 3D convolution module.
+ """
+ if dims == 1:
+ return nn.Conv1d(*args, **kwargs)
+ elif dims == 2:
+ return nn.Conv2d(*args, **kwargs)
+ elif dims == 3:
+ return nn.Conv3d(*args, **kwargs)
+ raise ValueError(f"unsupported dimensions: {dims}")
+
+
+def linear(*args, **kwargs):
+ """
+ Create a linear module.
+ """
+ return nn.Linear(*args, **kwargs)
+
+
+def avg_pool_nd(dims, *args, **kwargs):
+ """
+ Create a 1D, 2D, or 3D average pooling module.
+ """
+ if dims == 1:
+ return nn.AvgPool1d(*args, **kwargs)
+ elif dims == 2:
+ return nn.AvgPool2d(*args, **kwargs)
+ elif dims == 3:
+ return nn.AvgPool3d(*args, **kwargs)
+ raise ValueError(f"unsupported dimensions: {dims}")
+
+
+class HybridConditioner(nn.Module):
+
+ def __init__(self, c_concat_config, c_crossattn_config):
+ super().__init__()
+ self.concat_conditioner = instantiate_from_config(c_concat_config)
+ self.crossattn_conditioner = instantiate_from_config(c_crossattn_config)
+
+ def forward(self, c_concat, c_crossattn):
+ c_concat = self.concat_conditioner(c_concat)
+ c_crossattn = self.crossattn_conditioner(c_crossattn)
+ return {'c_concat': [c_concat], 'c_crossattn': [c_crossattn]}
+
+
+def noise_like(shape, device, repeat=False):
+ repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1)))
+ noise = lambda: torch.randn(shape, device=device)
+ return repeat_noise() if repeat else noise()
\ No newline at end of file
diff --git a/sd1/ldm/modules/distributions/__init__.py b/sd1/ldm/modules/distributions/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/sd1/ldm/modules/distributions/distributions.py b/sd1/ldm/modules/distributions/distributions.py
new file mode 100644
index 0000000000000000000000000000000000000000..f2b8ef901130efc171aa69742ca0244d94d3f2e9
--- /dev/null
+++ b/sd1/ldm/modules/distributions/distributions.py
@@ -0,0 +1,92 @@
+import torch
+import numpy as np
+
+
+class AbstractDistribution:
+ def sample(self):
+ raise NotImplementedError()
+
+ def mode(self):
+ raise NotImplementedError()
+
+
+class DiracDistribution(AbstractDistribution):
+ def __init__(self, value):
+ self.value = value
+
+ def sample(self):
+ return self.value
+
+ def mode(self):
+ return self.value
+
+
+class DiagonalGaussianDistribution(object):
+ def __init__(self, parameters, deterministic=False):
+ self.parameters = parameters
+ self.mean, self.logvar = torch.chunk(parameters, 2, dim=1)
+ self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
+ self.deterministic = deterministic
+ self.std = torch.exp(0.5 * self.logvar)
+ self.var = torch.exp(self.logvar)
+ if self.deterministic:
+ self.var = self.std = torch.zeros_like(self.mean).to(device=self.parameters.device)
+
+ def sample(self):
+ x = self.mean + self.std * torch.randn(self.mean.shape).to(device=self.parameters.device)
+ return x
+
+ def kl(self, other=None):
+ if self.deterministic:
+ return torch.Tensor([0.])
+ else:
+ if other is None:
+ return 0.5 * torch.sum(torch.pow(self.mean, 2)
+ + self.var - 1.0 - self.logvar,
+ dim=[1, 2, 3])
+ else:
+ return 0.5 * torch.sum(
+ torch.pow(self.mean - other.mean, 2) / other.var
+ + self.var / other.var - 1.0 - self.logvar + other.logvar,
+ dim=[1, 2, 3])
+
+ def nll(self, sample, dims=[1,2,3]):
+ if self.deterministic:
+ return torch.Tensor([0.])
+ logtwopi = np.log(2.0 * np.pi)
+ return 0.5 * torch.sum(
+ logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var,
+ dim=dims)
+
+ def mode(self):
+ return self.mean
+
+
+def normal_kl(mean1, logvar1, mean2, logvar2):
+ """
+ source: https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/losses.py#L12
+ Compute the KL divergence between two gaussians.
+ Shapes are automatically broadcasted, so batches can be compared to
+ scalars, among other use cases.
+ """
+ tensor = None
+ for obj in (mean1, logvar1, mean2, logvar2):
+ if isinstance(obj, torch.Tensor):
+ tensor = obj
+ break
+ assert tensor is not None, "at least one argument must be a Tensor"
+
+ # Force variances to be Tensors. Broadcasting helps convert scalars to
+ # Tensors, but it does not work for torch.exp().
+ logvar1, logvar2 = [
+ x if isinstance(x, torch.Tensor) else torch.tensor(x).to(tensor)
+ for x in (logvar1, logvar2)
+ ]
+
+ return 0.5 * (
+ -1.0
+ + logvar2
+ - logvar1
+ + torch.exp(logvar1 - logvar2)
+ + ((mean1 - mean2) ** 2) * torch.exp(-logvar2)
+ )
diff --git a/sd1/ldm/modules/ema.py b/sd1/ldm/modules/ema.py
new file mode 100644
index 0000000000000000000000000000000000000000..c8c75af43565f6e140287644aaaefa97dd6e67c5
--- /dev/null
+++ b/sd1/ldm/modules/ema.py
@@ -0,0 +1,76 @@
+import torch
+from torch import nn
+
+
+class LitEma(nn.Module):
+ def __init__(self, model, decay=0.9999, use_num_upates=True):
+ super().__init__()
+ if decay < 0.0 or decay > 1.0:
+ raise ValueError('Decay must be between 0 and 1')
+
+ self.m_name2s_name = {}
+ self.register_buffer('decay', torch.tensor(decay, dtype=torch.float32))
+ self.register_buffer('num_updates', torch.tensor(0,dtype=torch.int) if use_num_upates
+ else torch.tensor(-1,dtype=torch.int))
+
+ for name, p in model.named_parameters():
+ if p.requires_grad:
+ #remove as '.'-character is not allowed in buffers
+ s_name = name.replace('.','')
+ self.m_name2s_name.update({name:s_name})
+ self.register_buffer(s_name,p.clone().detach().data)
+
+ self.collected_params = []
+
+ def forward(self,model):
+ decay = self.decay
+
+ if self.num_updates >= 0:
+ self.num_updates += 1
+ decay = min(self.decay,(1 + self.num_updates) / (10 + self.num_updates))
+
+ one_minus_decay = 1.0 - decay
+
+ with torch.no_grad():
+ m_param = dict(model.named_parameters())
+ shadow_params = dict(self.named_buffers())
+
+ for key in m_param:
+ if m_param[key].requires_grad:
+ sname = self.m_name2s_name[key]
+ shadow_params[sname] = shadow_params[sname].type_as(m_param[key])
+ shadow_params[sname].sub_(one_minus_decay * (shadow_params[sname] - m_param[key]))
+ else:
+ assert not key in self.m_name2s_name
+
+ def copy_to(self, model):
+ m_param = dict(model.named_parameters())
+ shadow_params = dict(self.named_buffers())
+ for key in m_param:
+ if m_param[key].requires_grad:
+ m_param[key].data.copy_(shadow_params[self.m_name2s_name[key]].data)
+ else:
+ assert not key in self.m_name2s_name
+
+ def store(self, parameters):
+ """
+ Save the current parameters for restoring later.
+ Args:
+ parameters: Iterable of `torch.nn.Parameter`; the parameters to be
+ temporarily stored.
+ """
+ self.collected_params = [param.clone() for param in parameters]
+
+ def restore(self, parameters):
+ """
+ Restore the parameters stored with the `store` method.
+ Useful to validate the model with EMA parameters without affecting the
+ original optimization process. Store the parameters before the
+ `copy_to` method. After validation (or model saving), use this to
+ restore the former parameters.
+ Args:
+ parameters: Iterable of `torch.nn.Parameter`; the parameters to be
+ updated with the stored parameters.
+ """
+ for c_param, param in zip(self.collected_params, parameters):
+ param.data.copy_(c_param.data)
diff --git a/sd1/ldm/modules/embedding_manager.py b/sd1/ldm/modules/embedding_manager.py
new file mode 100644
index 0000000000000000000000000000000000000000..cbabc4174da38a3cc0f2f5480e0d268172627c3a
--- /dev/null
+++ b/sd1/ldm/modules/embedding_manager.py
@@ -0,0 +1,161 @@
+import torch
+from torch import nn
+
+from ldm.data.personalized import per_img_token_list
+from transformers import CLIPTokenizer
+from functools import partial
+
+DEFAULT_PLACEHOLDER_TOKEN = ["*"]
+
+PROGRESSIVE_SCALE = 2000
+
+def get_clip_token_for_string(tokenizer, string):
+ batch_encoding = tokenizer(string, truncation=True, max_length=77, return_length=True,
+ return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
+ tokens = batch_encoding["input_ids"]
+ assert torch.count_nonzero(tokens - 49407) == 2, f"String '{string}' maps to more than a single token. Please use another string"
+
+ return tokens[0, 1]
+
+def get_bert_token_for_string(tokenizer, string):
+ token = tokenizer(string)
+ assert torch.count_nonzero(token) == 3, f"String '{string}' maps to more than a single token. Please use another string"
+
+ token = token[0, 1]
+
+ return token
+
+def get_embedding_for_clip_token(embedder, token):
+ return embedder(token.unsqueeze(0))[0, 0]
+
+
+class EmbeddingManager(nn.Module):
+ def __init__(
+ self,
+ embedder,
+ placeholder_strings=None,
+ initializer_words=None,
+ per_image_tokens=False,
+ num_vectors_per_token=1,
+ progressive_words=False,
+ **kwargs
+ ):
+ super().__init__()
+
+ self.string_to_token_dict = {}
+
+ self.string_to_param_dict = nn.ParameterDict()
+
+ self.initial_embeddings = nn.ParameterDict() # These should not be optimized
+
+ self.progressive_words = progressive_words
+ self.progressive_counter = 0
+
+ self.max_vectors_per_token = num_vectors_per_token
+
+ if hasattr(embedder, 'tokenizer'): # using Stable Diffusion's CLIP encoder
+ self.is_clip = True
+ get_token_for_string = partial(get_clip_token_for_string, embedder.tokenizer)
+ get_embedding_for_tkn = partial(get_embedding_for_clip_token, embedder.transformer.text_model.embeddings)
+ token_dim = 768
+ else: # using LDM's BERT encoder
+ self.is_clip = False
+ get_token_for_string = partial(get_bert_token_for_string, embedder.tknz_fn)
+ get_embedding_for_tkn = embedder.transformer.token_emb
+ token_dim = 1280
+
+ if per_image_tokens:
+ placeholder_strings.extend(per_img_token_list)
+
+ for idx, placeholder_string in enumerate(placeholder_strings):
+
+ token = get_token_for_string(placeholder_string)
+
+ if initializer_words and idx < len(initializer_words):
+ init_word_token = get_token_for_string(initializer_words[idx])
+
+ with torch.no_grad():
+ init_word_embedding = get_embedding_for_tkn(init_word_token.cpu())
+
+ token_params = torch.nn.Parameter(init_word_embedding.unsqueeze(0).repeat(num_vectors_per_token, 1), requires_grad=True)
+ self.initial_embeddings[placeholder_string] = torch.nn.Parameter(init_word_embedding.unsqueeze(0).repeat(num_vectors_per_token, 1), requires_grad=False)
+ else:
+ token_params = torch.nn.Parameter(torch.rand(size=(num_vectors_per_token, token_dim), requires_grad=True))
+
+ self.string_to_token_dict[placeholder_string] = token
+ self.string_to_param_dict[placeholder_string] = token_params
+
+ def forward(
+ self,
+ tokenized_text,
+ embedded_text,
+ ):
+ b, n, device = *tokenized_text.shape, tokenized_text.device
+
+ for placeholder_string, placeholder_token in self.string_to_token_dict.items():
+
+ placeholder_embedding = self.string_to_param_dict[placeholder_string].to(device)
+
+ if self.max_vectors_per_token == 1: # If there's only one vector per token, we can do a simple replacement
+ placeholder_idx = torch.where(tokenized_text == placeholder_token.to(device))
+ embedded_text[placeholder_idx] = placeholder_embedding
+ else: # otherwise, need to insert and keep track of changing indices
+ if self.progressive_words:
+ self.progressive_counter += 1
+ max_step_tokens = 1 + self.progressive_counter // PROGRESSIVE_SCALE
+ else:
+ max_step_tokens = self.max_vectors_per_token
+
+ num_vectors_for_token = min(placeholder_embedding.shape[0], max_step_tokens)
+
+ placeholder_rows, placeholder_cols = torch.where(tokenized_text == placeholder_token.to(device))
+
+ if placeholder_rows.nelement() == 0:
+ continue
+
+ sorted_cols, sort_idx = torch.sort(placeholder_cols, descending=True)
+ sorted_rows = placeholder_rows[sort_idx]
+
+ for idx in range(len(sorted_rows)):
+ row = sorted_rows[idx]
+ col = sorted_cols[idx]
+
+ new_token_row = torch.cat([tokenized_text[row][:col], placeholder_token.repeat(num_vectors_for_token).to(device), tokenized_text[row][col + 1:]], axis=0)[:n]
+ new_embed_row = torch.cat([embedded_text[row][:col], placeholder_embedding[:num_vectors_for_token], embedded_text[row][col + 1:]], axis=0)[:n]
+
+ embedded_text[row] = new_embed_row
+ tokenized_text[row] = new_token_row
+
+ return embedded_text
+
+ def save(self, ckpt_path):
+ torch.save({"string_to_token": self.string_to_token_dict,
+ "string_to_param": self.string_to_param_dict}, ckpt_path)
+
+ def load(self, ckpt_path):
+ ckpt = torch.load(ckpt_path, map_location='cpu')
+
+ self.string_to_token_dict = ckpt["string_to_token"]
+ self.string_to_param_dict = ckpt["string_to_param"]
+
+ def get_embedding_norms_squared(self):
+ all_params = torch.cat(list(self.string_to_param_dict.values()), axis=0) # num_placeholders x embedding_dim
+ param_norm_squared = (all_params * all_params).sum(axis=-1) # num_placeholders
+
+ return param_norm_squared
+
+ def embedding_parameters(self):
+ return self.string_to_param_dict.parameters()
+
+ def embedding_to_coarse_loss(self):
+
+ loss = 0.
+ num_embeddings = len(self.initial_embeddings)
+
+ for key in self.initial_embeddings:
+ optimized = self.string_to_param_dict[key]
+ coarse = self.initial_embeddings[key].clone().to(optimized.device)
+
+ loss = loss + (optimized - coarse) @ (optimized - coarse).T / num_embeddings
+
+ return loss
\ No newline at end of file
diff --git a/sd1/ldm/modules/encoders/__init__.py b/sd1/ldm/modules/encoders/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/sd1/ldm/modules/encoders/modules.py b/sd1/ldm/modules/encoders/modules.py
new file mode 100644
index 0000000000000000000000000000000000000000..6a684e0efdaff06fff7c18bd2d733e4ad19ba03f
--- /dev/null
+++ b/sd1/ldm/modules/encoders/modules.py
@@ -0,0 +1,406 @@
+import torch
+import torch.nn as nn
+from functools import partial
+import clip
+from einops import rearrange, repeat
+from transformers import CLIPTokenizer, CLIPTextModel
+import kornia
+
+from ldm.modules.x_transformer import Encoder, TransformerWrapper # TODO: can we directly rely on lucidrains code and simply add this as a reuirement? --> test
+
+def _expand_mask(mask, dtype, tgt_len = None):
+ """
+ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
+ """
+ bsz, src_len = mask.size()
+ tgt_len = tgt_len if tgt_len is not None else src_len
+
+ expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
+
+ inverted_mask = 1.0 - expanded_mask
+
+ return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
+
+def _build_causal_attention_mask(bsz, seq_len, dtype):
+ # lazily create causal attention mask, with full attention between the vision tokens
+ # pytorch uses additive attention mask; fill with -inf
+ mask = torch.empty(bsz, seq_len, seq_len, dtype=dtype)
+ mask.fill_(torch.tensor(torch.finfo(dtype).min))
+ mask.triu_(1) # zero out the lower diagonal
+ mask = mask.unsqueeze(1) # expand mask
+ return mask
+
+class AbstractEncoder(nn.Module):
+ def __init__(self):
+ super().__init__()
+
+ def encode(self, *args, **kwargs):
+ raise NotImplementedError
+
+
+
+class ClassEmbedder(nn.Module):
+ def __init__(self, embed_dim, n_classes=1000, key='class'):
+ super().__init__()
+ self.key = key
+ self.embedding = nn.Embedding(n_classes, embed_dim)
+
+ def forward(self, batch, key=None):
+ if key is None:
+ key = self.key
+ # this is for use in crossattn
+ c = batch[key][:, None]
+ c = self.embedding(c)
+ return c
+
+
+class TransformerEmbedder(AbstractEncoder):
+ """Some transformer encoder layers"""
+ def __init__(self, n_embed, n_layer, vocab_size, max_seq_len=77, device="cuda"):
+ super().__init__()
+ self.device = device
+ self.transformer = TransformerWrapper(num_tokens=vocab_size, max_seq_len=max_seq_len,
+ attn_layers=Encoder(dim=n_embed, depth=n_layer))
+
+ def forward(self, tokens):
+ tokens = tokens.to(self.device) # meh
+ z = self.transformer(tokens, return_embeddings=True)
+ return z
+
+ def encode(self, x):
+ return self(x)
+
+
+class BERTTokenizer(AbstractEncoder):
+ """ Uses a pretrained BERT tokenizer by huggingface. Vocab size: 30522 (?)"""
+ def __init__(self, device="cuda", vq_interface=True, max_length=77):
+ super().__init__()
+ from transformers import BertTokenizerFast # TODO: add to reuquirements
+ self.tokenizer = BertTokenizerFast.from_pretrained("bert-base-uncased")
+ self.device = device
+ self.vq_interface = vq_interface
+ self.max_length = max_length
+
+ def forward(self, text):
+ batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
+ return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
+ tokens = batch_encoding["input_ids"].to(self.device)
+ return tokens
+
+ @torch.no_grad()
+ def encode(self, text):
+ tokens = self(text)
+ if not self.vq_interface:
+ return tokens
+ return None, None, [None, None, tokens]
+
+ def decode(self, text):
+ return text
+
+
+class BERTEmbedder(AbstractEncoder):
+ """Uses the BERT tokenizr model and add some transformer encoder layers"""
+ def __init__(self, n_embed, n_layer, vocab_size=30522, max_seq_len=77,
+ device="cuda",use_tokenizer=True, embedding_dropout=0.0):
+ super().__init__()
+ self.use_tknz_fn = use_tokenizer
+ if self.use_tknz_fn:
+ self.tknz_fn = BERTTokenizer(vq_interface=False, max_length=max_seq_len)
+ self.device = device
+ self.transformer = TransformerWrapper(num_tokens=vocab_size, max_seq_len=max_seq_len,
+ attn_layers=Encoder(dim=n_embed, depth=n_layer),
+ emb_dropout=embedding_dropout)
+
+ def forward(self, text, embedding_manager=None):
+ if self.use_tknz_fn:
+ tokens = self.tknz_fn(text)#.to(self.device)
+ else:
+ tokens = text
+ z = self.transformer(tokens, return_embeddings=True, embedding_manager=embedding_manager)
+ return z
+
+ def encode(self, text, **kwargs):
+ # output of length 77
+ return self(text, **kwargs)
+
+class SpatialRescaler(nn.Module):
+ def __init__(self,
+ n_stages=1,
+ method='bilinear',
+ multiplier=0.5,
+ in_channels=3,
+ out_channels=None,
+ bias=False):
+ super().__init__()
+ self.n_stages = n_stages
+ assert self.n_stages >= 0
+ assert method in ['nearest','linear','bilinear','trilinear','bicubic','area']
+ self.multiplier = multiplier
+ self.interpolator = partial(torch.nn.functional.interpolate, mode=method)
+ self.remap_output = out_channels is not None
+ if self.remap_output:
+ print(f'Spatial Rescaler mapping from {in_channels} to {out_channels} channels after resizing.')
+ self.channel_mapper = nn.Conv2d(in_channels,out_channels,1,bias=bias)
+
+ def forward(self,x):
+ for stage in range(self.n_stages):
+ x = self.interpolator(x, scale_factor=self.multiplier)
+
+
+ if self.remap_output:
+ x = self.channel_mapper(x)
+ return x
+
+ def encode(self, x):
+ return self(x)
+
+class FrozenCLIPEmbedder(AbstractEncoder):
+ """Uses the CLIP transformer encoder for text (from Hugging Face)"""
+ def __init__(self, version="openai/clip-vit-large-patch14", device="cuda", max_length=77):
+ super().__init__()
+ self.tokenizer = CLIPTokenizer.from_pretrained(version)
+ self.transformer = CLIPTextModel.from_pretrained(version)
+ self.device = device
+ self.max_length = max_length
+ self.freeze()
+
+ def embedding_forward(
+ self,
+ input_ids = None,
+ position_ids = None,
+ inputs_embeds = None,
+ embedding_manager = None,
+ ) -> torch.Tensor:
+
+ seq_length = input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2]
+
+ if position_ids is None:
+ position_ids = self.position_ids[:, :seq_length]
+
+ if inputs_embeds is None:
+ inputs_embeds = self.token_embedding(input_ids)
+
+ if embedding_manager is not None:
+ inputs_embeds = embedding_manager(input_ids, inputs_embeds)
+
+
+ position_embeddings = self.position_embedding(position_ids)
+ embeddings = inputs_embeds + position_embeddings
+
+ return embeddings
+
+ self.transformer.text_model.embeddings.forward = embedding_forward.__get__(self.transformer.text_model.embeddings)
+
+ def encoder_forward(
+ self,
+ inputs_embeds,
+ attention_mask = None,
+ causal_attention_mask = None,
+ output_attentions = None,
+ output_hidden_states = None,
+ return_dict = None,
+ ):
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ encoder_states = () if output_hidden_states else None
+ all_attentions = () if output_attentions else None
+
+ hidden_states = inputs_embeds
+ for idx, encoder_layer in enumerate(self.layers):
+ if output_hidden_states:
+ encoder_states = encoder_states + (hidden_states,)
+
+ layer_outputs = encoder_layer(
+ hidden_states,
+ attention_mask,
+ causal_attention_mask,
+ output_attentions=output_attentions,
+ )
+
+ hidden_states = layer_outputs[0]
+
+ if output_attentions:
+ all_attentions = all_attentions + (layer_outputs[1],)
+
+ if output_hidden_states:
+ encoder_states = encoder_states + (hidden_states,)
+
+ return hidden_states
+
+ self.transformer.text_model.encoder.forward = encoder_forward.__get__(self.transformer.text_model.encoder)
+
+
+ def text_encoder_forward(
+ self,
+ input_ids = None,
+ attention_mask = None,
+ position_ids = None,
+ output_attentions = None,
+ output_hidden_states = None,
+ return_dict = None,
+ embedding_manager = None,
+ ):
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ if input_ids is None:
+ raise ValueError("You have to specify either input_ids")
+
+ input_shape = input_ids.size()
+ input_ids = input_ids.view(-1, input_shape[-1])
+
+ hidden_states = self.embeddings(input_ids=input_ids, position_ids=position_ids, embedding_manager=embedding_manager)
+
+ bsz, seq_len = input_shape
+ # CLIP's text model uses causal mask, prepare it here.
+ # https://github.com/openai/CLIP/blob/cfcffb90e69f37bf2ff1e988237a0fbe41f33c04/clip/model.py#L324
+ causal_attention_mask = _build_causal_attention_mask(bsz, seq_len, hidden_states.dtype).to(
+ hidden_states.device
+ )
+
+ # expand attention_mask
+ if attention_mask is not None:
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
+ attention_mask = _expand_mask(attention_mask, hidden_states.dtype)
+
+ last_hidden_state = self.encoder(
+ inputs_embeds=hidden_states,
+ attention_mask=attention_mask,
+ causal_attention_mask=causal_attention_mask,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ last_hidden_state = self.final_layer_norm(last_hidden_state)
+
+ # pooled_output = last_hidden_state[torch.arange(last_hidden_state.shape[0]), input_ids.argmax(dim=-1)]
+
+ return last_hidden_state
+
+ self.transformer.text_model.forward = text_encoder_forward.__get__(self.transformer.text_model)
+
+ def transformer_forward(
+ self,
+ input_ids = None,
+ attention_mask = None,
+ position_ids = None,
+ output_attentions = None,
+ output_hidden_states = None,
+ return_dict = None,
+ embedding_manager = None,
+ ):
+ return self.text_model(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ position_ids=position_ids,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ embedding_manager = embedding_manager
+ )
+
+ self.transformer.forward = transformer_forward.__get__(self.transformer)
+
+
+ def freeze(self):
+ self.transformer = self.transformer.eval()
+ # self.vit = self.vit.eval()
+ for param in self.parameters():
+ param.requires_grad = False
+
+
+
+ def forward(self, text, **kwargs):
+ batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
+ return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
+ tokens = batch_encoding["input_ids"].to(self.device)
+ z = self.transformer(input_ids=tokens, **kwargs)
+ # from pdb import set_trace
+ # set_trace()
+ if kwargs.get('return_pooled', False):
+ return z, z[torch.arange(z.shape[0]), tokens.argmax(dim=-1)]
+ return z
+
+ def encode(self, text, **kwargs):
+ return self(text, **kwargs)
+
+
+
+class FrozenCLIPTextEmbedder(nn.Module):
+ """
+ Uses the CLIP transformer encoder for text.
+ """
+ def __init__(self, version='ViT-L/14', device="cuda", max_length=77, n_repeat=1, normalize=True):
+ super().__init__()
+ self.model, _ = clip.load(version, jit=False, device="cpu")
+ self.device = device
+ self.max_length = max_length
+ self.n_repeat = n_repeat
+ self.normalize = normalize
+
+ def freeze(self):
+ self.model = self.model.eval()
+ for param in self.parameters():
+ param.requires_grad = False
+
+ def forward(self, text):
+ tokens = clip.tokenize(text).to(self.device)
+ z = self.model.encode_text(tokens)
+ if self.normalize:
+ z = z / torch.linalg.norm(z, dim=1, keepdim=True)
+ return z
+
+ def encode(self, text):
+ z = self(text)
+ if z.ndim==2:
+ z = z[:, None, :]
+ z = repeat(z, 'b 1 d -> b k d', k=self.n_repeat)
+ return z
+
+
+class FrozenClipImageEmbedder(nn.Module):
+ """
+ Uses the CLIP image encoder.
+ """
+ def __init__(
+ self,
+ model,
+ jit=False,
+ device='cuda' if torch.cuda.is_available() else 'cpu',
+ antialias=False,
+ ):
+ super().__init__()
+ self.model, _ = clip.load(name=model, device=device, jit=jit)
+
+ self.antialias = antialias
+
+ self.register_buffer('mean', torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False)
+ self.register_buffer('std', torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False)
+
+ def preprocess(self, x):
+ # normalize to [0,1]
+ x = kornia.geometry.resize(x, (224, 224),
+ interpolation='bicubic',align_corners=True,
+ antialias=self.antialias)
+ x = (x + 1.) / 2.
+ # renormalize according to clip
+ x = kornia.enhance.normalize(x, self.mean, self.std)
+ return x
+
+ def forward(self, x):
+ # x is assumed to be in range [-1,1]
+ return self.model.encode_image(self.preprocess(x))
+
+
+if __name__ == "__main__":
+ from ldm.util import count_params
+ model = FrozenCLIPEmbedder()
+ count_params(model, verbose=True)
\ No newline at end of file
diff --git a/sd1/ldm/modules/encoders/modules_bak.py b/sd1/ldm/modules/encoders/modules_bak.py
new file mode 100644
index 0000000000000000000000000000000000000000..418fc52d6012a9e4acf6f2ba19ce4d038eb45be2
--- /dev/null
+++ b/sd1/ldm/modules/encoders/modules_bak.py
@@ -0,0 +1,510 @@
+import torch
+import torch.nn as nn
+from functools import partial
+import clip
+from einops import rearrange, repeat
+from transformers import CLIPTokenizer, CLIPTextModel
+import kornia
+
+from ldm.modules.x_transformer import Encoder, TransformerWrapper # TODO: can we directly rely on lucidrains code and simply add this as a reuirement? --> test
+
+def _expand_mask(mask, dtype, tgt_len = None):
+ """
+ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
+ """
+ bsz, src_len = mask.size()
+ tgt_len = tgt_len if tgt_len is not None else src_len
+
+ expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
+
+ inverted_mask = 1.0 - expanded_mask
+
+ return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
+
+def _build_causal_attention_mask(bsz, seq_len, dtype):
+ # lazily create causal attention mask, with full attention between the vision tokens
+ # pytorch uses additive attention mask; fill with -inf
+ mask = torch.empty(bsz, seq_len, seq_len, dtype=dtype)
+ mask.fill_(torch.tensor(torch.finfo(dtype).min))
+ mask.triu_(1) # zero out the lower diagonal
+ mask = mask.unsqueeze(1) # expand mask
+ return mask
+
+class AbstractEncoder(nn.Module):
+ def __init__(self):
+ super().__init__()
+
+ def encode(self, *args, **kwargs):
+ raise NotImplementedError
+
+
+
+class ClassEmbedder(nn.Module):
+ def __init__(self, embed_dim, n_classes=1000, key='class'):
+ super().__init__()
+ self.key = key
+ self.embedding = nn.Embedding(n_classes, embed_dim)
+
+ def forward(self, batch, key=None):
+ if key is None:
+ key = self.key
+ # this is for use in crossattn
+ c = batch[key][:, None]
+ c = self.embedding(c)
+ return c
+
+
+class TransformerEmbedder(AbstractEncoder):
+ """Some transformer encoder layers"""
+ def __init__(self, n_embed, n_layer, vocab_size, max_seq_len=77, device="cuda"):
+ super().__init__()
+ self.device = device
+ self.transformer = TransformerWrapper(num_tokens=vocab_size, max_seq_len=max_seq_len,
+ attn_layers=Encoder(dim=n_embed, depth=n_layer))
+
+ def forward(self, tokens):
+ tokens = tokens.to(self.device) # meh
+ z = self.transformer(tokens, return_embeddings=True)
+ return z
+
+ def encode(self, x):
+ return self(x)
+
+
+class BERTTokenizer(AbstractEncoder):
+ """ Uses a pretrained BERT tokenizer by huggingface. Vocab size: 30522 (?)"""
