File size: 371 Bytes
a0ae4f3 6e27aab a0ae4f3 fead514 a0ae4f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 |
import gradio as gr
from transformers import pipeline
pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-mul-en")
def predict(text):
return pipe(text)[0]["translation_text"]
title = "Hebrew to English Translation"
iface = gr.Interface(
fn=predict,
inputs=[gr.inputs.Textbox(label="text", lines=3)],
outputs='text',
title=title,
)
iface.launch() |