File size: 3,598 Bytes
f3f28d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

import os
import json
import numpy as np
import torch
import soundfile as sf
from diffusers import DDPMScheduler
from pico_model import PicoDiffusion, build_pretrained_models

class dotdict(dict):
    """dot.notation access to dictionary attributes"""
    __getattr__ = dict.get
    __setattr__ = dict.__setitem__
    __delattr__ = dict.__delitem__

class InferRunner:
    def __init__(self):
        self.vae, _ = build_pretrained_models("audioldm-s-full")
        train_args = dotdict(json.loads(open("ckpts/pico_model/summary.jsonl").readlines()[0]))
        self.pico_model = PicoDiffusion(
            scheduler_name=train_args.scheduler_name, 
            unet_model_config_path=train_args.unet_model_config, 
            snr_gamma=train_args.snr_gamma,
            freeze_text_encoder_ckpt="ckpts/laion_clap/630k-audioset-best.pt",
            diffusion_pt="ckpts/pico_model/diffusion.pt",
        ).cuda().eval()
        self.scheduler = DDPMScheduler.from_pretrained(train_args.scheduler_name, subfolder="scheduler")

def infer(caption, runner):
    with torch.no_grad():
        latents = runner.picomodel.demo_inference(caption, runner.scheduler, num_steps=200, guidance=3.0, num_samples=1, audio_len=16000*10, disable_progress=True)
        mel = runner.vae.decode_first_stage(latents)
        wave = runner.vae.decode_to_waveform(mel)[0][:audio_len]
    sf.write(f"synthesized/{caption}.wav", wave, samplerate=16000, subtype='PCM_16')

infer_runner = InferRunner()

with gr.Blocks() as demo:
    with gr.Row():
        gr.Markdown("## PicoAudio")

    with gr.Row():
        with gr.Column():
            prompt = gr.Textbox(label="Prompt: Input your caption formatted as 'event1 at onset1-offset1_onset2-offset2 and event2 at onset1-offset1.",
                value="spraying at 0.38-1.176_3.06-3.856 and gunshot at 1.729-3.729_4.367-6.367_7.031-9.031.")
            run_button = gr.Button()

            with gr.Accordion("Advanced options", open=False):
                num_steps = gr.Slider(label="num_steps", minimum=1,
                                       maximum=300, value=200, step=1)
                guidance = gr.Slider(
                    label="Guidance Scale:(Large => more relevant to text but the quality may drop)", minimum=0.1, maximum=8.0, value=3.0, step=0.1
                )

        with gr.Column():
            outaudio = gr.Audio()
    
    run_button.click(fn=infer, inputs=[
                    prompt, num_steps, guidance], outputs=[outaudio])
    # with gr.Row():
    #     with gr.Column():
    #         gr.Examples(
    #                     examples = [['An amateur recording features a steel drum playing in a higher register',25,5,55],
    #                                 ['An instrumental song with a caribbean feel, happy mood, and featuring steel pan music, programmed percussion, and bass',25,5,55],
    #                                 ['This musical piece features a playful and emotionally melodic male vocal accompanied by piano',25,5,55],
    #                                 ['A eerie yet calming experimental electronic track featuring haunting synthesizer strings and pads',25,5,55],
    #                                 ['A slow tempo pop instrumental piece featuring only acoustic guitar with fingerstyle and percussive strumming techniques',25,5,55]],
    #                     inputs = [prompt, ddim_steps, scale, seed],
    #                     outputs = [outaudio]
    #                     )
    #     with gr.Column():
    #         pass
    
demo.launch()
    

        
        

if __name__ == "__main__":
    main()