+ def __init__(self, device="cuda", vq_interface=True, max_length=77):
+ super().__init__()
+ from transformers import BertTokenizerFast # TODO: add to reuquirements
+ self.tokenizer = BertTokenizerFast.from_pretrained("bert-base-uncased")
+ self.device = device
+ self.vq_interface = vq_interface
+ self.max_length = max_length
+
+ def forward(self, text):
+ batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
+ return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
+ tokens = batch_encoding["input_ids"].to(self.device)
+ return tokens
+
+ @torch.no_grad()
+ def encode(self, text):
+ tokens = self(text)
+ if not self.vq_interface:
+ return tokens
+ return None, None, [None, None, tokens]
+
+ def decode(self, text):
+ return text
+
+
+class BERTEmbedder(AbstractEncoder):
+ """Uses the BERT tokenizr model and add some transformer encoder layers"""
+ def __init__(self, n_embed, n_layer, vocab_size=30522, max_seq_len=77,
+ device="cuda",use_tokenizer=True, embedding_dropout=0.0):
+ super().__init__()
+ self.use_tknz_fn = use_tokenizer
+ if self.use_tknz_fn:
+ self.tknz_fn = BERTTokenizer(vq_interface=False, max_length=max_seq_len)
+ self.device = device
+ self.transformer = TransformerWrapper(num_tokens=vocab_size, max_seq_len=max_seq_len,
+ attn_layers=Encoder(dim=n_embed, depth=n_layer),
+ emb_dropout=embedding_dropout)
+
+ def forward(self, text, embedding_manager=None):
+ if self.use_tknz_fn:
+ tokens = self.tknz_fn(text)#.to(self.device)
+ else:
+ tokens = text
+ z = self.transformer(tokens, return_embeddings=True, embedding_manager=embedding_manager)
+ return z
+
+ def encode(self, text, **kwargs):
+ # output of length 77
+ return self(text, **kwargs)
+
+class SpatialRescaler(nn.Module):
+ def __init__(self,
+ n_stages=1,
+ method='bilinear',
+ multiplier=0.5,
+ in_channels=3,
+ out_channels=None,
+ bias=False):
+ super().__init__()
+ self.n_stages = n_stages
+ assert self.n_stages >= 0
+ assert method in ['nearest','linear','bilinear','trilinear','bicubic','area']
+ self.multiplier = multiplier
+ self.interpolator = partial(torch.nn.functional.interpolate, mode=method)
+ self.remap_output = out_channels is not None
+ if self.remap_output:
+ print(f'Spatial Rescaler mapping from {in_channels} to {out_channels} channels after resizing.')
+ self.channel_mapper = nn.Conv2d(in_channels,out_channels,1,bias=bias)
+
+ def forward(self,x):
+ for stage in range(self.n_stages):
+ x = self.interpolator(x, scale_factor=self.multiplier)
+
+
+ if self.remap_output:
+ x = self.channel_mapper(x)
+ return x
+
+ def encode(self, x):
+ return self(x)
+
+class FrozenCLIPEmbedder(AbstractEncoder):
+ """Uses the CLIP transformer encoder for text (from Hugging Face)"""
+ def __init__(self, version="openai/clip-vit-large-patch14", device="cuda", max_length=77):
+ super().__init__()
+ self.tokenizer = CLIPTokenizer.from_pretrained(version)
+ self.transformer = CLIPTextModel.from_pretrained(version)
+ self.device = device
+ self.max_length = max_length
+ self.freeze()
+
+ def embedding_forward(
+ self,
+ input_ids = None,
+ position_ids = None,
+ inputs_embeds = None,
+ embedding_manager = None,
+ ) -> torch.Tensor:
+
+ seq_length = input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2]
+
+ if position_ids is None:
+ position_ids = self.position_ids[:, :seq_length]
+
+ if inputs_embeds is None:
+ inputs_embeds = self.token_embedding(input_ids)
+
+ if embedding_manager is not None:
+ inputs_embeds = embedding_manager(input_ids, inputs_embeds)
+
+
+ position_embeddings = self.position_embedding(position_ids)
+ embeddings = inputs_embeds + position_embeddings
+
+ return embeddings
+
+ self.transformer.text_model.embeddings.forward = embedding_forward.__get__(self.transformer.text_model.embeddings)
+
+ def encoder_forward(
+ self,
+ inputs_embeds,
+ attention_mask = None,
+ causal_attention_mask = None,
+ output_attentions = None,
+ output_hidden_states = None,
+ return_dict = None,
+ ):
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ encoder_states = () if output_hidden_states else None
+ all_attentions = () if output_attentions else None
+
+ hidden_states = inputs_embeds
+ for idx, encoder_layer in enumerate(self.layers):
+ if output_hidden_states:
+ encoder_states = encoder_states + (hidden_states,)
+
+ layer_outputs = encoder_layer(
+ hidden_states,
+ attention_mask,
+ causal_attention_mask,
+ output_attentions=output_attentions,
+ )
+
+ hidden_states = layer_outputs[0]
+
+ if output_attentions:
+ all_attentions = all_attentions + (layer_outputs[1],)
+
+ if output_hidden_states:
+ encoder_states = encoder_states + (hidden_states,)
+
+ return hidden_states
+
+ # if not return_dict:
+ # return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
+ # return BaseModelOutput(
+ # last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
+ # )
+
+ self.transformer.text_model.encoder.forward = encoder_forward.__get__(self.transformer.text_model.encoder)
+
+
+ def text_encoder_forward(
+ self,
+ input_ids = None,
+ attention_mask = None,
+ position_ids = None,
+ output_attentions = None,
+ output_hidden_states = None,
+ return_dict = None,
+ embedding_manager = None,
+ ):
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
+ output_hidden_states = (
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
+ )
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
+
+ if input_ids is None:
+ raise ValueError("You have to specify either input_ids")
+
+ input_shape = input_ids.size()
+ input_ids = input_ids.view(-1, input_shape[-1])
+
+ hidden_states = self.embeddings(input_ids=input_ids, position_ids=position_ids, embedding_manager=embedding_manager)
+
+ bsz, seq_len = input_shape
+ # CLIP's text model uses causal mask, prepare it here.
+ # https://github.com/openai/CLIP/blob/cfcffb90e69f37bf2ff1e988237a0fbe41f33c04/clip/model.py#L324
+ causal_attention_mask = _build_causal_attention_mask(bsz, seq_len, hidden_states.dtype).to(
+ hidden_states.device
+ )
+
+ # expand attention_mask
+ if attention_mask is not None:
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
+ attention_mask = _expand_mask(attention_mask, hidden_states.dtype)
+
+ last_hidden_state = self.encoder(
+ inputs_embeds=hidden_states,
+ attention_mask=attention_mask,
+ causal_attention_mask=causal_attention_mask,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ )
+
+ # last_hidden_state = encoder_outputs[0]
+ last_hidden_state = self.final_layer_norm(last_hidden_state)
+
+ # text_embeds.shape = [batch_size, sequence_length, transformer.width]
+ # take features from the eot embedding (eot_token is the highest number in each sequence)
+ # pooled_output = last_hidden_state[torch.arange(last_hidden_state.shape[0]), input_ids.argmax(dim=-1)]
+
+ # if not return_dict:
+ # return (last_hidden_state, pooled_output) + encoder_outputs[1:]
+
+ return last_hidden_state
+
+ self.transformer.text_model.forward = text_encoder_forward.__get__(self.transformer.text_model)
+
+ def transformer_forward(
+ self,
+ input_ids = None,
+ attention_mask = None,
+ position_ids = None,
+ output_attentions = None,
+ output_hidden_states = None,
+ return_dict = None,
+ embedding_manager = None,
+ ):
+ return self.text_model(
+ input_ids=input_ids,
+ attention_mask=attention_mask,
+ position_ids=position_ids,
+ output_attentions=output_attentions,
+ output_hidden_states=output_hidden_states,
+ return_dict=return_dict,
+ embedding_manager = embedding_manager
+ )
+
+ self.transformer.forward = transformer_forward.__get__(self.transformer)
+
+
+ # def update_embedding_func(self, embedding_manager):
+ # text_model = self.transformer.text_model
+ # # text_model.old_embeddings = text_model.embeddings
+
+ # # def new_embeddings(
+ # # input_ids = None,
+ # # position_ids = None,
+ # # inputs_embeds = None,
+ # # ) -> torch.Tensor:
+
+ # # seq_length = input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2]
+
+ # # if position_ids is None:
+ # # position_ids = text_model.old_embeddings.position_ids[:, :seq_length]
+
+ # # if inputs_embeds is None:
+ # # inputs_embeds = text_model.old_embeddings.token_embedding(input_ids)
+
+
+ # # inputs_embeds = embedding_manager(input_ids, inputs_embeds)
+
+ # # position_embeddings = text_model.old_embeddings.position_embedding(position_ids)
+ # # embeddings = inputs_embeds + position_embeddings
+
+ # # return embeddings
+
+ # # del text_model.embeddings
+ # # text_model.embeddings = new_embeddings
+
+ # # class NewEmbeddings(torch.nn.Module):
+
+ # # def __init__(self, orig_embedder):
+ # # super().__init__()
+ # # self.orig_embedder = orig_embedder
+
+ # # def forward(
+ # # self,
+ # # input_ids = None,
+ # # position_ids = None,
+ # # inputs_embeds = None,
+ # # ) -> torch.Tensor:
+
+ # # seq_length = input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2]
+
+ # # if position_ids is None:
+ # # position_ids = self.orig_embedder.position_ids[:, :seq_length]
+
+ # # if inputs_embeds is None:
+ # # inputs_embeds = self.orig_embedder.token_embedding(input_ids)
+
+ # # inputs_embeds = embedding_manager(input_ids, inputs_embeds)
+
+ # # position_embeddings = self.orig_embedder.position_embedding(position_ids)
+ # # embeddings = inputs_embeds + position_embeddings
+
+ # # return embeddings
+
+ # # # self.new_embeddings =
+ # # # text_model.embeddings = new_embeddings.__call__.__get__(text_model)
+ # # text_model.embeddings = NewEmbeddings(text_model.embeddings)
+
+ # class NewEmbeddings(torch.nn.Module):
+
+ # def __init__(self, orig_embedder, embedding_manager):
+ # super().__init__()
+ # self.embedding_manager = embedding_manager
+ # self.orig_embedder = orig_embedder
+
+ # def forward(
+ # self,
+ # input_ids = None,
+ # position_ids = None,
+ # inputs_embeds = None,
+ # ) -> torch.Tensor:
+
+ # seq_length = input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2]
+
+ # if position_ids is None:
+ # position_ids = self.orig_embedder.position_ids[:, :seq_length]
+
+ # if inputs_embeds is None:
+ # inputs_embeds = self.orig_embedder.token_embedding(input_ids)
+
+ # # init_embeds = inputs_embeds.clone()
+ # inputs_embeds = self.embedding_manager(input_ids, inputs_embeds)
+
+ # # print(inputs_embeds - init_embeds)
+ # # print((inputs_embeds - init_embeds).max())
+ # # exit(0)
+
+ # position_embeddings = self.orig_embedder.position_embedding(position_ids)
+ # embeddings = inputs_embeds + position_embeddings
+
+ # return embeddings
+
+ # # self.new_embeddings =
+ # # text_model.embeddings = new_embeddings.__call__.__get__(text_model)
+ # text_model.embeddings = NewEmbeddings(text_model.embeddings, embedding_manager)
+
+ def freeze(self):
+ self.transformer = self.transformer.eval()
+ for param in self.parameters():
+ param.requires_grad = False
+
+ def forward(self, text, **kwargs):
+ batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
+ return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
+ tokens = batch_encoding["input_ids"].to(self.device)
+ z = self.transformer(input_ids=tokens, **kwargs)
+
+ return z
+
+ def encode(self, text, **kwargs):
+ return self(text, **kwargs)
+
+
+class FrozenCLIPTextEmbedder(nn.Module):
+ """
+ Uses the CLIP transformer encoder for text.
+ """
+ def __init__(self, version='ViT-L/14', device="cuda", max_length=77, n_repeat=1, normalize=True):
+ super().__init__()
+ self.model, _ = clip.load(version, jit=False, device="cpu")
+ self.device = device
+ self.max_length = max_length
+ self.n_repeat = n_repeat
+ self.normalize = normalize
+
+ def freeze(self):
+ self.model = self.model.eval()
+ for param in self.parameters():
+ param.requires_grad = False
+
+ def forward(self, text):
+ tokens = clip.tokenize(text).to(self.device)
+ z = self.model.encode_text(tokens)
+ if self.normalize:
+ z = z / torch.linalg.norm(z, dim=1, keepdim=True)
+ return z
+
+ def encode(self, text):
+ z = self(text)
+ if z.ndim==2:
+ z = z[:, None, :]
+ z = repeat(z, 'b 1 d -> b k d', k=self.n_repeat)
+ return z
+
+
+class FrozenClipImageEmbedder(nn.Module):
+ """
+ Uses the CLIP image encoder.
+ """
+ def __init__(
+ self,
+ model,
+ jit=False,
+ device='cuda' if torch.cuda.is_available() else 'cpu',
+ antialias=False,
+ ):
+ super().__init__()
+ self.model, _ = clip.load(name=model, device=device, jit=jit)
+
+ self.antialias = antialias
+
+ self.register_buffer('mean', torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False)
+ self.register_buffer('std', torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False)
+
+ def preprocess(self, x):
+ # normalize to [0,1]
+ x = kornia.geometry.resize(x, (224, 224),
+ interpolation='bicubic',align_corners=True,
+ antialias=self.antialias)
+ x = (x + 1.) / 2.
+ # renormalize according to clip
+ x = kornia.enhance.normalize(x, self.mean, self.std)
+ return x
+
+ def forward(self, x):
+ # x is assumed to be in range [-1,1]
+ return self.model.encode_image(self.preprocess(x))
+
+
+if __name__ == "__main__":
+ from ldm.util import count_params
+ model = FrozenCLIPEmbedder()
+ count_params(model, verbose=True)
\ No newline at end of file
diff --git a/sd1/ldm/modules/encoders/modules_original.py b/sd1/ldm/modules/encoders/modules_original.py
new file mode 100644
index 0000000000000000000000000000000000000000..ededbe43e9e0466b9979079060692e38f561d4d3
--- /dev/null
+++ b/sd1/ldm/modules/encoders/modules_original.py
@@ -0,0 +1,234 @@
+import torch
+import torch.nn as nn
+from functools import partial
+import clip
+from einops import rearrange, repeat
+from transformers import CLIPTokenizer, CLIPTextModel
+import kornia
+
+from ldm.modules.x_transformer import Encoder, TransformerWrapper # TODO: can we directly rely on lucidrains code and simply add this as a reuirement? --> test
+
+
+class AbstractEncoder(nn.Module):
+ def __init__(self):
+ super().__init__()
+
+ def encode(self, *args, **kwargs):
+ raise NotImplementedError
+
+
+
+class ClassEmbedder(nn.Module):
+ def __init__(self, embed_dim, n_classes=1000, key='class'):
+ super().__init__()
+ self.key = key
+ self.embedding = nn.Embedding(n_classes, embed_dim)
+
+ def forward(self, batch, key=None):
+ if key is None:
+ key = self.key
+ # this is for use in crossattn
+ c = batch[key][:, None]
+ c = self.embedding(c)
+ return c
+
+
+class TransformerEmbedder(AbstractEncoder):
+ """Some transformer encoder layers"""
+ def __init__(self, n_embed, n_layer, vocab_size, max_seq_len=77, device="cuda"):
+ super().__init__()
+ self.device = device
+ self.transformer = TransformerWrapper(num_tokens=vocab_size, max_seq_len=max_seq_len,
+ attn_layers=Encoder(dim=n_embed, depth=n_layer))
+
+ def forward(self, tokens):
+ tokens = tokens.to(self.device) # meh
+ z = self.transformer(tokens, return_embeddings=True)
+ return z
+
+ def encode(self, x):
+ return self(x)
+
+
+class BERTTokenizer(AbstractEncoder):
+ """ Uses a pretrained BERT tokenizer by huggingface. Vocab size: 30522 (?)"""
+ def __init__(self, device="cuda", vq_interface=True, max_length=77):
+ super().__init__()
+ from transformers import BertTokenizerFast # TODO: add to reuquirements
+ self.tokenizer = BertTokenizerFast.from_pretrained("bert-base-uncased")
+ self.device = device
+ self.vq_interface = vq_interface
+ self.max_length = max_length
+
+ def forward(self, text):
+ batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
+ return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
+ tokens = batch_encoding["input_ids"].to(self.device)
+ return tokens
+
+ @torch.no_grad()
+ def encode(self, text):
+ tokens = self(text)
+ if not self.vq_interface:
+ return tokens
+ return None, None, [None, None, tokens]
+
+ def decode(self, text):
+ return text
+
+
+class BERTEmbedder(AbstractEncoder):
+ """Uses the BERT tokenizr model and add some transformer encoder layers"""
+ def __init__(self, n_embed, n_layer, vocab_size=30522, max_seq_len=77,
+ device="cuda",use_tokenizer=True, embedding_dropout=0.0):
+ super().__init__()
+ self.use_tknz_fn = use_tokenizer
+ if self.use_tknz_fn:
+ self.tknz_fn = BERTTokenizer(vq_interface=False, max_length=max_seq_len)
+ self.device = device
+ self.transformer = TransformerWrapper(num_tokens=vocab_size, max_seq_len=max_seq_len,
+ attn_layers=Encoder(dim=n_embed, depth=n_layer),
+ emb_dropout=embedding_dropout)
+
+ def forward(self, text):
+ if self.use_tknz_fn:
+ tokens = self.tknz_fn(text)#.to(self.device)
+ else:
+ tokens = text
+ z = self.transformer(tokens, return_embeddings=True)
+ return z
+
+ def encode(self, text):
+ # output of length 77
+ return self(text)
+
+
+class SpatialRescaler(nn.Module):
+ def __init__(self,
+ n_stages=1,
+ method='bilinear',
+ multiplier=0.5,
+ in_channels=3,
+ out_channels=None,
+ bias=False):
+ super().__init__()
+ self.n_stages = n_stages
+ assert self.n_stages >= 0
+ assert method in ['nearest','linear','bilinear','trilinear','bicubic','area']
+ self.multiplier = multiplier
+ self.interpolator = partial(torch.nn.functional.interpolate, mode=method)
+ self.remap_output = out_channels is not None
+ if self.remap_output:
+ print(f'Spatial Rescaler mapping from {in_channels} to {out_channels} channels after resizing.')
+ self.channel_mapper = nn.Conv2d(in_channels,out_channels,1,bias=bias)
+
+ def forward(self,x):
+ for stage in range(self.n_stages):
+ x = self.interpolator(x, scale_factor=self.multiplier)
+
+
+ if self.remap_output:
+ x = self.channel_mapper(x)
+ return x
+
+ def encode(self, x):
+ return self(x)
+
+class FrozenCLIPEmbedder(AbstractEncoder):
+ """Uses the CLIP transformer encoder for text (from Hugging Face)"""
+ def __init__(self, version="openai/clip-vit-large-patch14", device="cuda", max_length=77):
+ super().__init__()
+ self.tokenizer = CLIPTokenizer.from_pretrained(version)
+ self.transformer = CLIPTextModel.from_pretrained(version)
+ self.device = device
+ self.max_length = max_length
+ self.freeze()
+
+ def freeze(self):
+ self.transformer = self.transformer.eval()
+ for param in self.parameters():
+ param.requires_grad = False
+
+ def forward(self, text):
+ batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
+ return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
+ tokens = batch_encoding["input_ids"].to(self.device)
+ outputs = self.transformer(input_ids=tokens)
+
+ z = outputs.last_hidden_state
+ return z
+
+ def encode(self, text):
+ return self(text)
+
+
+class FrozenCLIPTextEmbedder(nn.Module):
+ """
+ Uses the CLIP transformer encoder for text.
+ """
+ def __init__(self, version='ViT-L/14', device="cuda", max_length=77, n_repeat=1, normalize=True):
+ super().__init__()
+ self.model, _ = clip.load(version, jit=False, device="cpu")
+ self.device = device
+ self.max_length = max_length
+ self.n_repeat = n_repeat
+ self.normalize = normalize
+
+ def freeze(self):
+ self.model = self.model.eval()
+ for param in self.parameters():
+ param.requires_grad = False
+
+ def forward(self, text):
+ tokens = clip.tokenize(text).to(self.device)
+ z = self.model.encode_text(tokens)
+ if self.normalize:
+ z = z / torch.linalg.norm(z, dim=1, keepdim=True)
+ return z
+
+ def encode(self, text):
+ z = self(text)
+ if z.ndim==2:
+ z = z[:, None, :]
+ z = repeat(z, 'b 1 d -> b k d', k=self.n_repeat)
+ return z
+
+
+class FrozenClipImageEmbedder(nn.Module):
+ """
+ Uses the CLIP image encoder.
+ """
+ def __init__(
+ self,
+ model,
+ jit=False,
+ device='cuda' if torch.cuda.is_available() else 'cpu',
+ antialias=False,
+ ):
+ super().__init__()
+ self.model, _ = clip.load(name=model, device=device, jit=jit)
+
+ self.antialias = antialias
+
+ self.register_buffer('mean', torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False)
+ self.register_buffer('std', torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False)
+
+ def preprocess(self, x):
+ # normalize to [0,1]
+ x = kornia.geometry.resize(x, (224, 224),
+ interpolation='bicubic',align_corners=True,
+ antialias=self.antialias)
+ x = (x + 1.) / 2.
+ # renormalize according to clip
+ x = kornia.enhance.normalize(x, self.mean, self.std)
+ return x
+
+ def forward(self, x):
+ # x is assumed to be in range [-1,1]
+ return self.model.encode_image(self.preprocess(x))
+
+
+if __name__ == "__main__":
+ from ldm.util import count_params
+ model = FrozenCLIPEmbedder()
+ count_params(model, verbose=True)
\ No newline at end of file
diff --git a/sd1/ldm/modules/image_degradation/__init__.py b/sd1/ldm/modules/image_degradation/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..7836cada81f90ded99c58d5942eea4c3477f58fc
--- /dev/null
+++ b/sd1/ldm/modules/image_degradation/__init__.py
@@ -0,0 +1,2 @@
+from ldm.modules.image_degradation.bsrgan import degradation_bsrgan_variant as degradation_fn_bsr
+from ldm.modules.image_degradation.bsrgan_light import degradation_bsrgan_variant as degradation_fn_bsr_light
diff --git a/sd1/ldm/modules/image_degradation/bsrgan.py b/sd1/ldm/modules/image_degradation/bsrgan.py
new file mode 100644
index 0000000000000000000000000000000000000000..32ef56169978e550090261cddbcf5eb611a6173b
--- /dev/null
+++ b/sd1/ldm/modules/image_degradation/bsrgan.py
@@ -0,0 +1,730 @@
+# -*- coding: utf-8 -*-
+"""
+# --------------------------------------------
+# Super-Resolution
+# --------------------------------------------
+#
+# Kai Zhang (cskaizhang@gmail.com)
+# https://github.com/cszn
+# From 2019/03--2021/08
+# --------------------------------------------
+"""
+
+import numpy as np
+import cv2
+import torch
+
+from functools import partial
+import random
+from scipy import ndimage
+import scipy
+import scipy.stats as ss
+from scipy.interpolate import interp2d
+from scipy.linalg import orth
+import albumentations
+
+import ldm.modules.image_degradation.utils_image as util
+
+
+def modcrop_np(img, sf):
+ '''
+ Args:
+ img: numpy image, WxH or WxHxC
+ sf: scale factor
+ Return:
+ cropped image
+ '''
+ w, h = img.shape[:2]
+ im = np.copy(img)
+ return im[:w - w % sf, :h - h % sf, ...]
+
+
+"""
+# --------------------------------------------
+# anisotropic Gaussian kernels
+# --------------------------------------------
+"""
+
+
+def analytic_kernel(k):
+ """Calculate the X4 kernel from the X2 kernel (for proof see appendix in paper)"""
+ k_size = k.shape[0]
+ # Calculate the big kernels size
+ big_k = np.zeros((3 * k_size - 2, 3 * k_size - 2))
+ # Loop over the small kernel to fill the big one
+ for r in range(k_size):
+ for c in range(k_size):
+ big_k[2 * r:2 * r + k_size, 2 * c:2 * c + k_size] += k[r, c] * k
+ # Crop the edges of the big kernel to ignore very small values and increase run time of SR
+ crop = k_size // 2
+ cropped_big_k = big_k[crop:-crop, crop:-crop]
+ # Normalize to 1
+ return cropped_big_k / cropped_big_k.sum()
+
+
+def anisotropic_Gaussian(ksize=15, theta=np.pi, l1=6, l2=6):
+ """ generate an anisotropic Gaussian kernel
+ Args:
+ ksize : e.g., 15, kernel size
+ theta : [0, pi], rotation angle range
+ l1 : [0.1,50], scaling of eigenvalues
+ l2 : [0.1,l1], scaling of eigenvalues
+ If l1 = l2, will get an isotropic Gaussian kernel.
+ Returns:
+ k : kernel
+ """
+
+ v = np.dot(np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]), np.array([1., 0.]))
+ V = np.array([[v[0], v[1]], [v[1], -v[0]]])
+ D = np.array([[l1, 0], [0, l2]])
+ Sigma = np.dot(np.dot(V, D), np.linalg.inv(V))
+ k = gm_blur_kernel(mean=[0, 0], cov=Sigma, size=ksize)
+
+ return k
+
+
+def gm_blur_kernel(mean, cov, size=15):
+ center = size / 2.0 + 0.5
+ k = np.zeros([size, size])
+ for y in range(size):
+ for x in range(size):
+ cy = y - center + 1
+ cx = x - center + 1
+ k[y, x] = ss.multivariate_normal.pdf([cx, cy], mean=mean, cov=cov)
+
+ k = k / np.sum(k)
+ return k
+
+
+def shift_pixel(x, sf, upper_left=True):
+ """shift pixel for super-resolution with different scale factors
+ Args:
+ x: WxHxC or WxH
+ sf: scale factor
+ upper_left: shift direction
+ """
+ h, w = x.shape[:2]
+ shift = (sf - 1) * 0.5
+ xv, yv = np.arange(0, w, 1.0), np.arange(0, h, 1.0)
+ if upper_left:
+ x1 = xv + shift
+ y1 = yv + shift
+ else:
+ x1 = xv - shift
+ y1 = yv - shift
+
+ x1 = np.clip(x1, 0, w - 1)
+ y1 = np.clip(y1, 0, h - 1)
+
+ if x.ndim == 2:
+ x = interp2d(xv, yv, x)(x1, y1)
+ if x.ndim == 3:
+ for i in range(x.shape[-1]):
+ x[:, :, i] = interp2d(xv, yv, x[:, :, i])(x1, y1)
+
+ return x
+
+
+def blur(x, k):
+ '''
+ x: image, NxcxHxW
+ k: kernel, Nx1xhxw
+ '''
+ n, c = x.shape[:2]
+ p1, p2 = (k.shape[-2] - 1) // 2, (k.shape[-1] - 1) // 2
+ x = torch.nn.functional.pad(x, pad=(p1, p2, p1, p2), mode='replicate')
+ k = k.repeat(1, c, 1, 1)
+ k = k.view(-1, 1, k.shape[2], k.shape[3])
+ x = x.view(1, -1, x.shape[2], x.shape[3])
+ x = torch.nn.functional.conv2d(x, k, bias=None, stride=1, padding=0, groups=n * c)
+ x = x.view(n, c, x.shape[2], x.shape[3])
+
+ return x
+
+
+def gen_kernel(k_size=np.array([15, 15]), scale_factor=np.array([4, 4]), min_var=0.6, max_var=10., noise_level=0):
+ """"
+ # modified version of https://github.com/assafshocher/BlindSR_dataset_generator
+ # Kai Zhang
+ # min_var = 0.175 * sf # variance of the gaussian kernel will be sampled between min_var and max_var
+ # max_var = 2.5 * sf
+ """
+ # Set random eigen-vals (lambdas) and angle (theta) for COV matrix
+ lambda_1 = min_var + np.random.rand() * (max_var - min_var)
+ lambda_2 = min_var + np.random.rand() * (max_var - min_var)
+ theta = np.random.rand() * np.pi # random theta
+ noise = -noise_level + np.random.rand(*k_size) * noise_level * 2
+
+ # Set COV matrix using Lambdas and Theta
+ LAMBDA = np.diag([lambda_1, lambda_2])
+ Q = np.array([[np.cos(theta), -np.sin(theta)],
+ [np.sin(theta), np.cos(theta)]])
+ SIGMA = Q @ LAMBDA @ Q.T
+ INV_SIGMA = np.linalg.inv(SIGMA)[None, None, :, :]
+
+ # Set expectation position (shifting kernel for aligned image)
+ MU = k_size // 2 - 0.5 * (scale_factor - 1) # - 0.5 * (scale_factor - k_size % 2)
+ MU = MU[None, None, :, None]
+
+ # Create meshgrid for Gaussian
+ [X, Y] = np.meshgrid(range(k_size[0]), range(k_size[1]))
+ Z = np.stack([X, Y], 2)[:, :, :, None]
+
+ # Calcualte Gaussian for every pixel of the kernel
+ ZZ = Z - MU
+ ZZ_t = ZZ.transpose(0, 1, 3, 2)
+ raw_kernel = np.exp(-0.5 * np.squeeze(ZZ_t @ INV_SIGMA @ ZZ)) * (1 + noise)
+
+ # shift the kernel so it will be centered
+ # raw_kernel_centered = kernel_shift(raw_kernel, scale_factor)
+
+ # Normalize the kernel and return
+ # kernel = raw_kernel_centered / np.sum(raw_kernel_centered)
+ kernel = raw_kernel / np.sum(raw_kernel)
+ return kernel
+
+
+def fspecial_gaussian(hsize, sigma):
+ hsize = [hsize, hsize]
+ siz = [(hsize[0] - 1.0) / 2.0, (hsize[1] - 1.0) / 2.0]
+ std = sigma
+ [x, y] = np.meshgrid(np.arange(-siz[1], siz[1] + 1), np.arange(-siz[0], siz[0] + 1))
+ arg = -(x * x + y * y) / (2 * std * std)
+ h = np.exp(arg)
+ h[h < scipy.finfo(float).eps * h.max()] = 0
+ sumh = h.sum()
+ if sumh != 0:
+ h = h / sumh
+ return h
+
+
+def fspecial_laplacian(alpha):
+ alpha = max([0, min([alpha, 1])])
+ h1 = alpha / (alpha + 1)
+ h2 = (1 - alpha) / (alpha + 1)
+ h = [[h1, h2, h1], [h2, -4 / (alpha + 1), h2], [h1, h2, h1]]
+ h = np.array(h)
+ return h
+
+
+def fspecial(filter_type, *args, **kwargs):
+ '''
+ python code from:
+ https://github.com/ronaldosena/imagens-medicas-2/blob/40171a6c259edec7827a6693a93955de2bd39e76/Aulas/aula_2_-_uniform_filter/matlab_fspecial.py
+ '''
+ if filter_type == 'gaussian':
+ return fspecial_gaussian(*args, **kwargs)
+ if filter_type == 'laplacian':
+ return fspecial_laplacian(*args, **kwargs)
+
+
+"""
+# --------------------------------------------
+# degradation models
+# --------------------------------------------
+"""
+
+
+def bicubic_degradation(x, sf=3):
+ '''
+ Args:
+ x: HxWxC image, [0, 1]
+ sf: down-scale factor
+ Return:
+ bicubicly downsampled LR image
+ '''
+ x = util.imresize_np(x, scale=1 / sf)
+ return x
+
+
+def srmd_degradation(x, k, sf=3):
+ ''' blur + bicubic downsampling
+ Args:
+ x: HxWxC image, [0, 1]
+ k: hxw, double
+ sf: down-scale factor
+ Return:
+ downsampled LR image
+ Reference:
+ @inproceedings{zhang2018learning,
+ title={Learning a single convolutional super-resolution network for multiple degradations},
+ author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
+ booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
+ pages={3262--3271},
+ year={2018}
+ }
+ '''
+ x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap') # 'nearest' | 'mirror'
+ x = bicubic_degradation(x, sf=sf)
+ return x
+
+
+def dpsr_degradation(x, k, sf=3):
+ ''' bicubic downsampling + blur
+ Args:
+ x: HxWxC image, [0, 1]
+ k: hxw, double
+ sf: down-scale factor
+ Return:
+ downsampled LR image
+ Reference:
+ @inproceedings{zhang2019deep,
+ title={Deep Plug-and-Play Super-Resolution for Arbitrary Blur Kernels},
+ author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
+ booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
+ pages={1671--1681},
+ year={2019}
+ }
+ '''
+ x = bicubic_degradation(x, sf=sf)
+ x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap')
+ return x
+
+
+def classical_degradation(x, k, sf=3):
+ ''' blur + downsampling
+ Args:
+ x: HxWxC image, [0, 1]/[0, 255]
+ k: hxw, double
+ sf: down-scale factor
+ Return:
+ downsampled LR image
+ '''
+ x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap')
+ # x = filters.correlate(x, np.expand_dims(np.flip(k), axis=2))
+ st = 0
+ return x[st::sf, st::sf, ...]
