Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -4,8 +4,10 @@ import json
|
|
4 |
import numpy as np
|
5 |
import torch
|
6 |
import soundfile as sf
|
|
|
7 |
from diffusers import DDPMScheduler
|
8 |
from pico_model import PicoDiffusion, build_pretrained_models
|
|
|
9 |
|
10 |
class dotdict(dict):
|
11 |
"""dot.notation access to dictionary attributes"""
|
@@ -15,7 +17,11 @@ class dotdict(dict):
|
|
15 |
|
16 |
class InferRunner:
|
17 |
def __init__(self):
|
18 |
-
|
|
|
|
|
|
|
|
|
19 |
train_args = dotdict(json.loads(open("ckpts/pico_model/summary.jsonl").readlines()[0]))
|
20 |
self.pico_model = PicoDiffusion(
|
21 |
scheduler_name=train_args.scheduler_name,
|
@@ -23,7 +29,7 @@ class InferRunner:
|
|
23 |
snr_gamma=train_args.snr_gamma,
|
24 |
freeze_text_encoder_ckpt="ckpts/laion_clap/630k-audioset-best.pt",
|
25 |
diffusion_pt="ckpts/pico_model/diffusion.pt",
|
26 |
-
).
|
27 |
self.scheduler = DDPMScheduler.from_pretrained(train_args.scheduler_name, subfolder="scheduler")
|
28 |
|
29 |
def infer(caption, runner):
|
@@ -34,6 +40,12 @@ def infer(caption, runner):
|
|
34 |
sf.write(f"synthesized/{caption}.wav", wave, samplerate=16000, subtype='PCM_16')
|
35 |
|
36 |
infer_runner = InferRunner()
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
with gr.Blocks() as demo:
|
39 |
with gr.Row():
|
|
|
4 |
import numpy as np
|
5 |
import torch
|
6 |
import soundfile as sf
|
7 |
+
import gradio as gr
|
8 |
from diffusers import DDPMScheduler
|
9 |
from pico_model import PicoDiffusion, build_pretrained_models
|
10 |
+
from audioldm.variational_autoencoder.autoencoder import AutoencoderKL
|
11 |
|
12 |
class dotdict(dict):
|
13 |
"""dot.notation access to dictionary attributes"""
|
|
|
17 |
|
18 |
class InferRunner:
|
19 |
def __init__(self):
|
20 |
+
vae_config = json.load(open("ckpts/ldm/vae_config.json".format(path)))
|
21 |
+
self.vae = AutoencoderKL(**vae_config).to(device)
|
22 |
+
vae_weights = torch.load("ckpts/ldm/pytorch_model_vae.bin".format(path), map_location=device)
|
23 |
+
self.vae.load_state_dict(vae_weights)
|
24 |
+
|
25 |
train_args = dotdict(json.loads(open("ckpts/pico_model/summary.jsonl").readlines()[0]))
|
26 |
self.pico_model = PicoDiffusion(
|
27 |
scheduler_name=train_args.scheduler_name,
|
|
|
29 |
snr_gamma=train_args.snr_gamma,
|
30 |
freeze_text_encoder_ckpt="ckpts/laion_clap/630k-audioset-best.pt",
|
31 |
diffusion_pt="ckpts/pico_model/diffusion.pt",
|
32 |
+
).eval().to(device)
|
33 |
self.scheduler = DDPMScheduler.from_pretrained(train_args.scheduler_name, subfolder="scheduler")
|
34 |
|
35 |
def infer(caption, runner):
|
|
|
40 |
sf.write(f"synthesized/{caption}.wav", wave, samplerate=16000, subtype='PCM_16')
|
41 |
|
42 |
infer_runner = InferRunner()
|
43 |
+
if torch.cuda.is_available():
|
44 |
+
device = "cuda"
|
45 |
+
device_selection = "cuda:0"
|
46 |
+
else:
|
47 |
+
device = "cpu"
|
48 |
+
device_selection = "cpu"
|
49 |
|
50 |
with gr.Blocks() as demo:
|
51 |
with gr.Row():
|