File size: 371 Bytes
a0ae4f3
 
 
 
6e27aab
a0ae4f3
 
 
 
fead514
a0ae4f3
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
import gradio as gr

from transformers import pipeline

pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-mul-en")

def predict(text):
  return pipe(text)[0]["translation_text"]
  
title = "Hebrew to English Translation"

iface = gr.Interface(
  fn=predict, 
  inputs=[gr.inputs.Textbox(label="text", lines=3)],
  outputs='text',
  title=title,
)

iface.launch()