+
+
+def add_sharpening(img, weight=0.5, radius=50, threshold=10):
+ """USM sharpening. borrowed from real-ESRGAN
+ Input image: I; Blurry image: B.
+ 1. K = I + weight * (I - B)
+ 2. Mask = 1 if abs(I - B) > threshold, else: 0
+ 3. Blur mask:
+ 4. Out = Mask * K + (1 - Mask) * I
+ Args:
+ img (Numpy array): Input image, HWC, BGR; float32, [0, 1].
+ weight (float): Sharp weight. Default: 1.
+ radius (float): Kernel size of Gaussian blur. Default: 50.
+ threshold (int):
+ """
+ if radius % 2 == 0:
+ radius += 1
+ blur = cv2.GaussianBlur(img, (radius, radius), 0)
+ residual = img - blur
+ mask = np.abs(residual) * 255 > threshold
+ mask = mask.astype('float32')
+ soft_mask = cv2.GaussianBlur(mask, (radius, radius), 0)
+
+ K = img + weight * residual
+ K = np.clip(K, 0, 1)
+ return soft_mask * K + (1 - soft_mask) * img
+
+
+def add_blur(img, sf=4):
+ wd2 = 4.0 + sf
+ wd = 2.0 + 0.2 * sf
+ if random.random() < 0.5:
+ l1 = wd2 * random.random()
+ l2 = wd2 * random.random()
+ k = anisotropic_Gaussian(ksize=2 * random.randint(2, 11) + 3, theta=random.random() * np.pi, l1=l1, l2=l2)
+ else:
+ k = fspecial('gaussian', 2 * random.randint(2, 11) + 3, wd * random.random())
+ img = ndimage.filters.convolve(img, np.expand_dims(k, axis=2), mode='mirror')
+
+ return img
+
+
+def add_resize(img, sf=4):
+ rnum = np.random.rand()
+ if rnum > 0.8: # up
+ sf1 = random.uniform(1, 2)
+ elif rnum < 0.7: # down
+ sf1 = random.uniform(0.5 / sf, 1)
+ else:
+ sf1 = 1.0
+ img = cv2.resize(img, (int(sf1 * img.shape[1]), int(sf1 * img.shape[0])), interpolation=random.choice([1, 2, 3]))
+ img = np.clip(img, 0.0, 1.0)
+
+ return img
+
+
+# def add_Gaussian_noise(img, noise_level1=2, noise_level2=25):
+# noise_level = random.randint(noise_level1, noise_level2)
+# rnum = np.random.rand()
+# if rnum > 0.6: # add color Gaussian noise
+# img += np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
+# elif rnum < 0.4: # add grayscale Gaussian noise
+# img += np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
+# else: # add noise
+# L = noise_level2 / 255.
+# D = np.diag(np.random.rand(3))
+# U = orth(np.random.rand(3, 3))
+# conv = np.dot(np.dot(np.transpose(U), D), U)
+# img += np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
+# img = np.clip(img, 0.0, 1.0)
+# return img
+
+def add_Gaussian_noise(img, noise_level1=2, noise_level2=25):
+ noise_level = random.randint(noise_level1, noise_level2)
+ rnum = np.random.rand()
+ if rnum > 0.6: # add color Gaussian noise
+ img = img + np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
+ elif rnum < 0.4: # add grayscale Gaussian noise
+ img = img + np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
+ else: # add noise
+ L = noise_level2 / 255.
+ D = np.diag(np.random.rand(3))
+ U = orth(np.random.rand(3, 3))
+ conv = np.dot(np.dot(np.transpose(U), D), U)
+ img = img + np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
+ img = np.clip(img, 0.0, 1.0)
+ return img
+
+
+def add_speckle_noise(img, noise_level1=2, noise_level2=25):
+ noise_level = random.randint(noise_level1, noise_level2)
+ img = np.clip(img, 0.0, 1.0)
+ rnum = random.random()
+ if rnum > 0.6:
+ img += img * np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
+ elif rnum < 0.4:
+ img += img * np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
+ else:
+ L = noise_level2 / 255.
+ D = np.diag(np.random.rand(3))
+ U = orth(np.random.rand(3, 3))
+ conv = np.dot(np.dot(np.transpose(U), D), U)
+ img += img * np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
+ img = np.clip(img, 0.0, 1.0)
+ return img
+
+
+def add_Poisson_noise(img):
+ img = np.clip((img * 255.0).round(), 0, 255) / 255.
+ vals = 10 ** (2 * random.random() + 2.0) # [2, 4]
+ if random.random() < 0.5:
+ img = np.random.poisson(img * vals).astype(np.float32) / vals
+ else:
+ img_gray = np.dot(img[..., :3], [0.299, 0.587, 0.114])
+ img_gray = np.clip((img_gray * 255.0).round(), 0, 255) / 255.
+ noise_gray = np.random.poisson(img_gray * vals).astype(np.float32) / vals - img_gray
+ img += noise_gray[:, :, np.newaxis]
+ img = np.clip(img, 0.0, 1.0)
+ return img
+
+
+def add_JPEG_noise(img):
+ quality_factor = random.randint(30, 95)
+ img = cv2.cvtColor(util.single2uint(img), cv2.COLOR_RGB2BGR)
+ result, encimg = cv2.imencode('.jpg', img, [int(cv2.IMWRITE_JPEG_QUALITY), quality_factor])
+ img = cv2.imdecode(encimg, 1)
+ img = cv2.cvtColor(util.uint2single(img), cv2.COLOR_BGR2RGB)
+ return img
+
+
+def random_crop(lq, hq, sf=4, lq_patchsize=64):
+ h, w = lq.shape[:2]
+ rnd_h = random.randint(0, h - lq_patchsize)
+ rnd_w = random.randint(0, w - lq_patchsize)
+ lq = lq[rnd_h:rnd_h + lq_patchsize, rnd_w:rnd_w + lq_patchsize, :]
+
+ rnd_h_H, rnd_w_H = int(rnd_h * sf), int(rnd_w * sf)
+ hq = hq[rnd_h_H:rnd_h_H + lq_patchsize * sf, rnd_w_H:rnd_w_H + lq_patchsize * sf, :]
+ return lq, hq
+
+
+def degradation_bsrgan(img, sf=4, lq_patchsize=72, isp_model=None):
+ """
+ This is the degradation model of BSRGAN from the paper
+ "Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
+ ----------
+ img: HXWXC, [0, 1], its size should be large than (lq_patchsizexsf)x(lq_patchsizexsf)
+ sf: scale factor
+ isp_model: camera ISP model
+ Returns
+ -------
+ img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
+ hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
+ """
+ isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25
+ sf_ori = sf
+
+ h1, w1 = img.shape[:2]
+ img = img.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
+ h, w = img.shape[:2]
+
+ if h < lq_patchsize * sf or w < lq_patchsize * sf:
+ raise ValueError(f'img size ({h1}X{w1}) is too small!')
+
+ hq = img.copy()
+
+ if sf == 4 and random.random() < scale2_prob: # downsample1
+ if np.random.rand() < 0.5:
+ img = cv2.resize(img, (int(1 / 2 * img.shape[1]), int(1 / 2 * img.shape[0])),
+ interpolation=random.choice([1, 2, 3]))
+ else:
+ img = util.imresize_np(img, 1 / 2, True)
+ img = np.clip(img, 0.0, 1.0)
+ sf = 2
+
+ shuffle_order = random.sample(range(7), 7)
+ idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3)
+ if idx1 > idx2: # keep downsample3 last
+ shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1]
+
+ for i in shuffle_order:
+
+ if i == 0:
+ img = add_blur(img, sf=sf)
+
+ elif i == 1:
+ img = add_blur(img, sf=sf)
+
+ elif i == 2:
+ a, b = img.shape[1], img.shape[0]
+ # downsample2
+ if random.random() < 0.75:
+ sf1 = random.uniform(1, 2 * sf)
+ img = cv2.resize(img, (int(1 / sf1 * img.shape[1]), int(1 / sf1 * img.shape[0])),
+ interpolation=random.choice([1, 2, 3]))
+ else:
+ k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf))
+ k_shifted = shift_pixel(k, sf)
+ k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel
+ img = ndimage.filters.convolve(img, np.expand_dims(k_shifted, axis=2), mode='mirror')
+ img = img[0::sf, 0::sf, ...] # nearest downsampling
+ img = np.clip(img, 0.0, 1.0)
+
+ elif i == 3:
+ # downsample3
+ img = cv2.resize(img, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3]))
+ img = np.clip(img, 0.0, 1.0)
+
+ elif i == 4:
+ # add Gaussian noise
+ img = add_Gaussian_noise(img, noise_level1=2, noise_level2=25)
+
+ elif i == 5:
+ # add JPEG noise
+ if random.random() < jpeg_prob:
+ img = add_JPEG_noise(img)
+
+ elif i == 6:
+ # add processed camera sensor noise
+ if random.random() < isp_prob and isp_model is not None:
+ with torch.no_grad():
+ img, hq = isp_model.forward(img.copy(), hq)
+
+ # add final JPEG compression noise
+ img = add_JPEG_noise(img)
+
+ # random crop
+ img, hq = random_crop(img, hq, sf_ori, lq_patchsize)
+
+ return img, hq
+
+
+# todo no isp_model?
+def degradation_bsrgan_variant(image, sf=4, isp_model=None):
+ """
+ This is the degradation model of BSRGAN from the paper
+ "Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
+ ----------
+ sf: scale factor
+ isp_model: camera ISP model
+ Returns
+ -------
+ img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
+ hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
+ """
+ image = util.uint2single(image)
+ isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25
+ sf_ori = sf
+
+ h1, w1 = image.shape[:2]
+ image = image.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
+ h, w = image.shape[:2]
+
+ hq = image.copy()
+
+ if sf == 4 and random.random() < scale2_prob: # downsample1
+ if np.random.rand() < 0.5:
+ image = cv2.resize(image, (int(1 / 2 * image.shape[1]), int(1 / 2 * image.shape[0])),
+ interpolation=random.choice([1, 2, 3]))
+ else:
+ image = util.imresize_np(image, 1 / 2, True)
+ image = np.clip(image, 0.0, 1.0)
+ sf = 2
+
+ shuffle_order = random.sample(range(7), 7)
+ idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3)
+ if idx1 > idx2: # keep downsample3 last
+ shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1]
+
+ for i in shuffle_order:
+
+ if i == 0:
+ image = add_blur(image, sf=sf)
+
+ elif i == 1:
+ image = add_blur(image, sf=sf)
+
+ elif i == 2:
+ a, b = image.shape[1], image.shape[0]
+ # downsample2
+ if random.random() < 0.75:
+ sf1 = random.uniform(1, 2 * sf)
+ image = cv2.resize(image, (int(1 / sf1 * image.shape[1]), int(1 / sf1 * image.shape[0])),
+ interpolation=random.choice([1, 2, 3]))
+ else:
+ k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf))
+ k_shifted = shift_pixel(k, sf)
+ k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel
+ image = ndimage.filters.convolve(image, np.expand_dims(k_shifted, axis=2), mode='mirror')
+ image = image[0::sf, 0::sf, ...] # nearest downsampling
+ image = np.clip(image, 0.0, 1.0)
+
+ elif i == 3:
+ # downsample3
+ image = cv2.resize(image, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3]))
+ image = np.clip(image, 0.0, 1.0)
+
+ elif i == 4:
+ # add Gaussian noise
+ image = add_Gaussian_noise(image, noise_level1=2, noise_level2=25)
+
+ elif i == 5:
+ # add JPEG noise
+ if random.random() < jpeg_prob:
+ image = add_JPEG_noise(image)
+
+ # elif i == 6:
+ # # add processed camera sensor noise
+ # if random.random() < isp_prob and isp_model is not None:
+ # with torch.no_grad():
+ # img, hq = isp_model.forward(img.copy(), hq)
+
+ # add final JPEG compression noise
+ image = add_JPEG_noise(image)
+ image = util.single2uint(image)
+ example = {"image":image}
+ return example
+
+
+# TODO incase there is a pickle error one needs to replace a += x with a = a + x in add_speckle_noise etc...
+def degradation_bsrgan_plus(img, sf=4, shuffle_prob=0.5, use_sharp=True, lq_patchsize=64, isp_model=None):
+ """
+ This is an extended degradation model by combining
+ the degradation models of BSRGAN and Real-ESRGAN
+ ----------
+ img: HXWXC, [0, 1], its size should be large than (lq_patchsizexsf)x(lq_patchsizexsf)
+ sf: scale factor
+ use_shuffle: the degradation shuffle
+ use_sharp: sharpening the img
+ Returns
+ -------
+ img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
+ hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
+ """
+
+ h1, w1 = img.shape[:2]
+ img = img.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
+ h, w = img.shape[:2]
+
+ if h < lq_patchsize * sf or w < lq_patchsize * sf:
+ raise ValueError(f'img size ({h1}X{w1}) is too small!')
+
+ if use_sharp:
+ img = add_sharpening(img)
+ hq = img.copy()
+
+ if random.random() < shuffle_prob:
+ shuffle_order = random.sample(range(13), 13)
+ else:
+ shuffle_order = list(range(13))
+ # local shuffle for noise, JPEG is always the last one
+ shuffle_order[2:6] = random.sample(shuffle_order[2:6], len(range(2, 6)))
+ shuffle_order[9:13] = random.sample(shuffle_order[9:13], len(range(9, 13)))
+
+ poisson_prob, speckle_prob, isp_prob = 0.1, 0.1, 0.1
+
+ for i in shuffle_order:
+ if i == 0:
+ img = add_blur(img, sf=sf)
+ elif i == 1:
+ img = add_resize(img, sf=sf)
+ elif i == 2:
+ img = add_Gaussian_noise(img, noise_level1=2, noise_level2=25)
+ elif i == 3:
+ if random.random() < poisson_prob:
+ img = add_Poisson_noise(img)
+ elif i == 4:
+ if random.random() < speckle_prob:
+ img = add_speckle_noise(img)
+ elif i == 5:
+ if random.random() < isp_prob and isp_model is not None:
+ with torch.no_grad():
+ img, hq = isp_model.forward(img.copy(), hq)
+ elif i == 6:
+ img = add_JPEG_noise(img)
+ elif i == 7:
+ img = add_blur(img, sf=sf)
+ elif i == 8:
+ img = add_resize(img, sf=sf)
+ elif i == 9:
+ img = add_Gaussian_noise(img, noise_level1=2, noise_level2=25)
+ elif i == 10:
+ if random.random() < poisson_prob:
+ img = add_Poisson_noise(img)
+ elif i == 11:
+ if random.random() < speckle_prob:
+ img = add_speckle_noise(img)
+ elif i == 12:
+ if random.random() < isp_prob and isp_model is not None:
+ with torch.no_grad():
+ img, hq = isp_model.forward(img.copy(), hq)
+ else:
+ print('check the shuffle!')
+
+ # resize to desired size
+ img = cv2.resize(img, (int(1 / sf * hq.shape[1]), int(1 / sf * hq.shape[0])),
+ interpolation=random.choice([1, 2, 3]))
+
+ # add final JPEG compression noise
+ img = add_JPEG_noise(img)
+
+ # random crop
+ img, hq = random_crop(img, hq, sf, lq_patchsize)
+
+ return img, hq
+
+
+if __name__ == '__main__':
+ print("hey")
+ img = util.imread_uint('utils/test.png', 3)
+ print(img)
+ img = util.uint2single(img)
+ print(img)
+ img = img[:448, :448]
+ h = img.shape[0] // 4
+ print("resizing to", h)
+ sf = 4
+ deg_fn = partial(degradation_bsrgan_variant, sf=sf)
+ for i in range(20):
+ print(i)
+ img_lq = deg_fn(img)
+ print(img_lq)
+ img_lq_bicubic = albumentations.SmallestMaxSize(max_size=h, interpolation=cv2.INTER_CUBIC)(image=img)["image"]
+ print(img_lq.shape)
+ print("bicubic", img_lq_bicubic.shape)
+ print(img_hq.shape)
+ lq_nearest = cv2.resize(util.single2uint(img_lq), (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])),
+ interpolation=0)
+ lq_bicubic_nearest = cv2.resize(util.single2uint(img_lq_bicubic), (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])),
+ interpolation=0)
+ img_concat = np.concatenate([lq_bicubic_nearest, lq_nearest, util.single2uint(img_hq)], axis=1)
+ util.imsave(img_concat, str(i) + '.png')
+
+
diff --git a/sd1/ldm/modules/image_degradation/bsrgan_light.py b/sd1/ldm/modules/image_degradation/bsrgan_light.py
new file mode 100644
index 0000000000000000000000000000000000000000..9e1f823996bf559e9b015ea9aa2b3cd38dd13af1
--- /dev/null
+++ b/sd1/ldm/modules/image_degradation/bsrgan_light.py
@@ -0,0 +1,650 @@
+# -*- coding: utf-8 -*-
+import numpy as np
+import cv2
+import torch
+
+from functools import partial
+import random
+from scipy import ndimage
+import scipy
+import scipy.stats as ss
+from scipy.interpolate import interp2d
+from scipy.linalg import orth
+import albumentations
+
+import ldm.modules.image_degradation.utils_image as util
+
+"""
+# --------------------------------------------
+# Super-Resolution
+# --------------------------------------------
+#
+# Kai Zhang (cskaizhang@gmail.com)
+# https://github.com/cszn
+# From 2019/03--2021/08
+# --------------------------------------------
+"""
+
+
+def modcrop_np(img, sf):
+ '''
+ Args:
+ img: numpy image, WxH or WxHxC
+ sf: scale factor
+ Return:
+ cropped image
+ '''
+ w, h = img.shape[:2]
+ im = np.copy(img)
+ return im[:w - w % sf, :h - h % sf, ...]
+
+
+"""
+# --------------------------------------------
+# anisotropic Gaussian kernels
+# --------------------------------------------
+"""
+
+
+def analytic_kernel(k):
+ """Calculate the X4 kernel from the X2 kernel (for proof see appendix in paper)"""
+ k_size = k.shape[0]
+ # Calculate the big kernels size
+ big_k = np.zeros((3 * k_size - 2, 3 * k_size - 2))
+ # Loop over the small kernel to fill the big one
+ for r in range(k_size):
+ for c in range(k_size):
+ big_k[2 * r:2 * r + k_size, 2 * c:2 * c + k_size] += k[r, c] * k
+ # Crop the edges of the big kernel to ignore very small values and increase run time of SR
+ crop = k_size // 2
+ cropped_big_k = big_k[crop:-crop, crop:-crop]
+ # Normalize to 1
+ return cropped_big_k / cropped_big_k.sum()
+
+
+def anisotropic_Gaussian(ksize=15, theta=np.pi, l1=6, l2=6):
+ """ generate an anisotropic Gaussian kernel
+ Args:
+ ksize : e.g., 15, kernel size
+ theta : [0, pi], rotation angle range
+ l1 : [0.1,50], scaling of eigenvalues
+ l2 : [0.1,l1], scaling of eigenvalues
+ If l1 = l2, will get an isotropic Gaussian kernel.
+ Returns:
+ k : kernel
+ """
+
+ v = np.dot(np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]), np.array([1., 0.]))
+ V = np.array([[v[0], v[1]], [v[1], -v[0]]])
+ D = np.array([[l1, 0], [0, l2]])
+ Sigma = np.dot(np.dot(V, D), np.linalg.inv(V))
+ k = gm_blur_kernel(mean=[0, 0], cov=Sigma, size=ksize)
+
+ return k
+
+
+def gm_blur_kernel(mean, cov, size=15):
+ center = size / 2.0 + 0.5
+ k = np.zeros([size, size])
+ for y in range(size):
+ for x in range(size):
+ cy = y - center + 1
+ cx = x - center + 1
+ k[y, x] = ss.multivariate_normal.pdf([cx, cy], mean=mean, cov=cov)
+
+ k = k / np.sum(k)
+ return k
+
+
+def shift_pixel(x, sf, upper_left=True):
+ """shift pixel for super-resolution with different scale factors
+ Args:
+ x: WxHxC or WxH
+ sf: scale factor
+ upper_left: shift direction
+ """
+ h, w = x.shape[:2]
+ shift = (sf - 1) * 0.5
+ xv, yv = np.arange(0, w, 1.0), np.arange(0, h, 1.0)
+ if upper_left:
+ x1 = xv + shift
+ y1 = yv + shift
+ else:
+ x1 = xv - shift
+ y1 = yv - shift
+
+ x1 = np.clip(x1, 0, w - 1)
+ y1 = np.clip(y1, 0, h - 1)
+
+ if x.ndim == 2:
+ x = interp2d(xv, yv, x)(x1, y1)
+ if x.ndim == 3:
+ for i in range(x.shape[-1]):
+ x[:, :, i] = interp2d(xv, yv, x[:, :, i])(x1, y1)
+
+ return x
+
+
+def blur(x, k):
+ '''
+ x: image, NxcxHxW
+ k: kernel, Nx1xhxw
+ '''
+ n, c = x.shape[:2]
+ p1, p2 = (k.shape[-2] - 1) // 2, (k.shape[-1] - 1) // 2
+ x = torch.nn.functional.pad(x, pad=(p1, p2, p1, p2), mode='replicate')
+ k = k.repeat(1, c, 1, 1)
+ k = k.view(-1, 1, k.shape[2], k.shape[3])
+ x = x.view(1, -1, x.shape[2], x.shape[3])
+ x = torch.nn.functional.conv2d(x, k, bias=None, stride=1, padding=0, groups=n * c)
+ x = x.view(n, c, x.shape[2], x.shape[3])
+
+ return x
+
+
+def gen_kernel(k_size=np.array([15, 15]), scale_factor=np.array([4, 4]), min_var=0.6, max_var=10., noise_level=0):
+ """"
+ # modified version of https://github.com/assafshocher/BlindSR_dataset_generator
+ # Kai Zhang
+ # min_var = 0.175 * sf # variance of the gaussian kernel will be sampled between min_var and max_var
+ # max_var = 2.5 * sf
+ """
+ # Set random eigen-vals (lambdas) and angle (theta) for COV matrix
+ lambda_1 = min_var + np.random.rand() * (max_var - min_var)
+ lambda_2 = min_var + np.random.rand() * (max_var - min_var)
+ theta = np.random.rand() * np.pi # random theta
+ noise = -noise_level + np.random.rand(*k_size) * noise_level * 2
+
+ # Set COV matrix using Lambdas and Theta
+ LAMBDA = np.diag([lambda_1, lambda_2])
+ Q = np.array([[np.cos(theta), -np.sin(theta)],
+ [np.sin(theta), np.cos(theta)]])
+ SIGMA = Q @ LAMBDA @ Q.T
+ INV_SIGMA = np.linalg.inv(SIGMA)[None, None, :, :]
+
+ # Set expectation position (shifting kernel for aligned image)
+ MU = k_size // 2 - 0.5 * (scale_factor - 1) # - 0.5 * (scale_factor - k_size % 2)
+ MU = MU[None, None, :, None]
+
+ # Create meshgrid for Gaussian
+ [X, Y] = np.meshgrid(range(k_size[0]), range(k_size[1]))
+ Z = np.stack([X, Y], 2)[:, :, :, None]
+
+ # Calcualte Gaussian for every pixel of the kernel
+ ZZ = Z - MU
+ ZZ_t = ZZ.transpose(0, 1, 3, 2)
+ raw_kernel = np.exp(-0.5 * np.squeeze(ZZ_t @ INV_SIGMA @ ZZ)) * (1 + noise)
+
+ # shift the kernel so it will be centered
+ # raw_kernel_centered = kernel_shift(raw_kernel, scale_factor)
+
+ # Normalize the kernel and return
+ # kernel = raw_kernel_centered / np.sum(raw_kernel_centered)
+ kernel = raw_kernel / np.sum(raw_kernel)
+ return kernel
+
+
+def fspecial_gaussian(hsize, sigma):
+ hsize = [hsize, hsize]
+ siz = [(hsize[0] - 1.0) / 2.0, (hsize[1] - 1.0) / 2.0]
+ std = sigma
+ [x, y] = np.meshgrid(np.arange(-siz[1], siz[1] + 1), np.arange(-siz[0], siz[0] + 1))
+ arg = -(x * x + y * y) / (2 * std * std)
+ h = np.exp(arg)
+ h[h < scipy.finfo(float).eps * h.max()] = 0
+ sumh = h.sum()
+ if sumh != 0:
+ h = h / sumh
+ return h
+
+
+def fspecial_laplacian(alpha):
+ alpha = max([0, min([alpha, 1])])
+ h1 = alpha / (alpha + 1)
+ h2 = (1 - alpha) / (alpha + 1)
+ h = [[h1, h2, h1], [h2, -4 / (alpha + 1), h2], [h1, h2, h1]]
+ h = np.array(h)
+ return h
+
+
+def fspecial(filter_type, *args, **kwargs):
+ '''
+ python code from:
+ https://github.com/ronaldosena/imagens-medicas-2/blob/40171a6c259edec7827a6693a93955de2bd39e76/Aulas/aula_2_-_uniform_filter/matlab_fspecial.py
+ '''
+ if filter_type == 'gaussian':
+ return fspecial_gaussian(*args, **kwargs)
+ if filter_type == 'laplacian':
+ return fspecial_laplacian(*args, **kwargs)
+
+
+"""
+# --------------------------------------------
+# degradation models
+# --------------------------------------------
+"""
+
+
+def bicubic_degradation(x, sf=3):
+ '''
+ Args:
+ x: HxWxC image, [0, 1]
+ sf: down-scale factor
+ Return:
+ bicubicly downsampled LR image
+ '''
+ x = util.imresize_np(x, scale=1 / sf)
+ return x
+
+
+def srmd_degradation(x, k, sf=3):
+ ''' blur + bicubic downsampling
+ Args:
+ x: HxWxC image, [0, 1]
+ k: hxw, double
+ sf: down-scale factor
+ Return:
+ downsampled LR image
+ Reference:
+ @inproceedings{zhang2018learning,
+ title={Learning a single convolutional super-resolution network for multiple degradations},
+ author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
+ booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
+ pages={3262--3271},
+ year={2018}
+ }
+ '''
+ x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap') # 'nearest' | 'mirror'
+ x = bicubic_degradation(x, sf=sf)
+ return x
+
+
+def dpsr_degradation(x, k, sf=3):
+ ''' bicubic downsampling + blur
+ Args:
+ x: HxWxC image, [0, 1]
+ k: hxw, double
+ sf: down-scale factor
+ Return:
+ downsampled LR image
+ Reference:
+ @inproceedings{zhang2019deep,
+ title={Deep Plug-and-Play Super-Resolution for Arbitrary Blur Kernels},
+ author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
+ booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
+ pages={1671--1681},
+ year={2019}
+ }
+ '''
+ x = bicubic_degradation(x, sf=sf)
+ x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap')
+ return x
+
+
+def classical_degradation(x, k, sf=3):
+ ''' blur + downsampling
+ Args:
+ x: HxWxC image, [0, 1]/[0, 255]
+ k: hxw, double
+ sf: down-scale factor
+ Return:
+ downsampled LR image
+ '''
+ x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap')
+ # x = filters.correlate(x, np.expand_dims(np.flip(k), axis=2))
+ st = 0
+ return x[st::sf, st::sf, ...]
+
+
+def add_sharpening(img, weight=0.5, radius=50, threshold=10):
+ """USM sharpening. borrowed from real-ESRGAN
+ Input image: I; Blurry image: B.
+ 1. K = I + weight * (I - B)
+ 2. Mask = 1 if abs(I - B) > threshold, else: 0
+ 3. Blur mask:
+ 4. Out = Mask * K + (1 - Mask) * I
+ Args:
+ img (Numpy array): Input image, HWC, BGR; float32, [0, 1].
+ weight (float): Sharp weight. Default: 1.
+ radius (float): Kernel size of Gaussian blur. Default: 50.
+ threshold (int):
+ """
+ if radius % 2 == 0:
+ radius += 1
+ blur = cv2.GaussianBlur(img, (radius, radius), 0)
+ residual = img - blur
+ mask = np.abs(residual) * 255 > threshold
+ mask = mask.astype('float32')
+ soft_mask = cv2.GaussianBlur(mask, (radius, radius), 0)
+
+ K = img + weight * residual
+ K = np.clip(K, 0, 1)
+ return soft_mask * K + (1 - soft_mask) * img
+
+
+def add_blur(img, sf=4):
+ wd2 = 4.0 + sf
+ wd = 2.0 + 0.2 * sf
+
+ wd2 = wd2/4
+ wd = wd/4
+
+ if random.random() < 0.5:
+ l1 = wd2 * random.random()
+ l2 = wd2 * random.random()
+ k = anisotropic_Gaussian(ksize=random.randint(2, 11) + 3, theta=random.random() * np.pi, l1=l1, l2=l2)
+ else:
+ k = fspecial('gaussian', random.randint(2, 4) + 3, wd * random.random())
+ img = ndimage.filters.convolve(img, np.expand_dims(k, axis=2), mode='mirror')
+
+ return img
+
+
+def add_resize(img, sf=4):
+ rnum = np.random.rand()
+ if rnum > 0.8: # up
+ sf1 = random.uniform(1, 2)
+ elif rnum < 0.7: # down
+ sf1 = random.uniform(0.5 / sf, 1)
+ else:
+ sf1 = 1.0
+ img = cv2.resize(img, (int(sf1 * img.shape[1]), int(sf1 * img.shape[0])), interpolation=random.choice([1, 2, 3]))
+ img = np.clip(img, 0.0, 1.0)
+
+ return img
+
+
+# def add_Gaussian_noise(img, noise_level1=2, noise_level2=25):
+# noise_level = random.randint(noise_level1, noise_level2)
+# rnum = np.random.rand()
+# if rnum > 0.6: # add color Gaussian noise
+# img += np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
+# elif rnum < 0.4: # add grayscale Gaussian noise
+# img += np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
+# else: # add noise
+# L = noise_level2 / 255.
+# D = np.diag(np.random.rand(3))
+# U = orth(np.random.rand(3, 3))
+# conv = np.dot(np.dot(np.transpose(U), D), U)
+# img += np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
+# img = np.clip(img, 0.0, 1.0)
+# return img
+
+def add_Gaussian_noise(img, noise_level1=2, noise_level2=25):
+ noise_level = random.randint(noise_level1, noise_level2)
+ rnum = np.random.rand()
+ if rnum > 0.6: # add color Gaussian noise
+ img = img + np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
+ elif rnum < 0.4: # add grayscale Gaussian noise
+ img = img + np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
+ else: # add noise
+ L = noise_level2 / 255.
+ D = np.diag(np.random.rand(3))
+ U = orth(np.random.rand(3, 3))
+ conv = np.dot(np.dot(np.transpose(U), D), U)
+ img = img + np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
+ img = np.clip(img, 0.0, 1.0)
+ return img
+
+
+def add_speckle_noise(img, noise_level1=2, noise_level2=25):
+ noise_level = random.randint(noise_level1, noise_level2)
+ img = np.clip(img, 0.0, 1.0)
+ rnum = random.random()
+ if rnum > 0.6:
+ img += img * np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
+ elif rnum < 0.4:
+ img += img * np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
+ else:
+ L = noise_level2 / 255.
+ D = np.diag(np.random.rand(3))
+ U = orth(np.random.rand(3, 3))
+ conv = np.dot(np.dot(np.transpose(U), D), U)
+ img += img * np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
+ img = np.clip(img, 0.0, 1.0)
+ return img
+
+
+def add_Poisson_noise(img):
+ img = np.clip((img * 255.0).round(), 0, 255) / 255.
+ vals = 10 ** (2 * random.random() + 2.0) # [2, 4]
+ if random.random() < 0.5:
+ img = np.random.poisson(img * vals).astype(np.float32) / vals
+ else:
+ img_gray = np.dot(img[..., :3], [0.299, 0.587, 0.114])
+ img_gray = np.clip((img_gray * 255.0).round(), 0, 255) / 255.
+ noise_gray = np.random.poisson(img_gray * vals).astype(np.float32) / vals - img_gray
+ img += noise_gray[:, :, np.newaxis]
+ img = np.clip(img, 0.0, 1.0)
+ return img
+
+
+def add_JPEG_noise(img):
+ quality_factor = random.randint(80, 95)
+ img = cv2.cvtColor(util.single2uint(img), cv2.COLOR_RGB2BGR)
+ result, encimg = cv2.imencode('.jpg', img, [int(cv2.IMWRITE_JPEG_QUALITY), quality_factor])
+ img = cv2.imdecode(encimg, 1)
+ img = cv2.cvtColor(util.uint2single(img), cv2.COLOR_BGR2RGB)
+ return img
+
+
+def random_crop(lq, hq, sf=4, lq_patchsize=64):
+ h, w = lq.shape[:2]
+ rnd_h = random.randint(0, h - lq_patchsize)
+ rnd_w = random.randint(0, w - lq_patchsize)
+ lq = lq[rnd_h:rnd_h + lq_patchsize, rnd_w:rnd_w + lq_patchsize, :]
+
+ rnd_h_H, rnd_w_H = int(rnd_h * sf), int(rnd_w * sf)
+ hq = hq[rnd_h_H:rnd_h_H + lq_patchsize * sf, rnd_w_H:rnd_w_H + lq_patchsize * sf, :]
+ return lq, hq
+
+
+def degradation_bsrgan(img, sf=4, lq_patchsize=72, isp_model=None):
+ """
+ This is the degradation model of BSRGAN from the paper
+ "Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
+ ----------
+ img: HXWXC, [0, 1], its size should be large than (lq_patchsizexsf)x(lq_patchsizexsf)
+ sf: scale factor
+ isp_model: camera ISP model
+ Returns
+ -------
+ img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
+ hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
+ """
+ isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25
+ sf_ori = sf
+
+ h1, w1 = img.shape[:2]
+ img = img.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
+ h, w = img.shape[:2]
+
+ if h < lq_patchsize * sf or w < lq_patchsize * sf:
+ raise ValueError(f'img size ({h1}X{w1}) is too small!')
+
+ hq = img.copy()
+
+ if sf == 4 and random.random() < scale2_prob: # downsample1
+ if np.random.rand() < 0.5:
+ img = cv2.resize(img, (int(1 / 2 * img.shape[1]), int(1 / 2 * img.shape[0])),
+ interpolation=random.choice([1, 2, 3]))
+ else:
+ img = util.imresize_np(img, 1 / 2, True)
+ img = np.clip(img, 0.0, 1.0)
+ sf = 2
+
+ shuffle_order = random.sample(range(7), 7)
+ idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3)
+ if idx1 > idx2: # keep downsample3 last
+ shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1]
+
+ for i in shuffle_order:
+
+ if i == 0:
+ img = add_blur(img, sf=sf)
+
+ elif i == 1:
+ img = add_blur(img, sf=sf)
+
+ elif i == 2:
+ a, b = img.shape[1], img.shape[0]
+ # downsample2
+ if random.random() < 0.75:
+ sf1 = random.uniform(1, 2 * sf)
+ img = cv2.resize(img, (int(1 / sf1 * img.shape[1]), int(1 / sf1 * img.shape[0])),
+ interpolation=random.choice([1, 2, 3]))
+ else:
+ k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf))
+ k_shifted = shift_pixel(k, sf)
+ k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel
+ img = ndimage.filters.convolve(img, np.expand_dims(k_shifted, axis=2), mode='mirror')
+ img = img[0::sf, 0::sf, ...] # nearest downsampling
+ img = np.clip(img, 0.0, 1.0)
+
+ elif i == 3:
+ # downsample3
+ img = cv2.resize(img, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3]))
+ img = np.clip(img, 0.0, 1.0)
+
+ elif i == 4:
+ # add Gaussian noise
+ img = add_Gaussian_noise(img, noise_level1=2, noise_level2=8)
+
+ elif i == 5:
+ # add JPEG noise
+ if random.random() < jpeg_prob:
+ img = add_JPEG_noise(img)
+
+ elif i == 6:
+ # add processed camera sensor noise
+ if random.random() < isp_prob and isp_model is not None:
+ with torch.no_grad():
+ img, hq = isp_model.forward(img.copy(), hq)
+
+ # add final JPEG compression noise
+ img = add_JPEG_noise(img)
+
+ # random crop
+ img, hq = random_crop(img, hq, sf_ori, lq_patchsize)
+
+ return img, hq
+
+
+# todo no isp_model?
+def degradation_bsrgan_variant(image, sf=4, isp_model=None):
+ """
+ This is the degradation model of BSRGAN from the paper
+ "Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
+ ----------
+ sf: scale factor
+ isp_model: camera ISP model
+ Returns
+ -------
+ img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
+ hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
+ """
+ image = util.uint2single(image)
+ isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25
+ sf_ori = sf
+
+ h1, w1 = image.shape[:2]
+ image = image.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop
+ h, w = image.shape[:2]
+
+ hq = image.copy()
+
+ if sf == 4 and random.random() < scale2_prob: # downsample1
+ if np.random.rand() < 0.5:
+ image = cv2.resize(image, (int(1 / 2 * image.shape[1]), int(1 / 2 * image.shape[0])),
+ interpolation=random.choice([1, 2, 3]))
+ else:
+ image = util.imresize_np(image, 1 / 2, True)
+ image = np.clip(image, 0.0, 1.0)
+ sf = 2
+
+ shuffle_order = random.sample(range(7), 7)
+ idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3)
+ if idx1 > idx2: # keep downsample3 last
+ shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1]
+
+ for i in shuffle_order:
+
+ if i == 0:
+ image = add_blur(image, sf=sf)
+
+ # elif i == 1:
+ # image = add_blur(image, sf=sf)
+
+ if i == 0:
+ pass
+
+ elif i == 2:
+ a, b = image.shape[1], image.shape[0]
+ # downsample2
+ if random.random() < 0.8:
+ sf1 = random.uniform(1, 2 * sf)
+ image = cv2.resize(image, (int(1 / sf1 * image.shape[1]), int(1 / sf1 * image.shape[0])),
+ interpolation=random.choice([1, 2, 3]))
+ else:
+ k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf))
+ k_shifted = shift_pixel(k, sf)
+ k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel
+ image = ndimage.filters.convolve(image, np.expand_dims(k_shifted, axis=2), mode='mirror')
+ image = image[0::sf, 0::sf, ...] # nearest downsampling
+
+ image = np.clip(image, 0.0, 1.0)
+
+ elif i == 3:
+ # downsample3
+ image = cv2.resize(image, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3]))
+ image = np.clip(image, 0.0, 1.0)
+
+ elif i == 4:
+ # add Gaussian noise
+ image = add_Gaussian_noise(image, noise_level1=1, noise_level2=2)
+
+ elif i == 5:
+ # add JPEG noise
+ if random.random() < jpeg_prob:
+ image = add_JPEG_noise(image)
+ #
+ # elif i == 6:
+ # # add processed camera sensor noise
+ # if random.random() < isp_prob and isp_model is not None:
+ # with torch.no_grad():
+ # img, hq = isp_model.forward(img.copy(), hq)
+
+ # add final JPEG compression noise
+ image = add_JPEG_noise(image)
+ image = util.single2uint(image)
+ example = {"image": image}
+ return example
+
+
+
+
+if __name__ == '__main__':
+ print("hey")
+ img = util.imread_uint('utils/test.png', 3)
+ img = img[:448, :448]
+ h = img.shape[0] // 4
+ print("resizing to", h)
+ sf = 4
+ deg_fn = partial(degradation_bsrgan_variant, sf=sf)
+ for i in range(20):
+ print(i)
+ img_hq = img
+ img_lq = deg_fn(img)["image"]
+ img_hq, img_lq = util.uint2single(img_hq), util.uint2single(img_lq)
+ print(img_lq)
+ img_lq_bicubic = albumentations.SmallestMaxSize(max_size=h, interpolation=cv2.INTER_CUBIC)(image=img_hq)["image"]
+ print(img_lq.shape)
+ print("bicubic", img_lq_bicubic.shape)
+ print(img_hq.shape)
+ lq_nearest = cv2.resize(util.single2uint(img_lq), (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])),
+ interpolation=0)
+ lq_bicubic_nearest = cv2.resize(util.single2uint(img_lq_bicubic),
+ (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])),
+ interpolation=0)
+ img_concat = np.concatenate([lq_bicubic_nearest, lq_nearest, util.single2uint(img_hq)], axis=1)
+ util.imsave(img_concat, str(i) + '.png')
diff --git a/sd1/ldm/modules/image_degradation/utils_image.py b/sd1/ldm/modules/image_degradation/utils_image.py
new file mode 100644
index 0000000000000000000000000000000000000000..0175f155ad900ae33c3c46ed87f49b352e3faf98
--- /dev/null
+++ b/sd1/ldm/modules/image_degradation/utils_image.py
@@ -0,0 +1,916 @@
+import os
+import math
+import random
+import numpy as np
+import torch
+import cv2
+from torchvision.utils import make_grid
+from datetime import datetime
+#import matplotlib.pyplot as plt # TODO: check with Dominik, also bsrgan.py vs bsrgan_light.py
+
+
+os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
+
+
+'''
+# --------------------------------------------
+# Kai Zhang (github: https://github.com/cszn)
+# 03/Mar/2019
+# --------------------------------------------
+# https://github.com/twhui/SRGAN-pyTorch
+# https://github.com/xinntao/BasicSR
+# --------------------------------------------
+'''
+
+
+IMG_EXTENSIONS = ['.jpg', '.JPG', '.jpeg', '.JPEG', '.png', '.PNG', '.ppm', '.PPM', '.bmp', '.BMP', '.tif']
+
+
+def is_image_file(filename):
+ return any(filename.endswith(extension) for extension in IMG_EXTENSIONS)
+
+
+def get_timestamp():
+ return datetime.now().strftime('%y%m%d-%H%M%S')
+
+
+def imshow(x, title=None, cbar=False, figsize=None):
+ plt.figure(figsize=figsize)
+ plt.imshow(np.squeeze(x), interpolation='nearest', cmap='gray')
+ if title:
+ plt.title(title)
+ if cbar:
+ plt.colorbar()
+ plt.show()
+
+
+def surf(Z, cmap='rainbow', figsize=None):
+ plt.figure(figsize=figsize)
+ ax3 = plt.axes(projection='3d')
+
+ w, h = Z.shape[:2]
+ xx = np.arange(0,w,1)
+ yy = np.arange(0,h,1)
+ X, Y = np.meshgrid(xx, yy)
+ ax3.plot_surface(X,Y,Z,cmap=cmap)
+ #ax3.contour(X,Y,Z, zdim='z',offset=-2,cmap=cmap)
+ plt.show()
+
+
+'''
+# --------------------------------------------
+# get image pathes
+# --------------------------------------------
+'''
+
+
+def get_image_paths(dataroot):
+ paths = None # return None if dataroot is None
+ if dataroot is not None:
+ paths = sorted(_get_paths_from_images(dataroot))
+ return paths
+
+
+def _get_paths_from_images(path):
+ assert os.path.isdir(path), '{:s} is not a valid directory'.format(path)
+ images = []
+ for dirpath, _, fnames in sorted(os.walk(path)):
+ for fname in sorted(fnames):
+ if is_image_file(fname):
+ img_path = os.path.join(dirpath, fname)
+ images.append(img_path)
+ assert images, '{:s} has no valid image file'.format(path)
+ return images
+
+
+'''
+# --------------------------------------------
+# split large images into small images
+# --------------------------------------------
+'''
+
+
+def patches_from_image(img, p_size=512, p_overlap=64, p_max=800):
+ w, h = img.shape[:2]
+ patches = []
+ if w > p_max and h > p_max:
+ w1 = list(np.arange(0, w-p_size, p_size-p_overlap, dtype=np.int))
+ h1 = list(np.arange(0, h-p_size, p_size-p_overlap, dtype=np.int))
+ w1.append(w-p_size)
+ h1.append(h-p_size)
+# print(w1)
+# print(h1)
+ for i in w1:
+ for j in h1:
+ patches.append(img[i:i+p_size, j:j+p_size,:])
+ else:
+ patches.append(img)
+
+ return patches
+
+
+def imssave(imgs, img_path):
+ """
+ imgs: list, N images of size WxHxC
+ """
+ img_name, ext = os.path.splitext(os.path.basename(img_path))
+
+ for i, img in enumerate(imgs):
+ if img.ndim == 3:
+ img = img[:, :, [2, 1, 0]]
+ new_path = os.path.join(os.path.dirname(img_path), img_name+str('_s{:04d}'.format(i))+'.png')
+ cv2.imwrite(new_path, img)
+
+
+def split_imageset(original_dataroot, taget_dataroot, n_channels=3, p_size=800, p_overlap=96, p_max=1000):
+ """
+ split the large images from original_dataroot into small overlapped images with size (p_size)x(p_size),
+ and save them into taget_dataroot; only the images with larger size than (p_max)x(p_max)
+ will be splitted.
+ Args:
+ original_dataroot:
+ taget_dataroot:
+ p_size: size of small images
+ p_overlap: patch size in training is a good choice
+ p_max: images with smaller size than (p_max)x(p_max) keep unchanged.
+ """
+ paths = get_image_paths(original_dataroot)
+ for img_path in paths:
+ # img_name, ext = os.path.splitext(os.path.basename(img_path))
+ img = imread_uint(img_path, n_channels=n_channels)
+ patches = patches_from_image(img, p_size, p_overlap, p_max)
+ imssave(patches, os.path.join(taget_dataroot,os.path.basename(img_path)))
+ #if original_dataroot == taget_dataroot:
+ #del img_path
+
+'''
+# --------------------------------------------
+# makedir
+# --------------------------------------------
+'''
+
+
+def mkdir(path):
+ if not os.path.exists(path):
+ os.makedirs(path)
+
+
+def mkdirs(paths):
+ if isinstance(paths, str):
+ mkdir(paths)
+ else:
+ for path in paths:
+ mkdir(path)
+
+
+def mkdir_and_rename(path):
+ if os.path.exists(path):
+ new_name = path + '_archived_' + get_timestamp()
+ print('Path already exists. Rename it to [{:s}]'.format(new_name))
+ os.rename(path, new_name)
+ os.makedirs(path)
+
+
+'''
+# --------------------------------------------
+# read image from path
+# opencv is fast, but read BGR numpy image
+# --------------------------------------------
+'''
+
+
+# --------------------------------------------
+# get uint8 image of size HxWxn_channles (RGB)
+# --------------------------------------------
+def imread_uint(path, n_channels=3):
+ # input: path
+ # output: HxWx3(RGB or GGG), or HxWx1 (G)
+ if n_channels == 1:
+ img = cv2.imread(path, 0) # cv2.IMREAD_GRAYSCALE
+ img = np.expand_dims(img, axis=2) # HxWx1
+ elif n_channels == 3:
+ img = cv2.imread(path, cv2.IMREAD_UNCHANGED) # BGR or G
+ if img.ndim == 2:
+ img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB) # GGG
+ else:
+ img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # RGB
+ return img
+
+
+# --------------------------------------------
+# matlab's imwrite
+# --------------------------------------------
+def imsave(img, img_path):
+ img = np.squeeze(img)
+ if img.ndim == 3:
+ img = img[:, :, [2, 1, 0]]
+ cv2.imwrite(img_path, img)
+
+def imwrite(img, img_path):
+ img = np.squeeze(img)
+ if img.ndim == 3:
+ img = img[:, :, [2, 1, 0]]
+ cv2.imwrite(img_path, img)
+
+
+
+# --------------------------------------------
+# get single image of size HxWxn_channles (BGR)
+# --------------------------------------------
+def read_img(path):
+ # read image by cv2
+ # return: Numpy float32, HWC, BGR, [0,1]
+ img = cv2.imread(path, cv2.IMREAD_UNCHANGED) # cv2.IMREAD_GRAYSCALE
+ img = img.astype(np.float32) / 255.
+ if img.ndim == 2:
+ img = np.expand_dims(img, axis=2)
+ # some images have 4 channels
+ if img.shape[2] > 3:
+ img = img[:, :, :3]
+ return img
+
+
+'''
+# --------------------------------------------
+# image format conversion
+# --------------------------------------------
+# numpy(single) <---> numpy(unit)
+# numpy(single) <---> tensor
+# numpy(unit) <---> tensor
+# --------------------------------------------
+'''
+
+
+# --------------------------------------------
+# numpy(single) [0, 1] <---> numpy(unit)
+# --------------------------------------------
+
+
+def uint2single(img):
+
+ return np.float32(img/255.)
+
+
+def single2uint(img):
+
+ return np.uint8((img.clip(0, 1)*255.).round())
+
+
+def uint162single(img):
+
+ return np.float32(img/65535.)
+
+
+def single2uint16(img):
+
+ return np.uint16((img.clip(0, 1)*65535.).round())
+
+
+# --------------------------------------------
+# numpy(unit) (HxWxC or HxW) <---> tensor
+# --------------------------------------------
+
+
+# convert uint to 4-dimensional torch tensor
+def uint2tensor4(img):
+ if img.ndim == 2:
+ img = np.expand_dims(img, axis=2)
+ return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float().div(255.).unsqueeze(0)
+
+
+# convert uint to 3-dimensional torch tensor
+def uint2tensor3(img):
+ if img.ndim == 2:
+ img = np.expand_dims(img, axis=2)
+ return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float().div(255.)
+
+
+# convert 2/3/4-dimensional torch tensor to uint
+def tensor2uint(img):
+ img = img.data.squeeze().float().clamp_(0, 1).cpu().numpy()
+ if img.ndim == 3:
+ img = np.transpose(img, (1, 2, 0))
+ return np.uint8((img*255.0).round())
+
+
+# --------------------------------------------
+# numpy(single) (HxWxC) <---> tensor
+# --------------------------------------------
+
+
+# convert single (HxWxC) to 3-dimensional torch tensor
+def single2tensor3(img):
+ return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float()
+
+
+# convert single (HxWxC) to 4-dimensional torch tensor
+def single2tensor4(img):
+ return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float().unsqueeze(0)
+
+
+# convert torch tensor to single
+def tensor2single(img):
+ img = img.data.squeeze().float().cpu().numpy()
+ if img.ndim == 3:
+ img = np.transpose(img, (1, 2, 0))
+
+ return img
+
+# convert torch tensor to single
+def tensor2single3(img):
+ img = img.data.squeeze().float().cpu().numpy()
+ if img.ndim == 3:
+ img = np.transpose(img, (1, 2, 0))
+ elif img.ndim == 2:
+ img = np.expand_dims(img, axis=2)
+ return img
+
+
+def single2tensor5(img):
+ return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1, 3).float().unsqueeze(0)
+
+
+def single32tensor5(img):
+ return torch.from_numpy(np.ascontiguousarray(img)).float().unsqueeze(0).unsqueeze(0)
+
+
+def single42tensor4(img):
+ return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1, 3).float()
+
+
+# from skimage.io import imread, imsave
+def tensor2img(tensor, out_type=np.uint8, min_max=(0, 1)):
+ '''
+ Converts a torch Tensor into an image Numpy array of BGR channel order
+ Input: 4D(B,(3/1),H,W), 3D(C,H,W), or 2D(H,W), any range, RGB channel order
+ Output: 3D(H,W,C) or 2D(H,W), [0,255], np.uint8 (default)
+ '''
+ tensor = tensor.squeeze().float().cpu().clamp_(*min_max) # squeeze first, then clamp
+ tensor = (tensor - min_max[0]) / (min_max[1] - min_max[0]) # to range [0,1]
+ n_dim = tensor.dim()
+ if n_dim == 4:
+ n_img = len(tensor)
+ img_np = make_grid(tensor, nrow=int(math.sqrt(n_img)), normalize=False).numpy()
+ img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0)) # HWC, BGR
+ elif n_dim == 3:
+ img_np = tensor.numpy()
+ img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0)) # HWC, BGR
+ elif n_dim == 2:
+ img_np = tensor.numpy()
+ else:
+ raise TypeError(
+ 'Only support 4D, 3D and 2D tensor. But received with dimension: {:d}'.format(n_dim))
+ if out_type == np.uint8:
+ img_np = (img_np * 255.0).round()
+ # Important. Unlike matlab, numpy.unit8() WILL NOT round by default.
+ return img_np.astype(out_type)
+
+
+'''
+# --------------------------------------------
+# Augmentation, flipe and/or rotate
+# --------------------------------------------
+# The following two are enough.
+# (1) augmet_img: numpy image of WxHxC or WxH
+# (2) augment_img_tensor4: tensor image 1xCxWxH
+# --------------------------------------------
+'''
+
+
+def augment_img(img, mode=0):
+ '''Kai Zhang (github: https://github.com/cszn)
+ '''
+ if mode == 0:
+ return img
+ elif mode == 1:
+ return np.flipud(np.rot90(img))
+ elif mode == 2:
+ return np.flipud(img)
+ elif mode == 3:
+ return np.rot90(img, k=3)
+ elif mode == 4:
+ return np.flipud(np.rot90(img, k=2))
+ elif mode == 5:
+ return np.rot90(img)
+ elif mode == 6:
+ return np.rot90(img, k=2)
+ elif mode == 7:
+ return np.flipud(np.rot90(img, k=3))
+
+
+def augment_img_tensor4(img, mode=0):
+ '''Kai Zhang (github: https://github.com/cszn)
+ '''
+ if mode == 0:
+ return img
+ elif mode == 1:
+ return img.rot90(1, [2, 3]).flip([2])
+ elif mode == 2:
+ return img.flip([2])
+ elif mode == 3:
+ return img.rot90(3, [2, 3])
+ elif mode == 4:
+ return img.rot90(2, [2, 3]).flip([2])
+ elif mode == 5:
+ return img.rot90(1, [2, 3])
+ elif mode == 6:
+ return img.rot90(2, [2, 3])
+ elif mode == 7:
+ return img.rot90(3, [2, 3]).flip([2])
+
+
+def augment_img_tensor(img, mode=0):
+ '''Kai Zhang (github: https://github.com/cszn)
+ '''
+ img_size = img.size()
+ img_np = img.data.cpu().numpy()
+ if len(img_size) == 3:
+ img_np = np.transpose(img_np, (1, 2, 0))
+ elif len(img_size) == 4:
+ img_np = np.transpose(img_np, (2, 3, 1, 0))
+ img_np = augment_img(img_np, mode=mode)
+ img_tensor = torch.from_numpy(np.ascontiguousarray(img_np))
+ if len(img_size) == 3:
+ img_tensor = img_tensor.permute(2, 0, 1)
+ elif len(img_size) == 4:
+ img_tensor = img_tensor.permute(3, 2, 0, 1)
+
+ return img_tensor.type_as(img)
+
+
+def augment_img_np3(img, mode=0):
+ if mode == 0:
+ return img
+ elif mode == 1:
+ return img.transpose(1, 0, 2)
+ elif mode == 2:
+ return img[::-1, :, :]
+ elif mode == 3:
+ img = img[::-1, :, :]
+ img = img.transpose(1, 0, 2)
+ return img
+ elif mode == 4:
+ return img[:, ::-1, :]
+ elif mode == 5:
+ img = img[:, ::-1, :]
+ img = img.transpose(1, 0, 2)
+ return img
+ elif mode == 6:
+ img = img[:, ::-1, :]
+ img = img[::-1, :, :]
+ return img
+ elif mode == 7:
+ img = img[:, ::-1, :]
+ img = img[::-1, :, :]
+ img = img.transpose(1, 0, 2)
+ return img
+
+
+def augment_imgs(img_list, hflip=True, rot=True):
+ # horizontal flip OR rotate
+ hflip = hflip and random.random() < 0.5
+ vflip = rot and random.random() < 0.5
+ rot90 = rot and random.random() < 0.5
+
+ def _augment(img):
+ if hflip:
+ img = img[:, ::-1, :]
+ if vflip:
+ img = img[::-1, :, :]
+ if rot90:
+ img = img.transpose(1, 0, 2)
+ return img
+
+ return [_augment(img) for img in img_list]
+
+
+'''
+# --------------------------------------------
+# modcrop and shave
+# --------------------------------------------
+'''
+
+
+def modcrop(img_in, scale):
+ # img_in: Numpy, HWC or HW
+ img = np.copy(img_in)
+ if img.ndim == 2:
+ H, W = img.shape
+ H_r, W_r = H % scale, W % scale
+ img = img[:H - H_r, :W - W_r]
+ elif img.ndim == 3:
+ H, W, C = img.shape
+ H_r, W_r = H % scale, W % scale
+ img = img[:H - H_r, :W - W_r, :]
+ else:
+ raise ValueError('Wrong img ndim: [{:d}].'.format(img.ndim))
+ return img
+
+
+def shave(img_in, border=0):
+ # img_in: Numpy, HWC or HW
+ img = np.copy(img_in)
+ h, w = img.shape[:2]
+ img = img[border:h-border, border:w-border]
+ return img
+
+
+'''
+# --------------------------------------------
+# image processing process on numpy image
+# channel_convert(in_c, tar_type, img_list):
+# rgb2ycbcr(img, only_y=True):
+# bgr2ycbcr(img, only_y=True):
+# ycbcr2rgb(img):
+# --------------------------------------------
+'''
+
+
+def rgb2ycbcr(img, only_y=True):
+ '''same as matlab rgb2ycbcr
+ only_y: only return Y channel
+ Input:
+ uint8, [0, 255]
+ float, [0, 1]
+ '''
+ in_img_type = img.dtype
+ img.astype(np.float32)
+ if in_img_type != np.uint8:
+ img *= 255.
+ # convert
+ if only_y:
+ rlt = np.dot(img, [65.481, 128.553, 24.966]) / 255.0 + 16.0
+ else:
+ rlt = np.matmul(img, [[65.481, -37.797, 112.0], [128.553, -74.203, -93.786],
+ [24.966, 112.0, -18.214]]) / 255.0 + [16, 128, 128]
+ if in_img_type == np.uint8:
+ rlt = rlt.round()
+ else:
+ rlt /= 255.
+ return rlt.astype(in_img_type)
+
+
+def ycbcr2rgb(img):
+ '''same as matlab ycbcr2rgb
+ Input:
+ uint8, [0, 255]
+ float, [0, 1]
+ '''
+ in_img_type = img.dtype
+ img.astype(np.float32)
+ if in_img_type != np.uint8:
+ img *= 255.
+ # convert
+ rlt = np.matmul(img, [[0.00456621, 0.00456621, 0.00456621], [0, -0.00153632, 0.00791071],
+ [0.00625893, -0.00318811, 0]]) * 255.0 + [-222.921, 135.576, -276.836]
+ if in_img_type == np.uint8:
+ rlt = rlt.round()
+ else:
+ rlt /= 255.
+ return rlt.astype(in_img_type)
+
+
+def bgr2ycbcr(img, only_y=True):
+ '''bgr version of rgb2ycbcr
+ only_y: only return Y channel
+ Input:
+ uint8, [0, 255]
+ float, [0, 1]
+ '''
+ in_img_type = img.dtype
+ img.astype(np.float32)
+ if in_img_type != np.uint8:
+ img *= 255.
+ # convert
+ if only_y:
+ rlt = np.dot(img, [24.966, 128.553, 65.481]) / 255.0 + 16.0
+ else:
+ rlt = np.matmul(img, [[24.966, 112.0, -18.214], [128.553, -74.203, -93.786],
+ [65.481, -37.797, 112.0]]) / 255.0 + [16, 128, 128]
+ if in_img_type == np.uint8:
+ rlt = rlt.round()
+ else:
+ rlt /= 255.
+ return rlt.astype(in_img_type)
+
+
+def channel_convert(in_c, tar_type, img_list):
+ # conversion among BGR, gray and y
+ if in_c == 3 and tar_type == 'gray': # BGR to gray
+ gray_list = [cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) for img in img_list]
+ return [np.expand_dims(img, axis=2) for img in gray_list]
+ elif in_c == 3 and tar_type == 'y': # BGR to y
+ y_list = [bgr2ycbcr(img, only_y=True) for img in img_list]
+ return [np.expand_dims(img, axis=2) for img in y_list]
+ elif in_c == 1 and tar_type == 'RGB': # gray/y to BGR
+ return [cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) for img in img_list]
+ else:
+ return img_list
+
+
+'''
+# --------------------------------------------
+# metric, PSNR and SSIM
+# --------------------------------------------
+'''
+
+
+# --------------------------------------------
+# PSNR
+# --------------------------------------------
+def calculate_psnr(img1, img2, border=0):
+ # img1 and img2 have range [0, 255]
+ #img1 = img1.squeeze()
+ #img2 = img2.squeeze()
+ if not img1.shape == img2.shape:
+ raise ValueError('Input images must have the same dimensions.')
+ h, w = img1.shape[:2]
+ img1 = img1[border:h-border, border:w-border]
+ img2 = img2[border:h-border, border:w-border]
+
+ img1 = img1.astype(np.float64)
+ img2 = img2.astype(np.float64)
+ mse = np.mean((img1 - img2)**2)
+ if mse == 0:
+ return float('inf')
+ return 20 * math.log10(255.0 / math.sqrt(mse))
+
+
+# --------------------------------------------
+# SSIM
+# --------------------------------------------
+def calculate_ssim(img1, img2, border=0):
+ '''calculate SSIM
+ the same outputs as MATLAB's
+ img1, img2: [0, 255]
+ '''
+ #img1 = img1.squeeze()
+ #img2 = img2.squeeze()
+ if not img1.shape == img2.shape:
+ raise ValueError('Input images must have the same dimensions.')
+ h, w = img1.shape[:2]
+ img1 = img1[border:h-border, border:w-border]
+ img2 = img2[border:h-border, border:w-border]
+
+ if img1.ndim == 2:
+ return ssim(img1, img2)
+ elif img1.ndim == 3:
+ if img1.shape[2] == 3:
+ ssims = []
+ for i in range(3):
+ ssims.append(ssim(img1[:,:,i], img2[:,:,i]))
+ return np.array(ssims).mean()
+ elif img1.shape[2] == 1:
+ return ssim(np.squeeze(img1), np.squeeze(img2))
+ else:
+ raise ValueError('Wrong input image dimensions.')
+
+
+def ssim(img1, img2):
+ C1 = (0.01 * 255)**2
+ C2 = (0.03 * 255)**2
+
+ img1 = img1.astype(np.float64)
+ img2 = img2.astype(np.float64)
+ kernel = cv2.getGaussianKernel(11, 1.5)
+ window = np.outer(kernel, kernel.transpose())
+
+ mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5] # valid
+ mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5]
+ mu1_sq = mu1**2
+ mu2_sq = mu2**2
+ mu1_mu2 = mu1 * mu2
+ sigma1_sq = cv2.filter2D(img1**2, -1, window)[5:-5, 5:-5] - mu1_sq
+ sigma2_sq = cv2.filter2D(img2**2, -1, window)[5:-5, 5:-5] - mu2_sq
+ sigma12 = cv2.filter2D(img1 * img2, -1, window)[5:-5, 5:-5] - mu1_mu2
+
+ ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) *
+ (sigma1_sq + sigma2_sq + C2))
+ return ssim_map.mean()
+
+
+'''
+# --------------------------------------------
+# matlab's bicubic imresize (numpy and torch) [0, 1]
+# --------------------------------------------
+'''
+
+
+# matlab 'imresize' function, now only support 'bicubic'
+def cubic(x):
+ absx = torch.abs(x)
+ absx2 = absx**2
+ absx3 = absx**3
+ return (1.5*absx3 - 2.5*absx2 + 1) * ((absx <= 1).type_as(absx)) + \
+ (-0.5*absx3 + 2.5*absx2 - 4*absx + 2) * (((absx > 1)*(absx <= 2)).type_as(absx))
+
+
+def calculate_weights_indices(in_length, out_length, scale, kernel, kernel_width, antialiasing):
+ if (scale < 1) and (antialiasing):
+ # Use a modified kernel to simultaneously interpolate and antialias- larger kernel width
+ kernel_width = kernel_width / scale
+
+ # Output-space coordinates
+ x = torch.linspace(1, out_length, out_length)
+
+ # Input-space coordinates. Calculate the inverse mapping such that 0.5
+ # in output space maps to 0.5 in input space, and 0.5+scale in output
+ # space maps to 1.5 in input space.
+ u = x / scale + 0.5 * (1 - 1 / scale)
+
+ # What is the left-most pixel that can be involved in the computation?
+ left = torch.floor(u - kernel_width / 2)
+
+ # What is the maximum number of pixels that can be involved in the
+ # computation? Note: it's OK to use an extra pixel here; if the
+ # corresponding weights are all zero, it will be eliminated at the end
+ # of this function.
+ P = math.ceil(kernel_width) + 2
+
+ # The indices of the input pixels involved in computing the k-th output
+ # pixel are in row k of the indices matrix.
+ indices = left.view(out_length, 1).expand(out_length, P) + torch.linspace(0, P - 1, P).view(
+ 1, P).expand(out_length, P)
+
+ # The weights used to compute the k-th output pixel are in row k of the
+ # weights matrix.
+ distance_to_center = u.view(out_length, 1).expand(out_length, P) - indices
+ # apply cubic kernel
+ if (scale < 1) and (antialiasing):
+ weights = scale * cubic(distance_to_center * scale)
+ else:
+ weights = cubic(distance_to_center)
+ # Normalize the weights matrix so that each row sums to 1.
+ weights_sum = torch.sum(weights, 1).view(out_length, 1)
+ weights = weights / weights_sum.expand(out_length, P)
+
+ # If a column in weights is all zero, get rid of it. only consider the first and last column.
+ weights_zero_tmp = torch.sum((weights == 0), 0)
+ if not math.isclose(weights_zero_tmp[0], 0, rel_tol=1e-6):
+ indices = indices.narrow(1, 1, P - 2)
+ weights = weights.narrow(1, 1, P - 2)
+ if not math.isclose(weights_zero_tmp[-1], 0, rel_tol=1e-6):
+ indices = indices.narrow(1, 0, P - 2)
+ weights = weights.narrow(1, 0, P - 2)
+ weights = weights.contiguous()
+ indices = indices.contiguous()
+ sym_len_s = -indices.min() + 1
+ sym_len_e = indices.max() - in_length
+ indices = indices + sym_len_s - 1
+ return weights, indices, int(sym_len_s), int(sym_len_e)
+
+
+# --------------------------------------------
+# imresize for tensor image [0, 1]
+# --------------------------------------------
+def imresize(img, scale, antialiasing=True):
+ # Now the scale should be the same for H and W
+ # input: img: pytorch tensor, CHW or HW [0,1]
+ # output: CHW or HW [0,1] w/o round
+ need_squeeze = True if img.dim() == 2 else False
+ if need_squeeze:
+ img.unsqueeze_(0)
+ in_C, in_H, in_W = img.size()
+ out_C, out_H, out_W = in_C, math.ceil(in_H * scale), math.ceil(in_W * scale)
+ kernel_width = 4
+ kernel = 'cubic'
+
+ # Return the desired dimension order for performing the resize. The
+ # strategy is to perform the resize first along the dimension with the
+ # smallest scale factor.
+ # Now we do not support this.
+
+ # get weights and indices
+ weights_H, indices_H, sym_len_Hs, sym_len_He = calculate_weights_indices(
+ in_H, out_H, scale, kernel, kernel_width, antialiasing)
+ weights_W, indices_W, sym_len_Ws, sym_len_We = calculate_weights_indices(
+ in_W, out_W, scale, kernel, kernel_width, antialiasing)
+ # process H dimension
+ # symmetric copying
+ img_aug = torch.FloatTensor(in_C, in_H + sym_len_Hs + sym_len_He, in_W)
+ img_aug.narrow(1, sym_len_Hs, in_H).copy_(img)
+
+ sym_patch = img[:, :sym_len_Hs, :]
+ inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
+ sym_patch_inv = sym_patch.index_select(1, inv_idx)
+ img_aug.narrow(1, 0, sym_len_Hs).copy_(sym_patch_inv)
+
+ sym_patch = img[:, -sym_len_He:, :]
+ inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
+ sym_patch_inv = sym_patch.index_select(1, inv_idx)
+ img_aug.narrow(1, sym_len_Hs + in_H, sym_len_He).copy_(sym_patch_inv)
+
+ out_1 = torch.FloatTensor(in_C, out_H, in_W)
+ kernel_width = weights_H.size(1)
+ for i in range(out_H):
+ idx = int(indices_H[i][0])
+ for j in range(out_C):
+ out_1[j, i, :] = img_aug[j, idx:idx + kernel_width, :].transpose(0, 1).mv(weights_H[i])
+
+ # process W dimension
+ # symmetric copying
+ out_1_aug = torch.FloatTensor(in_C, out_H, in_W + sym_len_Ws + sym_len_We)
+ out_1_aug.narrow(2, sym_len_Ws, in_W).copy_(out_1)
+
+ sym_patch = out_1[:, :, :sym_len_Ws]
+ inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long()
+ sym_patch_inv = sym_patch.index_select(2, inv_idx)
+ out_1_aug.narrow(2, 0, sym_len_Ws).copy_(sym_patch_inv)
+
+ sym_patch = out_1[:, :, -sym_len_We:]
+ inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long()
+ sym_patch_inv = sym_patch.index_select(2, inv_idx)
+ out_1_aug.narrow(2, sym_len_Ws + in_W, sym_len_We).copy_(sym_patch_inv)
+
+ out_2 = torch.FloatTensor(in_C, out_H, out_W)
+ kernel_width = weights_W.size(1)
+ for i in range(out_W):
+ idx = int(indices_W[i][0])
+ for j in range(out_C):
+ out_2[j, :, i] = out_1_aug[j, :, idx:idx + kernel_width].mv(weights_W[i])
+ if need_squeeze:
+ out_2.squeeze_()
+ return out_2
+
+
+# --------------------------------------------
+# imresize for numpy image [0, 1]
+# --------------------------------------------
+def imresize_np(img, scale, antialiasing=True):
+ # Now the scale should be the same for H and W
+ # input: img: Numpy, HWC or HW [0,1]
+ # output: HWC or HW [0,1] w/o round
+ img = torch.from_numpy(img)
+ need_squeeze = True if img.dim() == 2 else False
+ if need_squeeze:
+ img.unsqueeze_(2)
+
+ in_H, in_W, in_C = img.size()
+ out_C, out_H, out_W = in_C, math.ceil(in_H * scale), math.ceil(in_W * scale)
+ kernel_width = 4
+ kernel = 'cubic'
+
+ # Return the desired dimension order for performing the resize. The
+ # strategy is to perform the resize first along the dimension with the
+ # smallest scale factor.
+ # Now we do not support this.
+
+ # get weights and indices
+ weights_H, indices_H, sym_len_Hs, sym_len_He = calculate_weights_indices(
+ in_H, out_H, scale, kernel, kernel_width, antialiasing)
+ weights_W, indices_W, sym_len_Ws, sym_len_We = calculate_weights_indices(
+ in_W, out_W, scale, kernel, kernel_width, antialiasing)
+ # process H dimension
+ # symmetric copying
+ img_aug = torch.FloatTensor(in_H + sym_len_Hs + sym_len_He, in_W, in_C)
+ img_aug.narrow(0, sym_len_Hs, in_H).copy_(img)
+
+ sym_patch = img[:sym_len_Hs, :, :]
+ inv_idx = torch.arange(sym_patch.size(0) - 1, -1, -1).long()
+ sym_patch_inv = sym_patch.index_select(0, inv_idx)
+ img_aug.narrow(0, 0, sym_len_Hs).copy_(sym_patch_inv)
+
+ sym_patch = img[-sym_len_He:, :, :]
+ inv_idx = torch.arange(sym_patch.size(0) - 1, -1, -1).long()
+ sym_patch_inv = sym_patch.index_select(0, inv_idx)
+ img_aug.narrow(0, sym_len_Hs + in_H, sym_len_He).copy_(sym_patch_inv)
+
+ out_1 = torch.FloatTensor(out_H, in_W, in_C)
+ kernel_width = weights_H.size(1)
+ for i in range(out_H):
+ idx = int(indices_H[i][0])
+ for j in range(out_C):
+ out_1[i, :, j] = img_aug[idx:idx + kernel_width, :, j].transpose(0, 1).mv(weights_H[i])
+
+ # process W dimension
+ # symmetric copying
+ out_1_aug = torch.FloatTensor(out_H, in_W + sym_len_Ws + sym_len_We, in_C)
+ out_1_aug.narrow(1, sym_len_Ws, in_W).copy_(out_1)
+
+ sym_patch = out_1[:, :sym_len_Ws, :]
+ inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
+ sym_patch_inv = sym_patch.index_select(1, inv_idx)
+ out_1_aug.narrow(1, 0, sym_len_Ws).copy_(sym_patch_inv)
+
+ sym_patch = out_1[:, -sym_len_We:, :]
+ inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
+ sym_patch_inv = sym_patch.index_select(1, inv_idx)
+ out_1_aug.narrow(1, sym_len_Ws + in_W, sym_len_We).copy_(sym_patch_inv)
+
+ out_2 = torch.FloatTensor(out_H, out_W, in_C)
+ kernel_width = weights_W.size(1)
+ for i in range(out_W):
+ idx = int(indices_W[i][0])
+ for j in range(out_C):
+ out_2[:, i, j] = out_1_aug[:, idx:idx + kernel_width, j].mv(weights_W[i])
+ if need_squeeze:
+ out_2.squeeze_()
+
+ return out_2.numpy()
+
+
+if __name__ == '__main__':
+ print('---')
+# img = imread_uint('test.bmp', 3)
+# img = uint2single(img)
+# img_bicubic = imresize_np(img, 1/4)
\ No newline at end of file
diff --git a/sd1/ldm/modules/losses/__init__.py b/sd1/ldm/modules/losses/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..876d7c5bd6e3245ee77feb4c482b7a8143604ad5
--- /dev/null
+++ b/sd1/ldm/modules/losses/__init__.py
@@ -0,0 +1 @@
+from ldm.modules.losses.contperceptual import LPIPSWithDiscriminator
\ No newline at end of file
diff --git a/sd1/ldm/modules/losses/contperceptual.py b/sd1/ldm/modules/losses/contperceptual.py
new file mode 100644
index 0000000000000000000000000000000000000000..672c1e32a1389def02461c0781339681060c540e
--- /dev/null
+++ b/sd1/ldm/modules/losses/contperceptual.py
@@ -0,0 +1,111 @@
+import torch
+import torch.nn as nn
+
+from taming.modules.losses.vqperceptual import * # TODO: taming dependency yes/no?
+
+
+class LPIPSWithDiscriminator(nn.Module):
+ def __init__(self, disc_start, logvar_init=0.0, kl_weight=1.0, pixelloss_weight=1.0,
+ disc_num_layers=3, disc_in_channels=3, disc_factor=1.0, disc_weight=1.0,
+ perceptual_weight=1.0, use_actnorm=False, disc_conditional=False,
+ disc_loss="hinge"):
+
+ super().__init__()
+ assert disc_loss in ["hinge", "vanilla"]
+ self.kl_weight = kl_weight
+ self.pixel_weight = pixelloss_weight
+ self.perceptual_loss = LPIPS().eval()
+ self.perceptual_weight = perceptual_weight
+ # output log variance
+ self.logvar = nn.Parameter(torch.ones(size=()) * logvar_init)
+
+ self.discriminator = NLayerDiscriminator(input_nc=disc_in_channels,
+ n_layers=disc_num_layers,
+ use_actnorm=use_actnorm
+ ).apply(weights_init)
+ self.discriminator_iter_start = disc_start
+ self.disc_loss = hinge_d_loss if disc_loss == "hinge" else vanilla_d_loss
+ self.disc_factor = disc_factor
+ self.discriminator_weight = disc_weight
+ self.disc_conditional = disc_conditional
+
+ def calculate_adaptive_weight(self, nll_loss, g_loss, last_layer=None):
+ if last_layer is not None:
+ nll_grads = torch.autograd.grad(nll_loss, last_layer, retain_graph=True)[0]
+ g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0]
+ else:
+ nll_grads = torch.autograd.grad(nll_loss, self.last_layer[0], retain_graph=True)[0]
+ g_grads = torch.autograd.grad(g_loss, self.last_layer[0], retain_graph=True)[0]
+
+ d_weight = torch.norm(nll_grads) / (torch.norm(g_grads) + 1e-4)
+ d_weight = torch.clamp(d_weight, 0.0, 1e4).detach()
+ d_weight = d_weight * self.discriminator_weight
+ return d_weight
+
+ def forward(self, inputs, reconstructions, posteriors, optimizer_idx,
+ global_step, last_layer=None, cond=None, split="train",
+ weights=None):
+ rec_loss = torch.abs(inputs.contiguous() - reconstructions.contiguous())
+ if self.perceptual_weight > 0:
+ p_loss = self.perceptual_loss(inputs.contiguous(), reconstructions.contiguous())
+ rec_loss = rec_loss + self.perceptual_weight * p_loss
+
+ nll_loss = rec_loss / torch.exp(self.logvar) + self.logvar
+ weighted_nll_loss = nll_loss
+ if weights is not None:
+ weighted_nll_loss = weights*nll_loss
+ weighted_nll_loss = torch.sum(weighted_nll_loss) / weighted_nll_loss.shape[0]
+ nll_loss = torch.sum(nll_loss) / nll_loss.shape[0]
+ kl_loss = posteriors.kl()
+ kl_loss = torch.sum(kl_loss) / kl_loss.shape[0]
+
+ # now the GAN part
+ if optimizer_idx == 0:
+ # generator update
+ if cond is None:
+ assert not self.disc_conditional
+ logits_fake = self.discriminator(reconstructions.contiguous())
+ else:
+ assert self.disc_conditional
+ logits_fake = self.discriminator(torch.cat((reconstructions.contiguous(), cond), dim=1))
+ g_loss = -torch.mean(logits_fake)
+
+ if self.disc_factor > 0.0:
+ try:
+ d_weight = self.calculate_adaptive_weight(nll_loss, g_loss, last_layer=last_layer)
+ except RuntimeError:
+ assert not self.training
+ d_weight = torch.tensor(0.0)
+ else:
+ d_weight = torch.tensor(0.0)
+
+ disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start)
+ loss = weighted_nll_loss + self.kl_weight * kl_loss + d_weight * disc_factor * g_loss
+
+ log = {"{}/total_loss".format(split): loss.clone().detach().mean(), "{}/logvar".format(split): self.logvar.detach(),
+ "{}/kl_loss".format(split): kl_loss.detach().mean(), "{}/nll_loss".format(split): nll_loss.detach().mean(),
+ "{}/rec_loss".format(split): rec_loss.detach().mean(),
+ "{}/d_weight".format(split): d_weight.detach(),
+ "{}/disc_factor".format(split): torch.tensor(disc_factor),
+ "{}/g_loss".format(split): g_loss.detach().mean(),
+ }
+ return loss, log
+
+ if optimizer_idx == 1:
+ # second pass for discriminator update
+ if cond is None:
+ logits_real = self.discriminator(inputs.contiguous().detach())
+ logits_fake = self.discriminator(reconstructions.contiguous().detach())
+ else:
+ logits_real = self.discriminator(torch.cat((inputs.contiguous().detach(), cond), dim=1))
+ logits_fake = self.discriminator(torch.cat((reconstructions.contiguous().detach(), cond), dim=1))
+
+ disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start)
+ d_loss = disc_factor * self.disc_loss(logits_real, logits_fake)
+
+ log = {"{}/disc_loss".format(split): d_loss.clone().detach().mean(),
+ "{}/logits_real".format(split): logits_real.detach().mean(),
+ "{}/logits_fake".format(split): logits_fake.detach().mean()
+ }
+ return d_loss, log
+
diff --git a/sd1/ldm/modules/losses/vqperceptual.py b/sd1/ldm/modules/losses/vqperceptual.py
new file mode 100644
index 0000000000000000000000000000000000000000..f69981769e4bd5462600458c4fcf26620f7e4306
--- /dev/null
+++ b/sd1/ldm/modules/losses/vqperceptual.py
@@ -0,0 +1,167 @@
+import torch
+from torch import nn
+import torch.nn.functional as F
+from einops import repeat
+
+from taming.modules.discriminator.model import NLayerDiscriminator, weights_init
+from taming.modules.losses.lpips import LPIPS
+from taming.modules.losses.vqperceptual import hinge_d_loss, vanilla_d_loss
+
+
+def hinge_d_loss_with_exemplar_weights(logits_real, logits_fake, weights):
+ assert weights.shape[0] == logits_real.shape[0] == logits_fake.shape[0]
+ loss_real = torch.mean(F.relu(1. - logits_real), dim=[1,2,3])
+ loss_fake = torch.mean(F.relu(1. + logits_fake), dim=[1,2,3])
+ loss_real = (weights * loss_real).sum() / weights.sum()
+ loss_fake = (weights * loss_fake).sum() / weights.sum()
+ d_loss = 0.5 * (loss_real + loss_fake)
+ return d_loss
+
+def adopt_weight(weight, global_step, threshold=0, value=0.):
+ if global_step < threshold:
+ weight = value
+ return weight
+
+
+def measure_perplexity(predicted_indices, n_embed):
+ # src: https://github.com/karpathy/deep-vector-quantization/blob/main/model.py
+ # eval cluster perplexity. when perplexity == num_embeddings then all clusters are used exactly equally
+ encodings = F.one_hot(predicted_indices, n_embed).float().reshape(-1, n_embed)
+ avg_probs = encodings.mean(0)
+ perplexity = (-(avg_probs * torch.log(avg_probs + 1e-10)).sum()).exp()
+ cluster_use = torch.sum(avg_probs > 0)
+ return perplexity, cluster_use
+
+def l1(x, y):
+ return torch.abs(x-y)
+
+
+def l2(x, y):
+ return torch.pow((x-y), 2)
+
+
+class VQLPIPSWithDiscriminator(nn.Module):
+ def __init__(self, disc_start, codebook_weight=1.0, pixelloss_weight=1.0,
+ disc_num_layers=3, disc_in_channels=3, disc_factor=1.0, disc_weight=1.0,
+ perceptual_weight=1.0, use_actnorm=False, disc_conditional=False,
+ disc_ndf=64, disc_loss="hinge", n_classes=None, perceptual_loss="lpips",
+ pixel_loss="l1"):
+ super().__init__()
+ assert disc_loss in ["hinge", "vanilla"]
+ assert perceptual_loss in ["lpips", "clips", "dists"]
+ assert pixel_loss in ["l1", "l2"]
+ self.codebook_weight = codebook_weight
+ self.pixel_weight = pixelloss_weight
+ if perceptual_loss == "lpips":
+ print(f"{self.__class__.__name__}: Running with LPIPS.")
+ self.perceptual_loss = LPIPS().eval()
+ else:
+ raise ValueError(f"Unknown perceptual loss: >> {perceptual_loss} <<")
+ self.perceptual_weight = perceptual_weight
+
+ if pixel_loss == "l1":
+ self.pixel_loss = l1
+ else:
+ self.pixel_loss = l2
+
+ self.discriminator = NLayerDiscriminator(input_nc=disc_in_channels,
+ n_layers=disc_num_layers,
+ use_actnorm=use_actnorm,
+ ndf=disc_ndf
+ ).apply(weights_init)
+ self.discriminator_iter_start = disc_start
+ if disc_loss == "hinge":
+ self.disc_loss = hinge_d_loss
+ elif disc_loss == "vanilla":
+ self.disc_loss = vanilla_d_loss
+ else:
+ raise ValueError(f"Unknown GAN loss '{disc_loss}'.")
+ print(f"VQLPIPSWithDiscriminator running with {disc_loss} loss.")
+ self.disc_factor = disc_factor
+ self.discriminator_weight = disc_weight
+ self.disc_conditional = disc_conditional
+ self.n_classes = n_classes
+
+ def calculate_adaptive_weight(self, nll_loss, g_loss, last_layer=None):
+ if last_layer is not None:
+ nll_grads = torch.autograd.grad(nll_loss, last_layer, retain_graph=True)[0]
+ g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0]
+ else:
+ nll_grads = torch.autograd.grad(nll_loss, self.last_layer[0], retain_graph=True)[0]
+ g_grads = torch.autograd.grad(g_loss, self.last_layer[0], retain_graph=True)[0]
+
+ d_weight = torch.norm(nll_grads) / (torch.norm(g_grads) + 1e-4)
+ d_weight = torch.clamp(d_weight, 0.0, 1e4).detach()
+ d_weight = d_weight * self.discriminator_weight
+ return d_weight
+
+ def forward(self, codebook_loss, inputs, reconstructions, optimizer_idx,
+ global_step, last_layer=None, cond=None, split="train", predicted_indices=None):
+ if not exists(codebook_loss):
+ codebook_loss = torch.tensor([0.]).to(inputs.device)
+ #rec_loss = torch.abs(inputs.contiguous() - reconstructions.contiguous())
+ rec_loss = self.pixel_loss(inputs.contiguous(), reconstructions.contiguous())
+ if self.perceptual_weight > 0:
+ p_loss = self.perceptual_loss(inputs.contiguous(), reconstructions.contiguous())
+ rec_loss = rec_loss + self.perceptual_weight * p_loss
+ else:
+ p_loss = torch.tensor([0.0])
+
+ nll_loss = rec_loss
+ #nll_loss = torch.sum(nll_loss) / nll_loss.shape[0]
+ nll_loss = torch.mean(nll_loss)
+
+ # now the GAN part
+ if optimizer_idx == 0:
+ # generator update
+ if cond is None:
+ assert not self.disc_conditional
+ logits_fake = self.discriminator(reconstructions.contiguous())
+ else:
+ assert self.disc_conditional
+ logits_fake = self.discriminator(torch.cat((reconstructions.contiguous(), cond), dim=1))
+ g_loss = -torch.mean(logits_fake)
+
+ try:
+ d_weight = self.calculate_adaptive_weight(nll_loss, g_loss, last_layer=last_layer)
+ except RuntimeError:
+ assert not self.training
+ d_weight = torch.tensor(0.0)
+
+ disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start)
+ loss = nll_loss + d_weight * disc_factor * g_loss + self.codebook_weight * codebook_loss.mean()
+
+ log = {"{}/total_loss".format(split): loss.clone().detach().mean(),
+ "{}/quant_loss".format(split): codebook_loss.detach().mean(),
+ "{}/nll_loss".format(split): nll_loss.detach().mean(),
+ "{}/rec_loss".format(split): rec_loss.detach().mean(),
+ "{}/p_loss".format(split): p_loss.detach().mean(),
+ "{}/d_weight".format(split): d_weight.detach(),
+ "{}/disc_factor".format(split): torch.tensor(disc_factor),
+ "{}/g_loss".format(split): g_loss.detach().mean(),
+ }
+ if predicted_indices is not None:
+ assert self.n_classes is not None
+ with torch.no_grad():
+ perplexity, cluster_usage = measure_perplexity(predicted_indices, self.n_classes)
+ log[f"{split}/perplexity"] = perplexity
+ log[f"{split}/cluster_usage"] = cluster_usage
+ return loss, log
+
+ if optimizer_idx == 1:
+ # second pass for discriminator update
+ if cond is None:
+ logits_real = self.discriminator(inputs.contiguous().detach())
+ logits_fake = self.discriminator(reconstructions.contiguous().detach())
+ else:
+ logits_real = self.discriminator(torch.cat((inputs.contiguous().detach(), cond), dim=1))
+ logits_fake = self.discriminator(torch.cat((reconstructions.contiguous().detach(), cond), dim=1))
+
+ disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start)
+ d_loss = disc_factor * self.disc_loss(logits_real, logits_fake)
+
+ log = {"{}/disc_loss".format(split): d_loss.clone().detach().mean(),
+ "{}/logits_real".format(split): logits_real.detach().mean(),
+ "{}/logits_fake".format(split): logits_fake.detach().mean()
+ }
+ return d_loss, log
diff --git a/sd1/ldm/modules/x_transformer.py b/sd1/ldm/modules/x_transformer.py
new file mode 100644
index 0000000000000000000000000000000000000000..5fc15bf9cfe0111a910e7de33d04ffdec3877576
--- /dev/null
+++ b/sd1/ldm/modules/x_transformer.py
@@ -0,0 +1,641 @@
+"""shout-out to https://github.com/lucidrains/x-transformers/tree/main/x_transformers"""
+import torch
+from torch import nn, einsum
+import torch.nn.functional as F
+from functools import partial
+from inspect import isfunction
+from collections import namedtuple
+from einops import rearrange, repeat, reduce
+
+# constants
+
+DEFAULT_DIM_HEAD = 64
+
+Intermediates = namedtuple('Intermediates', [
+ 'pre_softmax_attn',
+ 'post_softmax_attn'
+])
+
+LayerIntermediates = namedtuple('Intermediates', [
+ 'hiddens',
+ 'attn_intermediates'
+])
+
+
+class AbsolutePositionalEmbedding(nn.Module):
+ def __init__(self, dim, max_seq_len):
+ super().__init__()
+ self.emb = nn.Embedding(max_seq_len, dim)
+ self.init_()
+
+ def init_(self):
+ nn.init.normal_(self.emb.weight, std=0.02)
+
+ def forward(self, x):
+ n = torch.arange(x.shape[1], device=x.device)
+ return self.emb(n)[None, :, :]
+
+
+class FixedPositionalEmbedding(nn.Module):
+ def __init__(self, dim):
+ super().__init__()
+ inv_freq = 1. / (10000 ** (torch.arange(0, dim, 2).float() / dim))
+ self.register_buffer('inv_freq', inv_freq)
+
+ def forward(self, x, seq_dim=1, offset=0):
+ t = torch.arange(x.shape[seq_dim], device=x.device).type_as(self.inv_freq) + offset
+ sinusoid_inp = torch.einsum('i , j -> i j', t, self.inv_freq)
+ emb = torch.cat((sinusoid_inp.sin(), sinusoid_inp.cos()), dim=-1)
+ return emb[None, :, :]
+
+
+# helpers
+
+def exists(val):
+ return val is not None
+
+
+def default(val, d):
+ if exists(val):
+ return val
+ return d() if isfunction(d) else d
+
+
+def always(val):
+ def inner(*args, **kwargs):
+ return val
+ return inner
+
+
+def not_equals(val):
+ def inner(x):
+ return x != val
+ return inner
+
+
+def equals(val):
+ def inner(x):
+ return x == val
+ return inner
+
+
+def max_neg_value(tensor):
+ return -torch.finfo(tensor.dtype).max
+
+
+# keyword argument helpers
+
+def pick_and_pop(keys, d):
+ values = list(map(lambda key: d.pop(key), keys))
+ return dict(zip(keys, values))
+
+
+def group_dict_by_key(cond, d):
+ return_val = [dict(), dict()]
+ for key in d.keys():
+ match = bool(cond(key))
+ ind = int(not match)
+ return_val[ind][key] = d[key]
+ return (*return_val,)
+
+
+def string_begins_with(prefix, str):
+ return str.startswith(prefix)
+
+
+def group_by_key_prefix(prefix, d):
+ return group_dict_by_key(partial(string_begins_with, prefix), d)
+
+
+def groupby_prefix_and_trim(prefix, d):
+ kwargs_with_prefix, kwargs = group_dict_by_key(partial(string_begins_with, prefix), d)
+ kwargs_without_prefix = dict(map(lambda x: (x[0][len(prefix):], x[1]), tuple(kwargs_with_prefix.items())))
+ return kwargs_without_prefix, kwargs
+
+
+# classes
+class Scale(nn.Module):
+ def __init__(self, value, fn):
+ super().__init__()
+ self.value = value
+ self.fn = fn
+
+ def forward(self, x, **kwargs):
+ x, *rest = self.fn(x, **kwargs)
+ return (x * self.value, *rest)
+
+
+class Rezero(nn.Module):
+ def __init__(self, fn):
+ super().__init__()
+ self.fn = fn
+ self.g = nn.Parameter(torch.zeros(1))
+
+ def forward(self, x, **kwargs):
+ x, *rest = self.fn(x, **kwargs)
+ return (x * self.g, *rest)
+
+
+class ScaleNorm(nn.Module):
+ def __init__(self, dim, eps=1e-5):
+ super().__init__()
+ self.scale = dim ** -0.5
+ self.eps = eps
+ self.g = nn.Parameter(torch.ones(1))
+
+ def forward(self, x):
+ norm = torch.norm(x, dim=-1, keepdim=True) * self.scale
+ return x / norm.clamp(min=self.eps) * self.g
+
+
+class RMSNorm(nn.Module):
+ def __init__(self, dim, eps=1e-8):
+ super().__init__()
+ self.scale = dim ** -0.5
+ self.eps = eps
+ self.g = nn.Parameter(torch.ones(dim))
+
+ def forward(self, x):
+ norm = torch.norm(x, dim=-1, keepdim=True) * self.scale
+ return x / norm.clamp(min=self.eps) * self.g
+
+
+class Residual(nn.Module):
+ def forward(self, x, residual):
+ return x + residual
+
+
+class GRUGating(nn.Module):
+ def __init__(self, dim):
+ super().__init__()
+ self.gru = nn.GRUCell(dim, dim)
+
+ def forward(self, x, residual):
+ gated_output = self.gru(
+ rearrange(x, 'b n d -> (b n) d'),
+ rearrange(residual, 'b n d -> (b n) d')
+ )
+
+ return gated_output.reshape_as(x)
+
+
+# feedforward
+
+class GEGLU(nn.Module):
+ def __init__(self, dim_in, dim_out):
+ super().__init__()
+ self.proj = nn.Linear(dim_in, dim_out * 2)
+
+ def forward(self, x):
+ x, gate = self.proj(x).chunk(2, dim=-1)
+ return x * F.gelu(gate)
+
+
+class FeedForward(nn.Module):
+ def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.):
+ super().__init__()
+ inner_dim = int(dim * mult)
+ dim_out = default(dim_out, dim)
+ project_in = nn.Sequential(
+ nn.Linear(dim, inner_dim),
+ nn.GELU()
+ ) if not glu else GEGLU(dim, inner_dim)
+
+ self.net = nn.Sequential(
+ project_in,
+ nn.Dropout(dropout),
+ nn.Linear(inner_dim, dim_out)
+ )
+
+ def forward(self, x):
+ return self.net(x)
+
+
+# attention.
+class Attention(nn.Module):
+ def __init__(
+ self,
+ dim,
+ dim_head=DEFAULT_DIM_HEAD,
+ heads=8,
+ causal=False,
+ mask=None,
+ talking_heads=False,
+ sparse_topk=None,
+ use_entmax15=False,
+ num_mem_kv=0,
+ dropout=0.,
+ on_attn=False
+ ):
+ super().__init__()
+ if use_entmax15:
+ raise NotImplementedError("Check out entmax activation instead of softmax activation!")
+ self.scale = dim_head ** -0.5
+ self.heads = heads
+ self.causal = causal
+ self.mask = mask
+
+ inner_dim = dim_head * heads
+
+ self.to_q = nn.Linear(dim, inner_dim, bias=False)
+ self.to_k = nn.Linear(dim, inner_dim, bias=False)
+ self.to_v = nn.Linear(dim, inner_dim, bias=False)
+ self.dropout = nn.Dropout(dropout)
+
+ # talking heads
+ self.talking_heads = talking_heads
+ if talking_heads:
+ self.pre_softmax_proj = nn.Parameter(torch.randn(heads, heads))
+ self.post_softmax_proj = nn.Parameter(torch.randn(heads, heads))
+
+ # explicit topk sparse attention
+ self.sparse_topk = sparse_topk
+
+ # entmax
+ #self.attn_fn = entmax15 if use_entmax15 else F.softmax
+ self.attn_fn = F.softmax
+
+ # add memory key / values
+ self.num_mem_kv = num_mem_kv
+ if num_mem_kv > 0:
+ self.mem_k = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head))
+ self.mem_v = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head))
+
+ # attention on attention
+ self.attn_on_attn = on_attn
+ self.to_out = nn.Sequential(nn.Linear(inner_dim, dim * 2), nn.GLU()) if on_attn else nn.Linear(inner_dim, dim)
+
+ def forward(
+ self,
+ x,
+ context=None,
+ mask=None,
+ context_mask=None,
+ rel_pos=None,
+ sinusoidal_emb=None,
+ prev_attn=None,
+ mem=None
+ ):
+ b, n, _, h, talking_heads, device = *x.shape, self.heads, self.talking_heads, x.device
+ kv_input = default(context, x)
+
+ q_input = x
+ k_input = kv_input
+ v_input = kv_input
+
+ if exists(mem):
+ k_input = torch.cat((mem, k_input), dim=-2)
+ v_input = torch.cat((mem, v_input), dim=-2)
+
+ if exists(sinusoidal_emb):
+ # in shortformer, the query would start at a position offset depending on the past cached memory
+ offset = k_input.shape[-2] - q_input.shape[-2]
+ q_input = q_input + sinusoidal_emb(q_input, offset=offset)
+ k_input = k_input + sinusoidal_emb(k_input)
+
+ q = self.to_q(q_input)
+ k = self.to_k(k_input)
+ v = self.to_v(v_input)
+
+ q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h=h), (q, k, v))
+
+ input_mask = None
+ if any(map(exists, (mask, context_mask))):
+ q_mask = default(mask, lambda: torch.ones((b, n), device=device).bool())
+ k_mask = q_mask if not exists(context) else context_mask
+ k_mask = default(k_mask, lambda: torch.ones((b, k.shape[-2]), device=device).bool())
+ q_mask = rearrange(q_mask, 'b i -> b () i ()')
+ k_mask = rearrange(k_mask, 'b j -> b () () j')
+ input_mask = q_mask * k_mask
+
+ if self.num_mem_kv > 0:
+ mem_k, mem_v = map(lambda t: repeat(t, 'h n d -> b h n d', b=b), (self.mem_k, self.mem_v))
+ k = torch.cat((mem_k, k), dim=-2)
+ v = torch.cat((mem_v, v), dim=-2)
+ if exists(input_mask):
+ input_mask = F.pad(input_mask, (self.num_mem_kv, 0), value=True)
+
+ dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale
+ mask_value = max_neg_value(dots)
+
+ if exists(prev_attn):
+ dots = dots + prev_attn
+
+ pre_softmax_attn = dots
+
+ if talking_heads:
+ dots = einsum('b h i j, h k -> b k i j', dots, self.pre_softmax_proj).contiguous()
+
+ if exists(rel_pos):
+ dots = rel_pos(dots)
+
+ if exists(input_mask):
+ dots.masked_fill_(~input_mask, mask_value)
+ del input_mask
+
+ if self.causal:
+ i, j = dots.shape[-2:]
+ r = torch.arange(i, device=device)
+ mask = rearrange(r, 'i -> () () i ()') < rearrange(r, 'j -> () () () j')
+ mask = F.pad(mask, (j - i, 0), value=False)
+ dots.masked_fill_(mask, mask_value)
+ del mask
+
+ if exists(self.sparse_topk) and self.sparse_topk < dots.shape[-1]:
+ top, _ = dots.topk(self.sparse_topk, dim=-1)
+ vk = top[..., -1].unsqueeze(-1).expand_as(dots)
+ mask = dots < vk
+ dots.masked_fill_(mask, mask_value)
+ del mask
+
+ attn = self.attn_fn(dots, dim=-1)
+ post_softmax_attn = attn
+
+ attn = self.dropout(attn)
+
+ if talking_heads:
+ attn = einsum('b h i j, h k -> b k i j', attn, self.post_softmax_proj).contiguous()
+
+ out = einsum('b h i j, b h j d -> b h i d', attn, v)
+ out = rearrange(out, 'b h n d -> b n (h d)')
+
+ intermediates = Intermediates(
+ pre_softmax_attn=pre_softmax_attn,
+ post_softmax_attn=post_softmax_attn
+ )
+
+ return self.to_out(out), intermediates
+
+
+class AttentionLayers(nn.Module):
+ def __init__(
+ self,
+ dim,
+ depth,
+ heads=8,
+ causal=False,
+ cross_attend=False,
+ only_cross=False,
+ use_scalenorm=False,
+ use_rmsnorm=False,
+ use_rezero=False,
+ rel_pos_num_buckets=32,
+ rel_pos_max_distance=128,
+ position_infused_attn=False,
+ custom_layers=None,
+ sandwich_coef=None,
+ par_ratio=None,
+ residual_attn=False,
+ cross_residual_attn=False,
+ macaron=False,
+ pre_norm=True,
+ gate_residual=False,
+ **kwargs
+ ):
+ super().__init__()
+ ff_kwargs, kwargs = groupby_prefix_and_trim('ff_', kwargs)
+ attn_kwargs, _ = groupby_prefix_and_trim('attn_', kwargs)
+
+ dim_head = attn_kwargs.get('dim_head', DEFAULT_DIM_HEAD)
+
+ self.dim = dim
+ self.depth = depth
+ self.layers = nn.ModuleList([])
+
+ self.has_pos_emb = position_infused_attn
+ self.pia_pos_emb = FixedPositionalEmbedding(dim) if position_infused_attn else None
+ self.rotary_pos_emb = always(None)
+
+ assert rel_pos_num_buckets <= rel_pos_max_distance, 'number of relative position buckets must be less than the relative position max distance'
+ self.rel_pos = None
+
+ self.pre_norm = pre_norm
+
+ self.residual_attn = residual_attn
+ self.cross_residual_attn = cross_residual_attn
+
+ norm_class = ScaleNorm if use_scalenorm else nn.LayerNorm
+ norm_class = RMSNorm if use_rmsnorm else norm_class
+ norm_fn = partial(norm_class, dim)
+
+ norm_fn = nn.Identity if use_rezero else norm_fn
+ branch_fn = Rezero if use_rezero else None
+
+ if cross_attend and not only_cross:
+ default_block = ('a', 'c', 'f')
+ elif cross_attend and only_cross:
+ default_block = ('c', 'f')
+ else:
+ default_block = ('a', 'f')
+
+ if macaron:
+ default_block = ('f',) + default_block
+
+ if exists(custom_layers):
+ layer_types = custom_layers
+ elif exists(par_ratio):
+ par_depth = depth * len(default_block)
+ assert 1 < par_ratio <= par_depth, 'par ratio out of range'
+ default_block = tuple(filter(not_equals('f'), default_block))
+ par_attn = par_depth // par_ratio
+ depth_cut = par_depth * 2 // 3 # 2 / 3 attention layer cutoff suggested by PAR paper
+ par_width = (depth_cut + depth_cut // par_attn) // par_attn
+ assert len(default_block) <= par_width, 'default block is too large for par_ratio'
+ par_block = default_block + ('f',) * (par_width - len(default_block))
+ par_head = par_block * par_attn
+ layer_types = par_head + ('f',) * (par_depth - len(par_head))
+ elif exists(sandwich_coef):
+ assert sandwich_coef > 0 and sandwich_coef <= depth, 'sandwich coefficient should be less than the depth'
+ layer_types = ('a',) * sandwich_coef + default_block * (depth - sandwich_coef) + ('f',) * sandwich_coef
+ else:
+ layer_types = default_block * depth
+
+ self.layer_types = layer_types
+ self.num_attn_layers = len(list(filter(equals('a'), layer_types)))
+
+ for layer_type in self.layer_types:
+ if layer_type == 'a':
+ layer = Attention(dim, heads=heads, causal=causal, **attn_kwargs)
+ elif layer_type == 'c':
+ layer = Attention(dim, heads=heads, **attn_kwargs)
+ elif layer_type == 'f':
+ layer = FeedForward(dim, **ff_kwargs)
+ layer = layer if not macaron else Scale(0.5, layer)
+ else:
+ raise Exception(f'invalid layer type {layer_type}')
+
+ if isinstance(layer, Attention) and exists(branch_fn):
+ layer = branch_fn(layer)
+
+ if gate_residual:
+ residual_fn = GRUGating(dim)
+ else:
+ residual_fn = Residual()
+
+ self.layers.append(nn.ModuleList([
+ norm_fn(),
+ layer,
+ residual_fn
+ ]))
+
+ def forward(
+ self,
+ x,
+ context=None,
+ mask=None,
+ context_mask=None,
+ mems=None,
+ return_hiddens=False
+ ):
+ hiddens = []
+ intermediates = []
+ prev_attn = None
+ prev_cross_attn = None
+
+ mems = mems.copy() if exists(mems) else [None] * self.num_attn_layers
+
+ for ind, (layer_type, (norm, block, residual_fn)) in enumerate(zip(self.layer_types, self.layers)):
+ is_last = ind == (len(self.layers) - 1)
+
+ if layer_type == 'a':
+ hiddens.append(x)
+ layer_mem = mems.pop(0)
+
+ residual = x
+
+ if self.pre_norm:
+ x = norm(x)
+
+ if layer_type == 'a':
+ out, inter = block(x, mask=mask, sinusoidal_emb=self.pia_pos_emb, rel_pos=self.rel_pos,
+ prev_attn=prev_attn, mem=layer_mem)
+ elif layer_type == 'c':
+ out, inter = block(x, context=context, mask=mask, context_mask=context_mask, prev_attn=prev_cross_attn)
+ elif layer_type == 'f':
+ out = block(x)
+
+ x = residual_fn(out, residual)
+
+ if layer_type in ('a', 'c'):
+ intermediates.append(inter)
+
+ if layer_type == 'a' and self.residual_attn:
+ prev_attn = inter.pre_softmax_attn
+ elif layer_type == 'c' and self.cross_residual_attn:
+ prev_cross_attn = inter.pre_softmax_attn
+
+ if not self.pre_norm and not is_last:
+ x = norm(x)
+
+ if return_hiddens:
+ intermediates = LayerIntermediates(
+ hiddens=hiddens,
+ attn_intermediates=intermediates
+ )
+
+ return x, intermediates
+
+ return x
+
+
+class Encoder(AttentionLayers):
+ def __init__(self, **kwargs):
+ assert 'causal' not in kwargs, 'cannot set causality on encoder'
+ super().__init__(causal=False, **kwargs)
+
+
+
+class TransformerWrapper(nn.Module):
+ def __init__(
+ self,
+ *,
+ num_tokens,
+ max_seq_len,
+ attn_layers,
+ emb_dim=None,
+ max_mem_len=0.,
+ emb_dropout=0.,
+ num_memory_tokens=None,
+ tie_embedding=False,
+ use_pos_emb=True
+ ):
+ super().__init__()
+ assert isinstance(attn_layers, AttentionLayers), 'attention layers must be one of Encoder or Decoder'
+
+ dim = attn_layers.dim
+ emb_dim = default(emb_dim, dim)
+
+ self.max_seq_len = max_seq_len
+ self.max_mem_len = max_mem_len
+ self.num_tokens = num_tokens
+
+ self.token_emb = nn.Embedding(num_tokens, emb_dim)
+ self.pos_emb = AbsolutePositionalEmbedding(emb_dim, max_seq_len) if (
+ use_pos_emb and not attn_layers.has_pos_emb) else always(0)
+ self.emb_dropout = nn.Dropout(emb_dropout)
+
+ self.project_emb = nn.Linear(emb_dim, dim) if emb_dim != dim else nn.Identity()
+ self.attn_layers = attn_layers
+ self.norm = nn.LayerNorm(dim)
+
+ self.init_()
+
+ self.to_logits = nn.Linear(dim, num_tokens) if not tie_embedding else lambda t: t @ self.token_emb.weight.t()
+
+ # memory tokens (like [cls]) from Memory Transformers paper
+ num_memory_tokens = default(num_memory_tokens, 0)
+ self.num_memory_tokens = num_memory_tokens
+ if num_memory_tokens > 0:
+ self.memory_tokens = nn.Parameter(torch.randn(num_memory_tokens, dim))
+
+ # let funnel encoder know number of memory tokens, if specified
+ if hasattr(attn_layers, 'num_memory_tokens'):
+ attn_layers.num_memory_tokens = num_memory_tokens
+
+ def init_(self):
+ nn.init.normal_(self.token_emb.weight, std=0.02)
+
+ def forward(
+ self,
+ x,
+ return_embeddings=False,
+ mask=None,
+ return_mems=False,
+ return_attn=False,
+ mems=None,
+ **kwargs
+ ):
+ b, n, device, num_mem = *x.shape, x.device, self.num_memory_tokens
+ x = self.token_emb(x)
+ x += self.pos_emb(x)
+ x = self.emb_dropout(x)
+
+ x = self.project_emb(x)
+
+ if num_mem > 0:
+ mem = repeat(self.memory_tokens, 'n d -> b n d', b=b)
+ x = torch.cat((mem, x), dim=1)
+
+ # auto-handle masking after appending memory tokens
+ if exists(mask):
+ mask = F.pad(mask, (num_mem, 0), value=True)
+
+ x, intermediates = self.attn_layers(x, mask=mask, mems=mems, return_hiddens=True, **kwargs)
+ x = self.norm(x)
+
+ mem, x = x[:, :num_mem], x[:, num_mem:]
+
+ out = self.to_logits(x) if not return_embeddings else x
+
+ if return_mems:
+ hiddens = intermediates.hiddens
+ new_mems = list(map(lambda pair: torch.cat(pair, dim=-2), zip(mems, hiddens))) if exists(mems) else hiddens
+ new_mems = list(map(lambda t: t[..., -self.max_mem_len:, :].detach(), new_mems))
+ return out, new_mems
+
+ if return_attn:
+ attn_maps = list(map(lambda t: t.post_softmax_attn, intermediates.attn_intermediates))
+ return out, attn_maps
+
+ return out
+
diff --git a/sd1/ldm/util.py b/sd1/ldm/util.py
new file mode 100644
index 0000000000000000000000000000000000000000..aa0963a0707ff9e77646470c9a84c356ef84eaa8
--- /dev/null
+++ b/sd1/ldm/util.py
@@ -0,0 +1,203 @@
+import importlib
+
+import torch
+import numpy as np
+from collections import abc
+from einops import rearrange
+from functools import partial
+
+import multiprocessing as mp
+from threading import Thread
+from queue import Queue
+
+from inspect import isfunction
+from PIL import Image, ImageDraw, ImageFont
+
+
+def log_txt_as_img(wh, xc, size=10):
+ # wh a tuple of (width, height)
+ # xc a list of captions to plot
+ b = len(xc)
+ txts = list()
+ for bi in range(b):
+ txt = Image.new("RGB", wh, color="white")
+ draw = ImageDraw.Draw(txt)
+ font = ImageFont.truetype('data/DejaVuSans.ttf', size=size)
+ nc = int(40 * (wh[0] / 256))
+ lines = "\n".join(xc[bi][start:start + nc] for start in range(0, len(xc[bi]), nc))
+
+ try:
+ draw.text((0, 0), lines, fill="black", font=font)
+ except UnicodeEncodeError:
+ print("Cant encode string for logging. Skipping.")
+
+ txt = np.array(txt).transpose(2, 0, 1) / 127.5 - 1.0
+ txts.append(txt)
+ txts = np.stack(txts)
+ txts = torch.tensor(txts)
+ return txts
+
+
+def ismap(x):
+ if not isinstance(x, torch.Tensor):
+ return False
+ return (len(x.shape) == 4) and (x.shape[1] > 3)
+
+
+def isimage(x):
+ if not isinstance(x, torch.Tensor):
+ return False
+ return (len(x.shape) == 4) and (x.shape[1] == 3 or x.shape[1] == 1)
+
+
+def exists(x):
+ return x is not None
+
+
+def default(val, d):
+ if exists(val):
+ return val
+ return d() if isfunction(d) else d
+
+
+def mean_flat(tensor):
+ """
+ https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/nn.py#L86
+ Take the mean over all non-batch dimensions.
+ """
+ return tensor.mean(dim=list(range(1, len(tensor.shape))))
+
+
+def count_params(model, verbose=False):
+ total_params = sum(p.numel() for p in model.parameters())
+ if verbose:
+ print(f"{model.__class__.__name__} has {total_params * 1.e-6:.2f} M params.")
+ return total_params
+
+
+def instantiate_from_config(config, **kwargs):
+ if not "target" in config:
+ if config == '__is_first_stage__':
+ return None
+ elif config == "__is_unconditional__":
+ return None
+ raise KeyError("Expected key `target` to instantiate.")
+ return get_obj_from_str(config["target"])(**config.get("params", dict()), **kwargs)
+
+
+def get_obj_from_str(string, reload=False):
+ module, cls = string.rsplit(".", 1)
+ if reload:
+ module_imp = importlib.import_module(module)
+ importlib.reload(module_imp)
+ return getattr(importlib.import_module(module, package=None), cls)
+
+
+def _do_parallel_data_prefetch(func, Q, data, idx, idx_to_fn=False):
+ # create dummy dataset instance
+
+ # run prefetching
+ if idx_to_fn:
+ res = func(data, worker_id=idx)
+ else:
+ res = func(data)
+ Q.put([idx, res])
+ Q.put("Done")
+
+
+def parallel_data_prefetch(
+ func: callable, data, n_proc, target_data_type="ndarray", cpu_intensive=True, use_worker_id=False
+):
+ # if target_data_type not in ["ndarray", "list"]:
+ # raise ValueError(
+ # "Data, which is passed to parallel_data_prefetch has to be either of type list or ndarray."
+ # )
+ if isinstance(data, np.ndarray) and target_data_type == "list":
+ raise ValueError("list expected but function got ndarray.")
+ elif isinstance(data, abc.Iterable):
+ if isinstance(data, dict):
+ print(
+ f'WARNING:"data" argument passed to parallel_data_prefetch is a dict: Using only its values and disregarding keys.'
+ )
+ data = list(data.values())
+ if target_data_type == "ndarray":
+ data = np.asarray(data)
+ else:
+ data = list(data)
+ else:
+ raise TypeError(
+ f"The data, that shall be processed parallel has to be either an np.ndarray or an Iterable, but is actually {type(data)}."
+ )
+
+ if cpu_intensive:
+ Q = mp.Queue(1000)
+ proc = mp.Process
+ else:
+ Q = Queue(1000)
+ proc = Thread
+ # spawn processes
+ if target_data_type == "ndarray":
+ arguments = [
+ [func, Q, part, i, use_worker_id]
+ for i, part in enumerate(np.array_split(data, n_proc))
+ ]
+ else:
+ step = (
+ int(len(data) / n_proc + 1)
+ if len(data) % n_proc != 0
+ else int(len(data) / n_proc)
+ )
+ arguments = [
+ [func, Q, part, i, use_worker_id]
+ for i, part in enumerate(
+ [data[i: i + step] for i in range(0, len(data), step)]
+ )
+ ]
+ processes = []
+ for i in range(n_proc):
+ p = proc(target=_do_parallel_data_prefetch, args=arguments[i])
+ processes += [p]
+
+ # start processes
+ print(f"Start prefetching...")
+ import time
+
+ start = time.time()
+ gather_res = [[] for _ in range(n_proc)]
+ try:
+ for p in processes:
+ p.start()
+
+ k = 0
+ while k < n_proc:
+ # get result
+ res = Q.get()
+ if res == "Done":
+ k += 1
+ else:
+ gather_res[res[0]] = res[1]
+
+ except Exception as e:
+ print("Exception: ", e)
+ for p in processes:
+ p.terminate()
+
+ raise e
+ finally:
+ for p in processes:
+ p.join()
+ print(f"Prefetching complete. [{time.time() - start} sec.]")
+
+ if target_data_type == 'ndarray':
+ if not isinstance(gather_res[0], np.ndarray):
+ return np.concatenate([np.asarray(r) for r in gather_res], axis=0)
+
+ # order outputs
+ return np.concatenate(gather_res, axis=0)
+ elif target_data_type == 'list':
+ out = []
+ for r in gather_res:
+ out.extend(r)
+ return out
+ else:
+ return gather_res
diff --git a/sd1/main.py b/sd1/main.py
new file mode 100644
index 0000000000000000000000000000000000000000..5194121ceae28fc81ba6894a7a06cf394ba9331b
--- /dev/null
+++ b/sd1/main.py
@@ -0,0 +1,803 @@
+import argparse, os, sys, datetime, glob, importlib, csv
+import numpy as np
+import time
+import torch
+
+import torchvision
+import pytorch_lightning as pl
+
+from packaging import version
+from omegaconf import OmegaConf
+from torch.utils.data import random_split, DataLoader, Dataset, Subset
+from functools import partial
+from PIL import Image
+
+from pytorch_lightning import seed_everything
+from pytorch_lightning.trainer import Trainer
+from pytorch_lightning.callbacks import ModelCheckpoint, Callback, LearningRateMonitor
+from pytorch_lightning.utilities.distributed import rank_zero_only
+from pytorch_lightning.utilities import rank_zero_info
+
+from ldm.data.base import Txt2ImgIterableBaseDataset
+from ldm.util import instantiate_from_config
+
+from pdb import set_trace
+
+import warnings
+warnings.filterwarnings("ignore", category=DeprecationWarning)
+from transformers import logging
+logging.set_verbosity_error()
+
+def load_model_from_config(config, ckpt, verbose=False):
+ print(f"Loading model from {ckpt}")
+ pl_sd = torch.load(ckpt, map_location="cpu")
+ sd = pl_sd["state_dict"]
+ config.model.params.ckpt_path = ckpt
+ model = instantiate_from_config(config.model)
+ m, u = model.load_state_dict(sd, strict=False)
+ if len(m) > 0 and verbose:
+ print("missing keys:")
+ print(m)
+ if len(u) > 0 and verbose:
+ print("unexpected keys:")
+ print(u)
+
+ model.cuda()
+ return model
+
+def get_parser(**parser_kwargs):
+ def str2bool(v):
+ if isinstance(v, bool):
+ return v
+ if v.lower() in ("yes", "true", "t", "y", "1"):
+ return True
+ elif v.lower() in ("no", "false", "f", "n", "0"):
+ return False
+ else:
+ raise argparse.ArgumentTypeError("Boolean value expected.")
+
+ parser = argparse.ArgumentParser(**parser_kwargs)
+ parser.add_argument(
+ "-n",
+ "--name",
+ type=str,
+ const=True,
+ default="",
+ nargs="?",
+ help="postfix for logdir",
+ )
+ parser.add_argument(
+ "-r",
+ "--resume",
+ type=str,
+ const=True,
+ default="",
+ nargs="?",
+ help="resume from logdir or checkpoint in logdir",
+ )
+ parser.add_argument(
+ "-b",
+ "--base",
+ nargs="*",
+ metavar="base_config.yaml",
+ help="paths to base configs. Loaded from left-to-right. "
+ "Parameters can be overwritten or added with command-line options of the form `--key value`.",
+ default=list(),
+ )
+ parser.add_argument(
+ "-t",
+ "--train",
+ type=str2bool,
+ const=True,
+ default=False,
+ nargs="?",
+ help="train",
+ )
+ parser.add_argument(
+ "--no-test",
+ type=str2bool,
+ const=True,
+ default=False,
+ nargs="?",
+ help="disable test",
+ )
+ parser.add_argument(
+ "-p",
+ "--project",
+ help="name of new or path to existing project"
+ )
+ parser.add_argument(
+ "-d",
+ "--debug",
+ type=str2bool,
+ nargs="?",
+ const=True,
+ default=False,
+ help="enable post-mortem debugging",
+ )
+ parser.add_argument(
+ "-s",
+ "--seed",
+ type=int,
+ default=23,
+ help="seed for seed_everything",
+ )
+ parser.add_argument(
+ "-f",
+ "--postfix",
+ type=str,
+ default="",
+ help="post-postfix for default name",
+ )
+ parser.add_argument(
+ "-l",
+ "--logdir",
+ type=str,
+ default="logs",
+ help="directory for logging dat shit",
+ )
+ parser.add_argument(
+ "--scale_lr",
+ type=str2bool,
+ nargs="?",
+ const=True,
+ default=True,
+ help="scale base-lr by ngpu * batch_size * n_accumulate",
+ )
+
+ parser.add_argument(
+ "--datadir_in_name",
+ type=str2bool,
+ nargs="?",
+ const=True,
+ default=True,
+ help="Prepend the final directory in the data_root to the output directory name")
+
+ parser.add_argument("--actual_resume", type=str, default="", help="Path to model to actually resume from")
+ parser.add_argument("--data_root", type=str, required=True, help="Path to directory with training images")
+
+ parser.add_argument("--embedding_manager_ckpt", type=str, default="", help="Initialize embedding manager from a checkpoint")
+ parser.add_argument("--placeholder_tokens", type=str, nargs="+", default=["*"])
+
+ parser.add_argument("--init_word", type=str, help="Word to use as source for initial token embedding.")
+
+ return parser
+
+
+def nondefault_trainer_args(opt):
+ parser = argparse.ArgumentParser()
+ parser = Trainer.add_argparse_args(parser)
+ args = parser.parse_args([])
+ return sorted(k for k in vars(args) if getattr(opt, k) != getattr(args, k))
+
+
+class WrappedDataset(Dataset):
+ """Wraps an arbitrary object with __len__ and __getitem__ into a pytorch dataset"""
+
+ def __init__(self, dataset):
+ self.data = dataset
+
+ def __len__(self):
+ return len(self.data)
+
+ def __getitem__(self, idx):
+ return self.data[idx]
+
+
+def worker_init_fn(_):
+ worker_info = torch.utils.data.get_worker_info()
+
+ dataset = worker_info.dataset
+ worker_id = worker_info.id
+
+ if isinstance(dataset, Txt2ImgIterableBaseDataset):
+ split_size = dataset.num_records // worker_info.num_workers
+ # reset num_records to the true number to retain reliable length information
+ dataset.sample_ids = dataset.valid_ids[worker_id * split_size:(worker_id + 1) * split_size]
+ current_id = np.random.choice(len(np.random.get_state()[1]), 1)
+ return np.random.seed(np.random.get_state()[1][current_id] + worker_id)
+ else:
+ return np.random.seed(np.random.get_state()[1][0] + worker_id)
+
+
+class DataModuleFromConfig(pl.LightningDataModule):
+ def __init__(self, batch_size, train=None, validation=None, test=None, predict=None,
+ wrap=False, num_workers=None, shuffle_test_loader=False, use_worker_init_fn=False,
+ shuffle_val_dataloader=False):
+ super().__init__()
+ self.batch_size = batch_size
+ self.dataset_configs = dict()
+ self.num_workers = num_workers if num_workers is not None else batch_size * 2
+ self.use_worker_init_fn = use_worker_init_fn
+ if train is not None:
+ self.dataset_configs["train"] = train
+ self.train_dataloader = self._train_dataloader
+ if validation is not None:
+ self.dataset_configs["validation"] = validation
+ self.val_dataloader = partial(self._val_dataloader, shuffle=shuffle_val_dataloader)
+ if test is not None:
+ self.dataset_configs["test"] = test
+ self.test_dataloader = partial(self._test_dataloader, shuffle=shuffle_test_loader)
+ if predict is not None:
+ self.dataset_configs["predict"] = predict
+ self.predict_dataloader = self._predict_dataloader
+ self.wrap = wrap
+
+ def prepare_data(self):
+ for data_cfg in self.dataset_configs.values():
+ instantiate_from_config(data_cfg)
+
+ def setup(self, stage=None):
+ self.datasets = dict(
+ (k, instantiate_from_config(self.dataset_configs[k]))
+ for k in self.dataset_configs)
+ if self.wrap:
+ for k in self.datasets:
+ self.datasets[k] = WrappedDataset(self.datasets[k])
+
+ def _train_dataloader(self):
+ is_iterable_dataset = isinstance(self.datasets['train'], Txt2ImgIterableBaseDataset)
+ if is_iterable_dataset or self.use_worker_init_fn:
+ init_fn = worker_init_fn
+ else:
+ init_fn = None
+ return DataLoader(self.datasets["train"], batch_size=self.batch_size,
+ num_workers=self.num_workers, shuffle=False if is_iterable_dataset else True,
+ worker_init_fn=init_fn)
+
+ def _val_dataloader(self, shuffle=False):
+ if isinstance(self.datasets['validation'], Txt2ImgIterableBaseDataset) or self.use_worker_init_fn:
+ init_fn = worker_init_fn
+ else:
+ init_fn = None
+ return DataLoader(self.datasets["validation"],
+ batch_size=self.batch_size,
+ num_workers=self.num_workers,
+ worker_init_fn=init_fn,
+ shuffle=shuffle)
+
+ def _test_dataloader(self, shuffle=False):
+ is_iterable_dataset = isinstance(self.datasets['train'], Txt2ImgIterableBaseDataset)
+ if is_iterable_dataset or self.use_worker_init_fn:
+ init_fn = worker_init_fn
+ else:
+ init_fn = None
+
+ # do not shuffle dataloader for iterable dataset
+ shuffle = shuffle and (not is_iterable_dataset)
+
+ return DataLoader(self.datasets["test"], batch_size=self.batch_size,
+ num_workers=self.num_workers, worker_init_fn=init_fn, shuffle=shuffle)
+
+ def _predict_dataloader(self, shuffle=False):
+ if isinstance(self.datasets['predict'], Txt2ImgIterableBaseDataset) or self.use_worker_init_fn:
+ init_fn = worker_init_fn
+ else:
+ init_fn = None
+ return DataLoader(self.datasets["predict"], batch_size=self.batch_size,
+ num_workers=self.num_workers, worker_init_fn=init_fn)
+
+
+class SetupCallback(Callback):
+ def __init__(self, resume, now, logdir, ckptdir, cfgdir, config, lightning_config):
+ super().__init__()
+ self.resume = resume
+ self.now = now
+ self.logdir = logdir
+ self.ckptdir = ckptdir
+ self.cfgdir = cfgdir
+ self.config = config
+ self.lightning_config = lightning_config
+
+ def on_keyboard_interrupt(self, trainer, pl_module):
+ if trainer.global_rank == 0:
+ print("Summoning checkpoint.")
+ ckpt_path = os.path.join(self.ckptdir, "last.ckpt")
+ trainer.save_checkpoint(ckpt_path)
+
+ def on_pretrain_routine_start(self, trainer, pl_module):
+ if trainer.global_rank == 0:
+ # Create logdirs and save configs
+ os.makedirs(self.logdir, exist_ok=True)
+ os.makedirs(self.ckptdir, exist_ok=True)
+ os.makedirs(self.cfgdir, exist_ok=True)
+
+ if "callbacks" in self.lightning_config:
+ if 'metrics_over_trainsteps_checkpoint' in self.lightning_config['callbacks']:
+ os.makedirs(os.path.join(self.ckptdir, 'trainstep_checkpoints'), exist_ok=True)
+ print("Project config")
+ print(OmegaConf.to_yaml(self.config))
+ OmegaConf.save(self.config,
+ os.path.join(self.cfgdir, "{}-project.yaml".format(self.now)))
+
+ print("Lightning config")
+ print(OmegaConf.to_yaml(self.lightning_config))
+ OmegaConf.save(OmegaConf.create({"lightning": self.lightning_config}),
+ os.path.join(self.cfgdir, "{}-lightning.yaml".format(self.now)))
+
+ else:
+ # ModelCheckpoint callback created log directory --- remove it
+ if not self.resume and os.path.exists(self.logdir):
+ dst, name = os.path.split(self.logdir)
+ dst = os.path.join(dst, "child_runs", name)
+ os.makedirs(os.path.split(dst)[0], exist_ok=True)
+ try:
+ os.rename(self.logdir, dst)
+ except FileNotFoundError:
+ pass
+
+
+class ImageLogger(Callback):
+ def __init__(self, batch_frequency, max_images, clamp=True, increase_log_steps=True,
+ rescale=True, disabled=False, log_on_batch_idx=False, log_first_step=False,
+ log_images_kwargs=None):
+ super().__init__()
+ self.rescale = rescale
+ self.batch_freq = batch_frequency
+ self.max_images = max_images
+ self.logger_log_images = {
+ pl.loggers.TestTubeLogger: self._testtube,
+ }
+ self.log_steps = [2 ** n for n in range(int(np.log2(self.batch_freq)) + 1)]
+ if not increase_log_steps:
+ self.log_steps = [self.batch_freq]
+ self.clamp = clamp
+ self.disabled = disabled
+ self.log_on_batch_idx = log_on_batch_idx
+ self.log_images_kwargs = log_images_kwargs if log_images_kwargs else {}
+ self.log_first_step = log_first_step
+
+ @rank_zero_only
+ def _testtube(self, pl_module, images, batch_idx, split):
+ for k in images:
+ grid = torchvision.utils.make_grid(images[k])
+ grid = (grid + 1.0) / 2.0 # -1,1 -> 0,1; c,h,w
+
+ tag = f"{split}/{k}"
+ pl_module.logger.experiment.add_image(
+ tag, grid,
+ global_step=pl_module.global_step)
+
+ @rank_zero_only
+ def log_local(self, save_dir, split, images,
+ global_step, current_epoch, batch_idx):
+ root = os.path.join(save_dir, "images", split)
+ for k in images:
+ grid = torchvision.utils.make_grid(images[k], nrow=4)
+ if self.rescale:
+ grid = (grid + 1.0) / 2.0 # -1,1 -> 0,1; c,h,w
+ grid = grid.transpose(0, 1).transpose(1, 2).squeeze(-1)
+ grid = grid.numpy()
+ grid = (grid * 255).astype(np.uint8)
+ filename = "{}_gs-{:06}_e-{:06}_b-{:06}.jpg".format(
+ k,
+ global_step,
+ current_epoch,
+ batch_idx)
+ path = os.path.join(root, filename)
+ os.makedirs(os.path.split(path)[0], exist_ok=True)
+ Image.fromarray(grid).save(path)
+
+ def log_img(self, pl_module, batch, batch_idx, split="train"):
+ check_idx = batch_idx if self.log_on_batch_idx else pl_module.global_step
+ if (self.check_frequency(check_idx) and # batch_idx % self.batch_freq == 0
+ hasattr(pl_module, "log_images") and
+ callable(pl_module.log_images) and
+ self.max_images > 0):
+ logger = type(pl_module.logger)
+
+ is_train = pl_module.training
+ if is_train:
+ pl_module.eval()
+
+ with torch.no_grad():
+ images = pl_module.log_images(batch, split=split, **self.log_images_kwargs)
+
+ for k in images:
+ N = min(images[k].shape[0], self.max_images)
+ images[k] = images[k][:N]
+ if isinstance(images[k], torch.Tensor):
+ images[k] = images[k].detach().cpu()
+ if self.clamp:
+ images[k] = torch.clamp(images[k], -1., 1.)
+
+ self.log_local(pl_module.logger.save_dir, split, images,
+ pl_module.global_step, pl_module.current_epoch, batch_idx)
+
+ logger_log_images = self.logger_log_images.get(logger, lambda *args, **kwargs: None)
+ logger_log_images(pl_module, images, pl_module.global_step, split)
+
+ if is_train:
+ pl_module.train()
+
+ def check_frequency(self, check_idx):
+ if ((check_idx % self.batch_freq) == 0 or (check_idx in self.log_steps)) and (
+ check_idx > 0 or self.log_first_step):
+ try:
+ self.log_steps.pop(0)
+ except IndexError as e:
+ print(e)
+ pass
+ return True
+ return False
+
+ def on_train_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx):
+ if not self.disabled and (pl_module.global_step > 0 or self.log_first_step):
+ self.log_img(pl_module, batch, batch_idx, split="train")
+
+ def on_validation_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx):
+ if not self.disabled and pl_module.global_step > 0:
+ self.log_img(pl_module, batch, batch_idx, split="val")
+ if hasattr(pl_module, 'calibrate_grad_norm'):
+ if (pl_module.calibrate_grad_norm and batch_idx % 25 == 0) and batch_idx > 0:
+ self.log_gradients(trainer, pl_module, batch_idx=batch_idx)
+
+
+class CUDACallback(Callback):
+ # see https://github.com/SeanNaren/minGPT/blob/master/mingpt/callback.py
+ def on_train_epoch_start(self, trainer, pl_module):
+ # Reset the memory use counter
+ torch.cuda.reset_peak_memory_stats(trainer.root_gpu)
+ torch.cuda.synchronize(trainer.root_gpu)
+ self.start_time = time.time()
+
+ def on_train_epoch_end(self, trainer, pl_module):
+ torch.cuda.synchronize(trainer.root_gpu)
+ max_memory = torch.cuda.max_memory_allocated(trainer.root_gpu) / 2 ** 20
+ epoch_time = time.time() - self.start_time
+
+ try:
+ max_memory = trainer.training_type_plugin.reduce(max_memory)
+ epoch_time = trainer.training_type_plugin.reduce(epoch_time)
+
+ rank_zero_info(f"Average Epoch time: {epoch_time:.2f} seconds")
+ rank_zero_info(f"Average Peak memory {max_memory:.2f}MiB")
+ except AttributeError:
+ pass
+
+
+if __name__ == "__main__":
+ # custom parser to specify config files, train, test and debug mode,
+ # postfix, resume.
+ # `--key value` arguments are interpreted as arguments to the trainer.
+ # `nested.key=value` arguments are interpreted as config parameters.
+ # configs are merged from left-to-right followed by command line parameters.
+
+ # model:
+ # base_learning_rate: float
+ # target: path to lightning module
+ # params:
+ # key: value
+ # data:
+ # target: main.DataModuleFromConfig
+ # params:
+ # batch_size: int
+ # wrap: bool
+ # train:
+ # target: path to train dataset
+ # params:
+ # key: value
+ # validation:
+ # target: path to validation dataset
+ # params:
+ # key: value
+ # test:
+ # target: path to test dataset
+ # params:
+ # key: value
+ # lightning: (optional, has sane defaults and can be specified on cmdline)
+ # trainer:
+ # additional arguments to trainer
+ # logger:
+ # logger to instantiate
+ # modelcheckpoint:
+ # modelcheckpoint to instantiate
+ # callbacks:
+ # callback1:
+ # target: importpath
+ # params:
+ # key: value
+
+ now = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S")
+
+ # add cwd for convenience and to make classes in this file available when
+ # running as `python main.py`
+ # (in particular `main.DataModuleFromConfig`)
+ sys.path.append(os.getcwd())
+
+ parser = get_parser()
+ parser = Trainer.add_argparse_args(parser)
+
+ opt, unknown = parser.parse_known_args()
+ if opt.name and opt.resume:
+ raise ValueError(
+ "-n/--name and -r/--resume cannot be specified both."
+ "If you want to resume training in a new log folder, "
+ "use -n/--name in combination with --resume_from_checkpoint"
+ )
+ if opt.resume:
+ if not os.path.exists(opt.resume):
+ raise ValueError("Cannot find {}".format(opt.resume))
+ if os.path.isfile(opt.resume):
+ paths = opt.resume.split("/")
+ # idx = len(paths)-paths[::-1].index("logs")+1
+ # logdir = "/".join(paths[:idx])
+ logdir = "/".join(paths[:-2])
+ ckpt = opt.resume
+ else:
+ assert os.path.isdir(opt.resume), opt.resume
+ logdir = opt.resume.rstrip("/")
+ ckpt = os.path.join(logdir, "checkpoints", "last.ckpt")
+
+ opt.resume_from_checkpoint = ckpt
+ base_configs = sorted(glob.glob(os.path.join(logdir, "configs/*.yaml")))
+ opt.base = base_configs + opt.base
+ _tmp = logdir.split("/")
+ nowname = _tmp[-1]
+ else:
+ if opt.name:
+ name = "_" + opt.name
+ elif opt.base:
+ cfg_fname = os.path.split(opt.base[0])[-1]
+ cfg_name = os.path.splitext(cfg_fname)[0]
+ name = "_" + cfg_name
+ else:
+ name = ""
+
+ if opt.datadir_in_name:
+ now = os.path.basename(os.path.normpath(opt.data_root)) + now
+
+ nowname = now + name + opt.postfix
+ logdir = os.path.join(opt.logdir, nowname)
+
+ ckptdir = os.path.join(logdir, "checkpoints")
+ cfgdir = os.path.join(logdir, "configs")
+ seed_everything(opt.seed)
+
+ try:
+ # init and save configs
+ configs = [OmegaConf.load(cfg) for cfg in opt.base]
+ cli = OmegaConf.from_dotlist(unknown)
+ config = OmegaConf.merge(*configs, cli)
+ lightning_config = config.pop("lightning", OmegaConf.create())
+ # merge trainer cli with config
+ trainer_config = lightning_config.get("trainer", OmegaConf.create())
+ # default to ddp
+ trainer_config["accelerator"] = "ddp"
+ for k in nondefault_trainer_args(opt):
+ trainer_config[k] = getattr(opt, k)
+ if not "gpus" in trainer_config:
+ del trainer_config["accelerator"]
+ cpu = True
+ else:
+ gpuinfo = trainer_config["gpus"]
+ print(f"Running on GPUs {gpuinfo}")
+ cpu = False
+ trainer_opt = argparse.Namespace(**trainer_config)
+ lightning_config.trainer = trainer_config
+
+ # model
+
+ # config.model.params.personalization_config.params.init_word = opt.init_word
+ config.model.params.personalization_config.params.embedding_manager_ckpt = opt.embedding_manager_ckpt
+ config.model.params.personalization_config.params.placeholder_tokens = opt.placeholder_tokens
+
+ if opt.init_word:
+ config.model.params.personalization_config.params.initializer_words[0] = opt.init_word
+
+ if opt.actual_resume:
+ model = load_model_from_config(config, opt.actual_resume)
+ else:
+ model = instantiate_from_config(config.model)
+
+ # trainer and callbacks
+ trainer_kwargs = dict()
+
+ # default logger configs
+ default_logger_cfgs = {
+ "wandb": {
+ "target": "pytorch_lightning.loggers.WandbLogger",
+ "params": {
+ "name": nowname,
+ "save_dir": logdir,
+ "offline": opt.debug,
+ "id": nowname,
+ }
+ },
+ "testtube": {
+ "target": "pytorch_lightning.loggers.TestTubeLogger",
+ "params": {
+ "name": "testtube",
+ "save_dir": logdir,
+ }
+ },
+ }
+ default_logger_cfg = default_logger_cfgs["testtube"]
+ if "logger" in lightning_config:
+ logger_cfg = lightning_config.logger
+ else:
+ logger_cfg = OmegaConf.create()
+ logger_cfg = OmegaConf.merge(default_logger_cfg, logger_cfg)
+ trainer_kwargs["logger"] = instantiate_from_config(logger_cfg)
+
+ # modelcheckpoint - use TrainResult/EvalResult(checkpoint_on=metric) to
+ # specify which metric is used to determine best models
+ default_modelckpt_cfg = {
+ "target": "pytorch_lightning.callbacks.ModelCheckpoint",
+ "params": {
+ "dirpath": ckptdir,
+ "filename": "{epoch:06}",
+ "verbose": True,
+ "save_last": True,
+ }
+ }
+ if hasattr(model, "monitor"):
+ print(f"Monitoring {model.monitor} as checkpoint metric.")
+ default_modelckpt_cfg["params"]["monitor"] = model.monitor
+ default_modelckpt_cfg["params"]["save_top_k"] = 1
+
+ if "modelcheckpoint" in lightning_config:
+ modelckpt_cfg = lightning_config.modelcheckpoint
+ else:
+ modelckpt_cfg = OmegaConf.create()
+ modelckpt_cfg = OmegaConf.merge(default_modelckpt_cfg, modelckpt_cfg)
+ print(f"Merged modelckpt-cfg: \n{modelckpt_cfg}")
+ if version.parse(pl.__version__) < version.parse('1.4.0'):
+ trainer_kwargs["checkpoint_callback"] = instantiate_from_config(modelckpt_cfg)
+
+ # add callback which sets up log directory
+ default_callbacks_cfg = {
+ "setup_callback": {
+ "target": "main.SetupCallback",
+ "params": {
+ "resume": opt.resume,
+ "now": now,
+ "logdir": logdir,
+ "ckptdir": ckptdir,
+ "cfgdir": cfgdir,
+ "config": config,
+ "lightning_config": lightning_config,
+ }
+ },
+ "image_logger": {
+ "target": "main.ImageLogger",
+ "params": {
+ "batch_frequency": 750,
+ "max_images": 4,
+ "clamp": True
+ }
+ },
+ "learning_rate_logger": {
+ "target": "main.LearningRateMonitor",
+ "params": {
+ "logging_interval": "step",
+ # "log_momentum": True
+ }
+ },
+ "cuda_callback": {
+ "target": "main.CUDACallback"
+ },
+ }
+ if version.parse(pl.__version__) >= version.parse('1.4.0'):
+ default_callbacks_cfg.update({'checkpoint_callback': modelckpt_cfg})
+
+ if "callbacks" in lightning_config:
+ callbacks_cfg = lightning_config.callbacks
+ else:
+ callbacks_cfg = OmegaConf.create()
+
+ if 'metrics_over_trainsteps_checkpoint' in callbacks_cfg:
+ print(
+ 'Caution: Saving checkpoints every n train steps without deleting. This might require some free space.')
+ default_metrics_over_trainsteps_ckpt_dict = {
+ 'metrics_over_trainsteps_checkpoint':
+ {"target": 'pytorch_lightning.callbacks.ModelCheckpoint',
+ 'params': {
+ "dirpath": os.path.join(ckptdir, 'trainstep_checkpoints'),
+ "filename": "{epoch:06}-{step:09}",
+ "verbose": True,
+ 'save_top_k': -1,
+ 'every_n_train_steps': 10000,
+ 'save_weights_only': True
+ }
+ }
+ }
+ default_callbacks_cfg.update(default_metrics_over_trainsteps_ckpt_dict)
+
+ callbacks_cfg = OmegaConf.merge(default_callbacks_cfg, callbacks_cfg)
+ if 'ignore_keys_callback' in callbacks_cfg and hasattr(trainer_opt, 'resume_from_checkpoint'):
+ callbacks_cfg.ignore_keys_callback.params['ckpt_path'] = trainer_opt.resume_from_checkpoint
+ elif 'ignore_keys_callback' in callbacks_cfg:
+ del callbacks_cfg['ignore_keys_callback']
+
+ trainer_kwargs["callbacks"] = [instantiate_from_config(callbacks_cfg[k]) for k in callbacks_cfg]
+ trainer_kwargs["max_steps"] = opt.max_steps if opt.max_steps is not None else trainer_opt.max_steps
+
+ trainer = Trainer.from_argparse_args(trainer_opt, **trainer_kwargs)
+ trainer.logdir = logdir ###
+
+ # data
+ config.data.params.train.params.data_root = opt.data_root
+ config.data.params.validation.params.data_root = opt.data_root
+ data = instantiate_from_config(config.data)
+
+ data = instantiate_from_config(config.data)
+ # NOTE according to https://pytorch-lightning.readthedocs.io/en/latest/datamodules.html
+ # calling these ourselves should not be necessary but it is.
+ # lightning still takes care of proper multiprocessing though
+ data.prepare_data()
+ data.setup()
+ print("#### Data #####")
+ for k in data.datasets:
+ print(f"{k}, {data.datasets[k].__class__.__name__}, {len(data.datasets[k])}")
+
+ # configure learning rate
+ bs, base_lr = config.data.params.batch_size, config.model.base_learning_rate
+ if not cpu:
+ ngpu = len(lightning_config.trainer.gpus.strip(",").split(','))
+ else:
+ ngpu = 1
+ if 'accumulate_grad_batches' in lightning_config.trainer:
+ accumulate_grad_batches = lightning_config.trainer.accumulate_grad_batches
+ else:
+ accumulate_grad_batches = 1
+ print(f"accumulate_grad_batches = {accumulate_grad_batches}")
+ lightning_config.trainer.accumulate_grad_batches = accumulate_grad_batches
+ if opt.scale_lr:
+ model.learning_rate = accumulate_grad_batches * ngpu * bs * base_lr
+ print(
+ "Setting learning rate to {:.2e} = {} (accumulate_grad_batches) * {} (num_gpus) * {} (batchsize) * {:.2e} (base_lr)".format(
+ model.learning_rate, accumulate_grad_batches, ngpu, bs, base_lr))
+ else:
+ model.learning_rate = base_lr
+ print("++++ NOT USING LR SCALING ++++")
+ print(f"Setting learning rate to {model.learning_rate:.2e}")
+
+
+ # allow checkpointing via USR1
+ def melk(*args, **kwargs):
+ # run all checkpoint hooks
+ if trainer.global_rank == 0:
+ print("Summoning checkpoint.")
+ ckpt_path = os.path.join(ckptdir, "last.ckpt")
+ trainer.save_checkpoint(ckpt_path)
+
+
+ def divein(*args, **kwargs):
+ if trainer.global_rank == 0:
+ import pudb;
+ pudb.set_trace()
+
+
+ import signal
+
+ signal.signal(signal.SIGUSR1, melk)
+ signal.signal(signal.SIGUSR2, divein)
+
+ # run
+ if opt.train:
+ try:
+ # set_trace()
+ trainer.fit(model, data)
+ except Exception:
+ melk()
+ raise
+ if not opt.no_test and not trainer.interrupted:
+ trainer.test(model, data)
+ except Exception:
+ if opt.debug and trainer.global_rank == 0:
+ try:
+ import pudb as debugger
+ except ImportError:
+ import pdb as debugger
+ debugger.post_mortem()
+ raise
+ finally:
+ # move newly created debug project to debug_runs
+ if opt.debug and not opt.resume and trainer.global_rank == 0:
+ dst, name = os.path.split(logdir)
+ dst = os.path.join(dst, "debug_runs", name)
+ os.makedirs(os.path.split(dst)[0], exist_ok=True)
+ os.rename(logdir, dst)
+ if trainer.global_rank == 0:
+ print(trainer.profiler.summary())
diff --git a/sd1/merge_embeddings.py b/sd1/merge_embeddings.py
new file mode 100644
index 0000000000000000000000000000000000000000..61d90786957c3f32bfdade0d31e1769a58f3e85a
--- /dev/null
+++ b/sd1/merge_embeddings.py
@@ -0,0 +1,111 @@
+from ldm.modules.encoders.modules import FrozenCLIPEmbedder, BERTEmbedder
+from ldm.modules.embedding_manager import EmbeddingManager
+
+import argparse, os
+from functools import partial
+
+import torch
+
+def get_placeholder_loop(placeholder_string, embedder, is_sd):
+
+ new_placeholder = None
+
+ while True:
+ if new_placeholder is None:
+ new_placeholder = input(f"Placeholder string {placeholder_string} was already used. Please enter a replacement string: ")
+ else:
+ new_placeholder = input(f"Placeholder string '{new_placeholder}' maps to more than a single token. Please enter another string: ")
+
+ token = get_clip_token_for_string(embedder.tokenizer, new_placeholder) if is_sd else get_bert_token_for_string(embedder.tknz_fn, new_placeholder)
+
+ if token is not None:
+ return new_placeholder, token
+
+def get_clip_token_for_string(tokenizer, string):
+ batch_encoding = tokenizer(string, truncation=True, max_length=77, return_length=True,
+ return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
+ tokens = batch_encoding["input_ids"]
+
+ if torch.count_nonzero(tokens - 49407) == 2:
+ return tokens[0, 1]
+
+ return None
+
+def get_bert_token_for_string(tokenizer, string):
+ token = tokenizer(string)
+ if torch.count_nonzero(token) == 3:
+ return token[0, 1]
+
+ return None
+
+
+if __name__ == "__main__":
+
+ parser = argparse.ArgumentParser()
+
+ parser.add_argument(
+ "--manager_ckpts",
+ type=str,
+ nargs="+",
+ required=True,
+ help="Paths to a set of embedding managers to be merged."
+ )
+
+ parser.add_argument(
+ "--output_path",
+ type=str,
+ required=True,
+ help="Output path for the merged manager",
+ )
+
+ parser.add_argument(
+ "-sd", "--stable_diffusion",
+ action="store_true",
+ help="Flag to denote that we are merging stable diffusion embeddings"
+ )
+
+ args = parser.parse_args()
+
+ if args.stable_diffusion:
+ embedder = FrozenCLIPEmbedder().cuda()
+ else:
+ embedder = BERTEmbedder(n_embed=1280, n_layer=32).cuda()
+
+ EmbeddingManager = partial(EmbeddingManager, embedder, ["*"])
+
+ string_to_token_dict = {}
+ string_to_param_dict = torch.nn.ParameterDict()
+
+ placeholder_to_src = {}
+
+ for manager_ckpt in args.manager_ckpts:
+ print(f"Parsing {manager_ckpt}...")
+
+ manager = EmbeddingManager()
+ manager.load(manager_ckpt)
+
+ for placeholder_string in manager.string_to_token_dict:
+ if not placeholder_string in string_to_token_dict:
+ string_to_token_dict[placeholder_string] = manager.string_to_token_dict[placeholder_string]
+ string_to_param_dict[placeholder_string] = manager.string_to_param_dict[placeholder_string]
+
+ placeholder_to_src[placeholder_string] = manager_ckpt
+ else:
+ new_placeholder, new_token = get_placeholder_loop(placeholder_string, embedder, is_sd=args.stable_diffusion)
+ string_to_token_dict[new_placeholder] = new_token
+ string_to_param_dict[new_placeholder] = manager.string_to_param_dict[placeholder_string]
+
+ placeholder_to_src[new_placeholder] = manager_ckpt
+
+ print("Saving combined manager...")
+ merged_manager = EmbeddingManager()
+ merged_manager.string_to_param_dict = string_to_param_dict
+ merged_manager.string_to_token_dict = string_to_token_dict
+ merged_manager.save(args.output_path)
+
+ print("Managers merged. Final list of placeholders: ")
+ print(placeholder_to_src)
+
+
+
+
\ No newline at end of file
diff --git a/vis_cam.py b/vis_cam.py
new file mode 100644
index 0000000000000000000000000000000000000000..6af57cdcfaa13b871d805cc5831c5256cc199161
--- /dev/null
+++ b/vis_cam.py
@@ -0,0 +1,124 @@
+import json
+import numpy as np
+from numpy.linalg import inv
+from pathlib import Path
+import imageio
+import open3d as o3d
+
+from hc3d.vis import CameraCone
+from hc3d.render import compute_intrinsics, unproject
+from hc3d.utils import batch_img_resize
+from fabric.utils.seed import seed_everything
+
+
+def get_K(H=500, W=500, fov=60):
+ K = compute_intrinsics(W / H, fov, H)
+ return K
+
+
+def shoot_rays(K, pose):
+ h = 200
+ pixs = np.array([
+ [10, h],
+ [200, h],
+ [400, h]
+ ])
+ pts = unproject(K, pixs, depth=1.0)
+ pts = np.concatenate([
+ pts,
+ np.array([0, 0, 0, 1]).reshape(1, -1),
+ ], axis=0) # origin, followed by 4 img corners
+ pts = pts @ pose.T
+ pts = pts[:, :3]
+ pts = pts.astype(np.float32)
+
+ n = len(pixs)
+ lines = np.array([
+ [i, n] for i in range(n)
+ ], dtype=np.int32)
+
+ color = [1, 1, 0]
+ colors = np.array([color] * len(lines), dtype=np.float32)
+
+ lset = o3d.t.geometry.LineSet()
+ lset.point['positions'] = pts
+ lset.line['indices'] = lines
+ lset.line['colors'] = colors
+
+ return lset
+
+
+def test_rays(H, W, K):
+ xs, ys = np.meshgrid(
+ np.arange(W, dtype=np.float32),
+ np.arange(H, dtype=np.float32), indexing='xy'
+ )
+ xys = np.stack([xs, ys], axis=-1)
+ my_rays = unproject(K, xys.reshape(-1, 2))
+ my_rays = my_rays.reshape(int(H), int(W), 4)[:, :, :3]
+ return
+
+
+def plot_inward_facing_views():
+ # from run_sjc import get_train_poses
+ from math import pi
+ from pose import Poser
+ H, W = 64, 64
+ poser = Poser(H, W, FoV=60, R=4)
+ # K, poses = poser.sample_test(100)
+ K, poses, _ = poser.sample_train(1000)
+ K = K[0]
+
+ cam_locs = poses[:, :3, -1]
+ # radius = np.linalg.norm(cam_locs, axis=1)
+ # print(f"scene radius {radius}")
+
+ # test_rays(H, W, K)
+
+ # K = get_K(H, W, 50)
+ # NeRF blender actually follows OpenGL camera convention (except top-left corner); nice
+ # but its world coordinate is z up. I find it strange.
+
+ def generate_cam(po, color, im=None):
+ cone = CameraCone(K, po, W, H, scale=0.1,
+ top_left_corner=(0, 0), color=color)
+ lset = cone.as_line_set()
+ if im is None:
+ return [lset]
+ else:
+ # o3d img tsr requires contiguous array
+ im = np.ascontiguousarray(im)
+ view_plane = cone.as_view_plane(im)
+ return [lset, view_plane]
+
+ cones = []
+
+ for i in range(len(poses)):
+ po = poses[i]
+ geom = generate_cam(po, [1, 0, 0])
+ cones.extend(geom)
+ # rays = shoot_rays(K, po)
+ # cones.extend([rays])
+
+ o3d.visualization.draw(cones, show_skybox=False)
+
+
+def blend_rgba(img):
+ img = img[..., :3] * img[..., -1:] + (1. - img[..., -1:]) # blend A to RGB
+ return img
+
+
+def compare():
+ import math
+ import matplotlib.pyplot as plt
+
+ vs = np.linspace(1e-5, math.pi - 1e-5, 500)
+ phi = np.arccos(1 - 2 * (vs / math.pi))
+ plt.plot(vs, phi)
+ plt.show()
+
+
+if __name__ == "__main__":
+ seed_everything(0)
+ plot_inward_facing_views()
+ # compare()
diff --git a/voxnerf/README.md b/voxnerf/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..f4e4d256e5b72615f5c7ca25cf4c66980ea093df
--- /dev/null
+++ b/voxnerf/README.md
@@ -0,0 +1,3 @@
+This is a custom implementation of voxel radiance field. The codebase
+is adapted from TensoRF but with fairly heavy changes; we do not use tensor factorization for simplicity.
+It achieves comparable performance to vanilla NeRF absent view dependencies.
diff --git a/voxnerf/__init__.py b/voxnerf/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/voxnerf/data.py b/voxnerf/data.py
new file mode 100644
index 0000000000000000000000000000000000000000..3faf1cbcd57fc5cd85de452ddfc4514f1d23e87a
--- /dev/null
+++ b/voxnerf/data.py
@@ -0,0 +1,46 @@
+from pathlib import Path
+import json
+import numpy as np
+import imageio
+from .utils import blend_rgba
+
+
+def load_blender(split, scene="lego", half_res=False):
+ assert split in ("train", "val", "test")
+
+ env_fname = Path(__file__).resolve().parents[1] / "env.json"
+ with env_fname.open("r") as f:
+ root = json.load(f)['data_root']
+ root = Path(root) / scene
+
+ with open(root / f'transforms_{split}.json', "r") as f:
+ meta = json.load(f)
+
+ imgs, poses = [], []
+
+ for frame in meta['frames']:
+ file_name = root / f"{frame['file_path']}.png"
+ im = imageio.imread(file_name)
+ c2w = frame['transform_matrix']
+
+ imgs.append(im)
+ poses.append(c2w)
+
+ imgs = (np.array(imgs) / 255.).astype(np.float32) # (RGBA) imgs
+ imgs = blend_rgba(imgs)
+ poses = np.array(poses).astype(np.float)
+
+ H, W = imgs[0].shape[:2]
+ camera_angle_x = float(meta['camera_angle_x'])
+ f = 1 / np.tan(camera_angle_x / 2) * (W / 2)
+
+ if half_res:
+ raise NotImplementedError()
+
+ K = np.array([
+ [f, 0, -(W/2 - 0.5)],
+ [0, -f, -(H/2 - 0.5)],
+ [0, 0, -1]
+ ]) # note OpenGL -ve z convention;
+
+ return imgs, K, poses
diff --git a/voxnerf/pipelines.py b/voxnerf/pipelines.py
new file mode 100644
index 0000000000000000000000000000000000000000..6c80cfcc82f13e5f4884d2d831f1c27e05fac589
--- /dev/null
+++ b/voxnerf/pipelines.py
@@ -0,0 +1,224 @@
+import numpy as np
+import torch
+import imageio
+
+from my.utils.tqdm import tqdm
+from my.utils.event import EventStorage, read_stats, get_event_storage
+from my.utils.heartbeat import HeartBeat, get_heartbeat
+from my.utils.debug import EarlyLoopBreak
+
+from .utils import PSNR, Scrambler, every, at
+from .data import load_blender
+from .render import (
+ as_torch_tsrs, scene_box_filter, render_ray_bundle, render_one_view, rays_from_img
+)
+from .vis import vis, stitch_vis
+
+
+device_glb = torch.device("cuda")
+
+
+def all_train_rays(scene):
+ imgs, K, poses = load_blender("train", scene)
+ num_imgs = len(imgs)
+ ro, rd, rgbs = [], [], []
+ for i in tqdm(range(num_imgs)):
+ img, pose = imgs[i], poses[i]
+ H, W = img.shape[:2]
+ _ro, _rd = rays_from_img(H, W, K, pose)
+ ro.append(_ro)
+ rd.append(_rd)
+ rgbs.append(img.reshape(-1, 3))
+
+ ro, rd, rgbs = [
+ np.concatenate(xs, axis=0) for xs in (ro, rd, rgbs)
+ ]
+ return ro, rd, rgbs
+
+
+class OneTestView():
+ def __init__(self, scene):
+ imgs, K, poses = load_blender("test", scene)
+ self.imgs, self.K, self.poses = imgs, K, poses
+ self.i = 0
+
+ def render(self, model):
+ i = self.i
+ img, K, pose = self.imgs[i], self.K, self.poses[i]
+ with torch.no_grad():
+ aabb = model.aabb.T.cpu().numpy()
+ H, W = img.shape[:2]
+ rgbs, depth = render_one_view(model, aabb, H, W, K, pose)
+ psnr = PSNR.psnr(img, rgbs)
+
+ self.i = (self.i + 1) % len(self.imgs)
+
+ return img, rgbs, depth, psnr
+
+
+def train(
+ model, n_epoch=2, bs=4096, lr=0.02, scene="lego"
+):
+ fuse = EarlyLoopBreak(500)
+
+ aabb = model.aabb.T.numpy()
+ model = model.to(device_glb)
+ optim = torch.optim.Adam(model.parameters(), lr=lr)
+
+ test_view = OneTestView(scene)
+ all_ro, all_rd, all_rgbs = all_train_rays(scene)
+
+ with tqdm(total=(n_epoch * len(all_ro) // bs)) as pbar, \
+ HeartBeat(pbar) as hbeat, EventStorage() as metric:
+
+ ro, rd, t_min, t_max, intsct_inds = scene_box_filter(all_ro, all_rd, aabb)
+ rgbs = all_rgbs[intsct_inds]
+
+ for epc in range(n_epoch):
+ n = len(ro)
+ scrambler = Scrambler(n)
+ ro, rd, t_min, t_max, rgbs = scrambler.apply(ro, rd, t_min, t_max, rgbs)
+
+ num_batch = int(np.ceil(n / bs))
+ for i in range(num_batch):
+ if fuse.on_break():
+ break
+
+ s = i * bs
+ e = min(n, s + bs)
+
+ optim.zero_grad()
+ _ro, _rd, _t_min, _t_max, _rgbs = as_torch_tsrs(
+ model.device, ro[s:e], rd[s:e], t_min[s:e], t_max[s:e], rgbs[s:e]
+ )
+ pred, _, _ = render_ray_bundle(model, _ro, _rd, _t_min, _t_max)
+ loss = ((pred - _rgbs) ** 2).mean()
+ loss.backward()
+ optim.step()
+
+ pbar.update()
+
+ psnr = PSNR.psnr_from_mse(loss.item())
+ metric.put_scalars(psnr=psnr, d_scale=model.d_scale.item())
+
+ if every(pbar, step=50):
+ pbar.set_description(f"TRAIN: psnr {psnr:.2f}")
+
+ if every(pbar, percent=1):
+ gimg, rimg, depth, psnr = test_view.render(model)
+ pane = vis(
+ gimg, rimg, depth,
+ msg=f"psnr: {psnr:.2f}", return_buffer=True
+ )
+ metric.put_artifact(
+ "vis", ".png", lambda fn: imageio.imwrite(fn, pane)
+ )
+
+ if at(pbar, percent=30):
+ model.make_alpha_mask()
+
+ if every(pbar, percent=35):
+ target_xyz = (model.grid_size * 1.328).int().tolist()
+ model.resample(target_xyz)
+ optim = torch.optim.Adam(model.parameters(), lr=lr)
+ print(f"resamp the voxel to {model.grid_size}")
+
+ curr_lr = update_lr(pbar, optim, lr)
+ metric.put_scalars(lr=curr_lr)
+
+ metric.step()
+ hbeat.beat()
+
+ metric.put_artifact(
+ "ckpt", ".pt", lambda fn: torch.save(model.state_dict(), fn)
+ )
+ # metric.step(flush=True) # no need to flush since the test routine directly takes the model
+
+ metric.put_artifact(
+ "train_seq", ".mp4",
+ lambda fn: stitch_vis(fn, read_stats(metric.output_dir, "vis")[1])
+ )
+
+ with EventStorage("test"):
+ final_psnr = test(model, scene)
+ metric.put("test_psnr", final_psnr)
+
+ metric.step()
+
+ hbeat.done()
+
+
+def update_lr(pbar, optimizer, init_lr):
+ i, N = pbar.n, pbar.total
+ factor = 0.1 ** (1 / N)
+ lr = init_lr * (factor ** i)
+ for param_group in optimizer.param_groups:
+ param_group['lr'] = lr
+ return lr
+
+
+def last_ckpt():
+ ts, ckpts = read_stats("./", "ckpt")
+ if len(ckpts) > 0:
+ fname = ckpts[-1]
+ last = torch.load(fname, map_location="cpu")
+ print(f"loaded ckpt from iter {ts[-1]}")
+ return last
+
+
+def __evaluate_ckpt(model, scene):
+ # this is for external script that needs to evaluate an checkpoint
+ # currently not used
+ metric = get_event_storage()
+
+ state = last_ckpt()
+ if state is not None:
+ model.load_state_dict(state)
+ model.to(device_glb)
+
+ with EventStorage("test"):
+ final_psnr = test(model, scene)
+ metric.put("test_psnr", final_psnr)
+
+
+def test(model, scene):
+ fuse = EarlyLoopBreak(5)
+ metric = get_event_storage()
+ hbeat = get_heartbeat()
+
+ aabb = model.aabb.T.cpu().numpy()
+ model = model.to(device_glb)
+
+ imgs, K, poses = load_blender("test", scene)
+ num_imgs = len(imgs)
+
+ stats = []
+
+ for i in (pbar := tqdm(range(num_imgs))):
+ if fuse.on_break():
+ break
+
+ img, pose = imgs[i], poses[i]
+ H, W = img.shape[:2]
+ rgbs, depth = render_one_view(model, aabb, H, W, K, pose)
+ psnr = PSNR.psnr(img, rgbs)
+
+ stats.append(psnr)
+ metric.put_scalars(psnr=psnr)
+ pbar.set_description(f"TEST: mean psnr {np.mean(stats):.2f}")
+
+ plot = vis(img, rgbs, depth, msg=f"PSNR: {psnr:.2f}", return_buffer=True)
+ metric.put_artifact("test_vis", ".png", lambda fn: imageio.imwrite(fn, plot))
+ metric.step()
+ hbeat.beat()
+
+ metric.put_artifact(
+ "test_seq", ".mp4",
+ lambda fn: stitch_vis(fn, read_stats(metric.output_dir, "test_vis")[1])
+ )
+
+ final_psnr = np.mean(stats)
+ metric.put("final_psnr", final_psnr)
+ metric.step()
+
+ return final_psnr
diff --git a/voxnerf/render.py b/voxnerf/render.py
new file mode 100644
index 0000000000000000000000000000000000000000..a69b529b035c247429d9ab824b4307c0b3c6d7bc
--- /dev/null
+++ b/voxnerf/render.py
@@ -0,0 +1,226 @@
+import numpy as np
+import torch
+from my3d import unproject
+
+
+def subpixel_rays_from_img(H, W, K, c2w_pose, normalize_dir=True, f=8):
+ assert c2w_pose[3, 3] == 1.
+ H, W = H * f, W * f
+ n = H * W
+ ys, xs = np.meshgrid(range(H), range(W), indexing="ij")
+ xy_coords = np.stack([xs, ys], axis=-1).reshape(n, 2)
+
+ top_left = np.array([-0.5, -0.5]) + 1 / (2 * f)
+ xy_coords = top_left + xy_coords / f
+
+ ro = c2w_pose[:, -1]
+ pts = unproject(K, xy_coords, depth=1)
+ pts = pts @ c2w_pose.T
+ rd = pts - ro
+ rd = rd[:, :3]
+ if normalize_dir:
+ rd = rd / np.linalg.norm(rd, axis=-1, keepdims=True)
+ ro = np.tile(ro[:3], (n, 1))
+ return ro, rd
+
+
+def rays_from_img(H, W, K, c2w_pose, normalize_dir=True):
+ assert c2w_pose[3, 3] == 1.
+ n = H * W
+ ys, xs = np.meshgrid(range(H), range(W), indexing="ij")
+ xy_coords = np.stack([xs, ys], axis=-1).reshape(n, 2)
+
+ ro = c2w_pose[:, -1]
+ pts = unproject(K, xy_coords, depth=1)
+ pts = pts @ c2w_pose.T
+ rd = pts - ro # equivalently can subtract [0,0,0,1] before pose transform
+ rd = rd[:, :3]
+ if normalize_dir:
+ rd = rd / np.linalg.norm(rd, axis=-1, keepdims=True)
+ ro = np.tile(ro[:3], (n, 1))
+ return ro, rd
+
+
+def ray_box_intersect(ro, rd, aabb):
+ """
+ Intersection of ray with axis-aligned bounding box
+ This routine works for arbitrary dimensions; commonly d = 2 or 3
+ only works for numpy, not torch (which has slightly diff api for min, max, and clone)
+
+ Args:
+ ro: [n, d] ray origin
+ rd: [n, d] ray direction (assumed to be already normalized;
+ if not still fine, meaning of t as time of flight holds true)
+ aabb: [d, 2] bbox bound on each dim
+ Return:
+ is_intersect: [n,] of bool, whether the particular ray intersects the bbox
+ t_min: [n,] ray entrance time
+ t_max: [n,] ray exit time
+ """
+ n = ro.shape[0]
+ d = aabb.shape[0]
+ assert aabb.shape == (d, 2)
+ assert ro.shape == (n, d) and rd.shape == (n, d)
+
+ rd = rd.copy()
+ rd[rd == 0] = 1e-6 # avoid div overflow; logically safe to give it big t
+
+ ro = ro.reshape(n, d, 1)
+ rd = rd.reshape(n, d, 1)
+ ts = (aabb - ro) / rd # [n, d, 2]
+ t_min = ts.min(-1).max(-1) # [n,] last of entrance
+ t_max = ts.max(-1).min(-1) # [n,] first of exit
+ is_intersect = t_min < t_max
+
+ return is_intersect, t_min, t_max
+
+
+def as_torch_tsrs(device, *args):
+ ret = []
+ for elem in args:
+ target_dtype = torch.float32 if np.issubdtype(elem.dtype, np.floating) else None
+ ret.append(
+ torch.as_tensor(elem, dtype=target_dtype, device=device)
+ )
+ return ret
+
+
+def group_mask_filter(mask, *items):
+ return [elem[mask] for elem in items]
+
+
+def mask_back_fill(tsr, N, inds, base_value=1.0):
+ shape = [N, *tsr.shape[1:]]
+ canvas = base_value * np.ones_like(tsr, shape=shape)
+ canvas[inds] = tsr
+ return canvas
+
+
+def render_one_view(model, aabb, H, W, K, pose):
+ N = H * W
+ bs = max(W * 5, 4096) # render 5 rows; original batch size 4096, now 4000;
+
+ ro, rd = rays_from_img(H, W, K, pose)
+ ro, rd, t_min, t_max, intsct_inds = scene_box_filter(ro, rd, aabb)
+ n = len(ro)
+ # print(f"{n} vs {N}") # n can be smaller than N since some rays do not intsct aabb
+
+ # n = n // 1 # actual number of rays to render; only needed for fast debugging
+
+ dev = model.device
+ ro, rd, t_min, t_max = as_torch_tsrs(dev, ro, rd, t_min, t_max)
+ rgbs = torch.zeros(n, 3, device=dev)
+ depth = torch.zeros(n, 1, device=dev)
+
+ with torch.no_grad():
+ for i in range(int(np.ceil(n / bs))):
+ s = i * bs
+ e = min(n, s + bs)
+ _rgbs, _depth, _ = render_ray_bundle(
+ model, ro[s:e], rd[s:e], t_min[s:e], t_max[s:e]
+ )
+ rgbs[s:e] = _rgbs
+ depth[s:e] = _depth
+
+ rgbs, depth = rgbs.cpu().numpy(), depth.cpu().numpy()
+
+ base_color = 1.0 # empty region needs to be white
+ rgbs = mask_back_fill(rgbs, N, intsct_inds, base_color).reshape(H, W, 3)
+ depth = mask_back_fill(depth, N, intsct_inds, base_color).reshape(H, W)
+ return rgbs, depth
+
+
+def scene_box_filter(ro, rd, aabb):
+ N = len(ro)
+ _, t_min, t_max = ray_box_intersect(ro, rd, aabb)
+ # do not render what's behind the ray origin
+ t_min, t_max = np.maximum(t_min, 0), np.maximum(t_max, 0)
+ # can test intersect logic by reducing the focal length
+ is_intsct = t_min < t_max
+ ro, rd, t_min, t_max = group_mask_filter(is_intsct, ro, rd, t_min, t_max)
+ intsct_inds = np.arange(N)[is_intsct]
+ return ro, rd, t_min, t_max, intsct_inds
+
+
+def render_ray_bundle(model, ro, rd, t_min, t_max):
+ """
+ The working shape is (k, n, 3) where k is num of samples per ray, n the ray batch size
+ During integration the reduction is applied on k
+
+ chain of filtering
+ starting with ro, rd (from cameras), and a scene bbox
+ - rays that do not intersect scene bbox; sample pts that fall outside the bbox
+ - samples that do not fall within alpha mask
+ - samples whose densities are very low; no need to compute colors on them
+ """
+ num_samples, step_size = model.get_num_samples((t_max - t_min).max())
+ n, k = len(ro), num_samples
+
+ ticks = step_size * torch.arange(k, device=ro.device)
+ ticks = ticks.view(k, 1, 1)
+ t_min = t_min.view(n, 1)
+ # t_min = t_min + step_size * torch.rand_like(t_min) # NOTE seems useless
+ t_max = t_max.view(n, 1)
+ dists = t_min + ticks # [n, 1], [k, 1, 1] -> [k, n, 1]
+ pts = ro + rd * dists # [n, 3], [n, 3], [k, n, 1] -> [k, n, 3]
+ mask = (ticks < (t_max - t_min)).squeeze(-1) # [k, 1, 1], [n, 1] -> [k, n, 1] -> [k, n]
+ smp_pts = pts[mask]
+
+ if model.alphaMask is not None:
+ alphas = model.alphaMask.sample_alpha(smp_pts)
+ alpha_mask = alphas > 0
+ mask[mask.clone()] = alpha_mask
+ smp_pts = pts[mask]
+
+ σ = torch.zeros(k, n, device=ro.device)
+ σ[mask] = model.compute_density_feats(smp_pts)
+ weights = volume_rend_weights(σ, step_size)
+ mask = weights > model.ray_march_weight_thres
+ smp_pts = pts[mask]
+
+ app_feats = model.compute_app_feats(smp_pts)
+ # viewdirs = rd.view(1, n, 3).expand(k, n, 3)[mask] # ray dirs for each point
+ # additional wild factors here as in nerf-w; wild factors are optimizable
+ c_dim = app_feats.shape[-1]
+ colors = torch.zeros(k, n, c_dim, device=ro.device)
+ colors[mask] = model.feats2color(app_feats)
+
+ weights = weights.view(k, n, 1) # can be used to compute other expected vals e.g. depth
+ bg_weight = 1. - weights.sum(dim=0) # [n, 1]
+
+ rgbs = (weights * colors).sum(dim=0) # [n, 3]
+
+ if model.blend_bg_texture:
+ uv = spherical_xyz_to_uv(rd)
+ bg_feats = model.compute_bg(uv)
+ bg_color = model.feats2color(bg_feats)
+ rgbs = rgbs + bg_weight * bg_color
+ else:
+ rgbs = rgbs + bg_weight * 1. # blend white bg color
+
+ # rgbs = rgbs.clamp(0, 1) # don't clamp since this is can be SD latent features
+
+ E_dists = (weights * dists).sum(dim=0)
+ bg_dist = 10. # blend bg distance; just don't make it too large
+ E_dists = E_dists + bg_weight * bg_dist
+ return rgbs, E_dists, weights.squeeze(-1)
+
+
+def spherical_xyz_to_uv(xyz):
+ # xyz is Tensor of shape [N, 3], uv in [-1, 1]
+ x, y, z = xyz.t() # [N]
+ xy = (x ** 2 + y ** 2) ** 0.5
+ u = torch.atan2(xy, z) / torch.pi # [N]
+ v = torch.atan2(y, x) / (torch.pi * 2) + 0.5 # [N]
+ uv = torch.stack([u, v], -1) # [N, 2]
+ uv = uv * 2 - 1 # [0, 1] -> [-1, 1]
+ return uv
+
+
+def volume_rend_weights(σ, dist):
+ α = 1 - torch.exp(-σ * dist)
+ T = torch.ones_like(α)
+ T[1:] = (1 - α).cumprod(dim=0)[:-1]
+ assert (T >= 0).all()
+ weights = α * T
+ return weights
diff --git a/voxnerf/utils.py b/voxnerf/utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..94c261098d65432c1b8ee7e3314918ebfbd06daf
--- /dev/null
+++ b/voxnerf/utils.py
@@ -0,0 +1,67 @@
+import numpy as np
+import math
+
+
+def blend_rgba(img):
+ img = img[..., :3] * img[..., -1:] + (1. - img[..., -1:]) # blend A to RGB
+ return img
+
+
+class PSNR():
+ @classmethod
+ def psnr(cls, ref, pred, max=1.0):
+ # if inputs of type int, then make sure max is 255
+ mse = ((ref - pred) ** 2).mean()
+ return cls.psnr_from_mse(mse, max)
+
+ @staticmethod
+ def psnr_from_mse(mse, max=1.0):
+ psnr = 20 * math.log10(max) - 10 * math.log10(mse)
+ return psnr
+
+ @staticmethod
+ def psnr_to_rms(psnr_diff):
+ """rms error improvement _ratio_ from psnr _diff_"""
+ ratio = 10 ** (-psnr_diff / 20)
+ return ratio
+
+
+class Scrambler():
+ def __init__(self, N):
+ self.perm = np.random.permutation(N)
+
+ def apply(self, *items):
+ return [elem[self.perm] for elem in items]
+
+ def unscramble(self, *items):
+ ret = []
+ for elem in items:
+ clean = np.zeros_like(elem)
+ clean[self.perm] = elem
+ ret.append(clean)
+ return ret
+
+
+def trailing_window_view(xs, window_size):
+ assert (window_size % 2) == 1, "window size should be odd"
+ view = np.lib.stride_tricks.sliding_window_view(
+ np.pad(xs, (window_size - 1, 0), mode="edge"), window_size
+ )
+ return view
+
+
+def to_step(pbar, percent):
+ step = int(pbar.total * percent / 100)
+ return step
+
+
+def every(pbar, *, percent=None, step=None):
+ if step is None:
+ step = to_step(pbar, percent)
+ return (pbar.n + 1) % step == 0
+
+
+def at(pbar, *, percent=None, step=None):
+ if step is None:
+ step = to_step(pbar, percent)
+ return (pbar.n + 1) == step
diff --git a/voxnerf/vis.py b/voxnerf/vis.py
new file mode 100644
index 0000000000000000000000000000000000000000..ae01ef9271e29e750881e6a51fe8758dc8178bcc
--- /dev/null
+++ b/voxnerf/vis.py
@@ -0,0 +1,109 @@
+from pathlib import Path
+import numpy as np
+import matplotlib.pyplot as plt
+from mpl_toolkits.axes_grid1 import ImageGrid
+from matplotlib.colors import Normalize, LogNorm
+import torch
+from torchvision.utils import make_grid
+from einops import rearrange
+from .data import blend_rgba
+
+import imageio
+
+from my.utils.plot import mpl_fig_to_buffer
+from my.utils.event import read_stats
+
+
+def vis(ref_img, pred_img, pred_depth, *, msg="", return_buffer=False):
+ # plt the 2 images side by side and compare
+ fig = plt.figure(figsize=(15, 6))
+ grid = ImageGrid(
+ fig, 111, nrows_ncols=(1, 3),
+ cbar_location="right", cbar_mode="single",
+ )
+
+ grid[0].imshow(ref_img)
+ grid[0].set_title("gt")
+
+ grid[1].imshow(pred_img)
+ grid[1].set_title(f"rendering {msg}")
+
+ h = grid[2].imshow(pred_depth, norm=LogNorm(vmin=2, vmax=10), cmap="Spectral")
+ grid[2].set_title("expected depth")
+ plt.colorbar(h, cax=grid.cbar_axes[0])
+ plt.tight_layout()
+
+ if return_buffer:
+ plot = mpl_fig_to_buffer(fig)
+ return plot
+ else:
+ plt.show()
+
+
+def _bad_vis(pred_img, pred_depth, *, return_buffer=False):
+ """emergency function for one-off use"""
+ fig, grid = plt.subplots(1, 2, squeeze=True, figsize=(10, 6))
+
+ grid[0].imshow(pred_img)
+ grid[0].set_title("rendering")
+
+ h = grid[1].imshow(pred_depth, norm=LogNorm(vmin=0.5, vmax=10), cmap="Spectral")
+ grid[1].set_title("expected depth")
+ # plt.colorbar(h, cax=grid.cbar_axes[0])
+ plt.tight_layout()
+
+ if return_buffer:
+ plot = mpl_fig_to_buffer(fig)
+ return plot
+ else:
+ plt.show()
+
+
+colormap = plt.get_cmap('Spectral')
+
+
+def bad_vis(pred_img, pred_depth, final_H=512):
+ # pred_img = pred_img.cpu()
+ depth = pred_depth.cpu().numpy()
+ del pred_depth
+
+ depth = np.log(1. + depth + 1e-12)
+ depth = depth / np.log(1+10.)
+ # depth = 1 - depth
+ depth = colormap(depth)
+ depth = blend_rgba(depth)
+ depth = rearrange(depth, "h w c -> 1 c h w", c=3)
+ depth = torch.from_numpy(depth)
+
+ depth = torch.nn.functional.interpolate(
+ depth, (final_H, final_H), mode='bilinear', antialias=True
+ )
+ pred_img = torch.nn.functional.interpolate(
+ pred_img, (final_H, final_H), mode='bilinear', antialias=True
+ )
+ pred_img = (pred_img + 1) / 2
+ pred_img = pred_img.clamp(0, 1).cpu()
+ stacked = torch.cat([pred_img, depth], dim=0)
+ pane = make_grid(stacked, nrow=2)
+ pane = rearrange(pane, "c h w -> h w c")
+ pane = (pane * 255.).clamp(0, 255)
+ pane = pane.to(torch.uint8)
+ pane = pane.numpy()
+ # plt.imshow(pane)
+ # plt.show()
+ return pane
+
+
+def export_movie(seqs, fname, fps=30):
+ fname = Path(fname)
+ if fname.suffix == "":
+ fname = fname.with_suffix(".mp4")
+ writer = imageio.get_writer(fname, fps=fps)
+ for img in seqs:
+ writer.append_data(img)
+ writer.close()
+
+
+def stitch_vis(save_fn, img_fnames, fps=10):
+ figs = [imageio.imread(fn) for fn in img_fnames]
+ export_movie(figs, save_fn, fps)
diff --git a/voxnerf/vox.py b/voxnerf/vox.py
new file mode 100644
index 0000000000000000000000000000000000000000..42f23fc5f6f365d755af677c09a46eb202af7d56
--- /dev/null
+++ b/voxnerf/vox.py
@@ -0,0 +1,271 @@
+import numpy as np
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+from einops import rearrange
+from my.registry import Registry
+
+VOXRF_REGISTRY = Registry("VoxRF")
+
+
+def to_grid_samp_coords(xyz_sampled, aabb):
+ # output range is [-1, 1]
+ aabbSize = aabb[1] - aabb[0]
+ return (xyz_sampled - aabb[0]) / aabbSize * 2 - 1
+
+
+def add_non_state_tsr(nn_module, key, val):
+ # tsr added here does not appear in module's state_dict;
+ nn_module.register_buffer(key, val, persistent=False)
+
+
+@VOXRF_REGISTRY.register()
+class VoxRF(nn.Module):
+ def __init__(
+ self, aabb, grid_size, step_ratio=0.5,
+ density_shift=-10, ray_march_weight_thres=0.0001, c=3,
+ blend_bg_texture=True, bg_texture_hw=64
+ ):
+ assert aabb.shape == (2, 3)
+ xyz = grid_size
+ del grid_size
+
+ super().__init__()
+ add_non_state_tsr(self, "aabb", torch.tensor(aabb, dtype=torch.float32))
+ add_non_state_tsr(self, "grid_size", torch.LongTensor(xyz))
+
+ self.density_shift = density_shift
+ self.ray_march_weight_thres = ray_march_weight_thres
+ self.step_ratio = step_ratio
+
+ zyx = xyz[::-1]
+ self.density = torch.nn.Parameter(
+ torch.zeros((1, 1, *zyx))
+ )
+ self.color = torch.nn.Parameter(
+ torch.randn((1, c, *zyx))
+ )
+
+ self.blend_bg_texture = blend_bg_texture
+ self.bg = torch.nn.Parameter(
+ torch.randn((1, c, bg_texture_hw, bg_texture_hw))
+ )
+
+ self.c = c
+ self.alphaMask = None
+ self.feats2color = lambda feats: torch.sigmoid(feats)
+
+ self.d_scale = torch.nn.Parameter(torch.tensor(0.0))
+
+ @property
+ def device(self):
+ return self.density.device
+
+ def compute_density_feats(self, xyz_sampled):
+ xyz_sampled = to_grid_samp_coords(xyz_sampled, self.aabb)
+ n = xyz_sampled.shape[0]
+ xyz_sampled = xyz_sampled.reshape(1, n, 1, 1, 3)
+ σ = F.grid_sample(self.density, xyz_sampled).view(n)
+ # We notice that DreamFusion also uses an exp scaling on densities.
+ # The technique here is developed BEFORE DreamFusion came out,
+ # and forms part of our upcoming technical report discussing invariant
+ # scaling for volume rendering. The reseach was presented to our
+ # funding agency (TRI) on Aug. 25th, and discussed with a few researcher friends
+ # during the period.
+ σ = σ * torch.exp(self.d_scale)
+ σ = F.softplus(σ + self.density_shift)
+ return σ
+
+ def compute_app_feats(self, xyz_sampled):
+ xyz_sampled = to_grid_samp_coords(xyz_sampled, self.aabb)
+ n = xyz_sampled.shape[0]
+ xyz_sampled = xyz_sampled.reshape(1, n, 1, 1, 3)
+ feats = F.grid_sample(self.color, xyz_sampled).view(self.c, n)
+ feats = feats.T
+ return feats
+
+ def compute_bg(self, uv):
+ n = uv.shape[0]
+ uv = uv.reshape(1, n, 1, 2)
+ feats = F.grid_sample(self.bg, uv).view(self.c, n)
+ feats = feats.T
+ return feats
+
+ def get_per_voxel_length(self):
+ aabb_size = self.aabb[1] - self.aabb[0]
+ # NOTE I am not -1 on grid_size here;
+ # I interpret a voxel as a square and val sits at the center; like pixel
+ # this is consistent with align_corners=False
+ vox_xyz_length = aabb_size / self.grid_size
+ return vox_xyz_length
+
+ def get_num_samples(self, max_size=None):
+ # funny way to set step size; whatever
+ unit = torch.mean(self.get_per_voxel_length())
+ step_size = unit * self.step_ratio
+ step_size = step_size.item() # get the float
+
+ if max_size is None:
+ aabb_size = self.aabb[1] - self.aabb[0]
+ aabb_diag = torch.norm(aabb_size)
+ max_size = aabb_diag
+
+ num_samples = int((max_size / step_size).item()) + 1
+ return num_samples, step_size
+
+ @torch.no_grad()
+ def resample(self, target_xyz: list):
+ zyx = target_xyz[::-1]
+ self.density = self._resamp_param(self.density, zyx)
+ self.color = self._resamp_param(self.color, zyx)
+ target_xyz = torch.LongTensor(target_xyz).to(self.aabb.device)
+ add_non_state_tsr(self, "grid_size", target_xyz)
+
+ @staticmethod
+ def _resamp_param(param, target_size):
+ return torch.nn.Parameter(F.interpolate(
+ param.data, size=target_size, mode="trilinear"
+ ))
+
+ @torch.no_grad()
+ def compute_volume_alpha(self):
+ xyz = self.grid_size.tolist()
+ unit_xyz = self.get_per_voxel_length()
+ xs, ys, zs = torch.meshgrid(
+ *[torch.arange(nd) for nd in xyz], indexing="ij"
+ )
+ pts = torch.stack([xs, ys, zs], dim=-1).to(unit_xyz.device) # [nx, ny, nz, 3]
+ pts = self.aabb[0] + (pts + 0.5) * unit_xyz
+ pts = pts.reshape(-1, 3)
+ # could potentially filter with alpha mask itself if exists
+ σ = self.compute_density_feats(pts)
+ d = torch.mean(unit_xyz)
+ α = 1 - torch.exp(-σ * d)
+ α = rearrange(α.view(xyz), "x y z -> 1 1 z y x")
+ α = α.contiguous()
+ return α
+
+ @torch.no_grad()
+ def make_alpha_mask(self):
+ α = self.compute_volume_alpha()
+ ks = 3
+ α = F.max_pool3d(α, kernel_size=ks, padding=ks // 2, stride=1)
+ α = (α > 0.08).float()
+ vol_mask = AlphaMask(self.aabb, α)
+ self.alphaMask = vol_mask
+
+ def state_dict(self, *args, **kwargs):
+ state = super().state_dict(*args, **kwargs)
+ if self.alphaMask is not None:
+ state['alpha_mask'] = self.alphaMask.export_state()
+ return state
+
+ def load_state_dict(self, state_dict):
+ if 'alpha_mask' in state_dict.keys():
+ state = state_dict.pop("alpha_mask")
+ self.alphaMask = AlphaMask.from_state(state)
+ return super().load_state_dict(state_dict, strict=True)
+
+
+@VOXRF_REGISTRY.register()
+class V_SJC(VoxRF):
+ """
+ For SJC, when sampling density σ, add a gaussian ball offset
+ """
+ def __init__(self, *args, **kwargs):
+ super().__init__(*args, **kwargs)
+ # rendering color in [-1, 1] range, since score models all operate on centered img
+ self.feats2color = lambda feats: torch.sigmoid(feats) * 2 - 1
+
+ def opt_params(self):
+ groups = []
+ for name, param in self.named_parameters():
+ # print(f"{name} {param.shape}")
+ grp = {"params": param}
+ if name in ["bg"]:
+ grp["lr"] = 0.0001
+ if name in ["density"]:
+ # grp["lr"] = 0.
+ pass
+ groups.append(grp)
+ return groups
+
+ def annealed_opt_params(self, base_lr, σ):
+ groups = []
+ for name, param in self.named_parameters():
+ # print(f"{name} {param.shape}")
+ grp = {"params": param, "lr": base_lr * σ}
+ if name in ["density"]:
+ grp["lr"] = base_lr * σ
+ if name in ["d_scale"]:
+ grp["lr"] = 0.
+ if name in ["color"]:
+ grp["lr"] = base_lr * σ
+ if name in ["bg"]:
+ grp["lr"] = 0.01
+ groups.append(grp)
+ return groups
+
+
+@VOXRF_REGISTRY.register()
+class V_SD(V_SJC):
+ def __init__(self, *args, **kwargs):
+ super().__init__(*args, **kwargs)
+ # rendering in feature space; no sigmoid thresholding
+ self.feats2color = lambda feats: feats
+
+
+class AlphaMask(nn.Module):
+ def __init__(self, aabb, alphas):
+ super().__init__()
+ zyx = list(alphas.shape[-3:])
+ add_non_state_tsr(self, "alphas", alphas.view(1, 1, *zyx))
+ xyz = zyx[::-1]
+ add_non_state_tsr(self, "grid_size", torch.LongTensor(xyz))
+ add_non_state_tsr(self, "aabb", aabb)
+
+ def sample_alpha(self, xyz_pts):
+ xyz_pts = to_grid_samp_coords(xyz_pts, self.aabb)
+ xyz_pts = xyz_pts.view(1, -1, 1, 1, 3)
+ α = F.grid_sample(self.alphas, xyz_pts).view(-1)
+ return α
+
+ def export_state(self):
+ state = {}
+ alphas = self.alphas.bool().cpu().numpy()
+ state['shape'] = alphas.shape
+ state['mask'] = np.packbits(alphas.reshape(-1))
+ state['aabb'] = self.aabb.cpu()
+ return state
+
+ @classmethod
+ def from_state(cls, state):
+ shape = state['shape']
+ mask = state['mask']
+ aabb = state['aabb']
+
+ length = np.prod(shape)
+ alphas = torch.from_numpy(
+ np.unpackbits(mask)[:length].reshape(shape)
+ )
+ amask = cls(aabb, alphas.float())
+ return amask
+
+
+def test():
+ device = torch.device("cuda:1")
+
+ aabb = 1.5 * np.array([
+ [-1, -1, -1],
+ [1, 1, 1]
+ ])
+ model = VoxRF(aabb, [10, 20, 30])
+ model.to(device)
+ print(model.density.shape)
+ print(model.grid_size)
+
+ return
+
+
+if __name__ == "__main__":
+ test()