File size: 9,425 Bytes
0d80816
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import argparse
from tqdm import tqdm
import torch
from torch.nn.parallel import DistributedDataParallel
from optimizer.optimizers import Eve, ScaledAdam
from schedulers.scheduler import NoamScheduler, Eden
from models.tts.valle.valle_dataset import VALLEDataset, VALLECollator
from models.tts.base import TTSTrainer
from models.tts.valle.valle import VALLE

class VALLETrainer(TTSTrainer):
    def __init__(self, args, cfg):
        TTSTrainer.__init__(self, args, cfg)

    def _build_model(self):
        
        model = VALLE(self.cfg.model)
        
        return model
    
    def _build_dataset(self):
        return VALLEDataset, VALLECollator

    def _build_optimizer(self):
        if self.args.train_stage:
            if isinstance(self.model, DistributedDataParallel):
                model = self.model.module
            else:
                model = self.model
            model_parameters = model.stage_parameters(self.args.train_stage)
        else:
            model_parameters = self.model.parameters()   

                                        
        if self.cfg.train.optimizer == "ScaledAdam":
            parameters_names = []
            if self.args.train_stage != 0:
                parameters_names.append(
                    [
                        name_param_pair[0]
                        for name_param_pair in model.stage_named_parameters(
                            self.args.train_stage
                        )
                    ]
                )
            else:
                parameters_names.append(
                    [
                        name_param_pair[0]
                        for name_param_pair in model.named_parameters()
                    ]
                )

            optimizer = ScaledAdam(
                model_parameters,
                lr=self.cfg.train.base_lr,
                betas=(0.9, 0.95),
                clipping_scale=2.0,
                parameters_names=parameters_names,
                show_dominant_parameters=False,
                clipping_update_period=1000,
            )
        elif self.cfg.train.optimizer == "Eve":
            optimizer = Eve(
                model_parameters,
                lr=self.cfg.train.base_lr,
                betas=(0.9, 0.98),
                target_rms=0.1,
            )
        elif self.cfg.train.optimizer == "AdamW":
            optimizer = torch.optim.AdamW(
                model_parameters,
                lr=self.cfg.train.base_lr,
                betas=(0.9, 0.95),
                weight_decay=1e-2,
                eps=1e-8,
            )
        elif self.cfg.train.optimizer == "Adam":
            optimizer = torch.optim.Adam(
                model_parameters,
                lr=self.cfg.train.base_lr,
                betas=(0.9, 0.95),
                eps=1e-8,
            )
        else:
            raise NotImplementedError()
        
        return optimizer
        
    def _build_scheduler(self):
        if self.cfg.train.scheduler.lower() == "eden":
            scheduler = Eden(self.optimizer, 5000, 4, warmup_batches=self.cfg.train.warmup_steps)
        elif self.cfg.train.scheduler.lower() == "noam":
            scheduler = NoamScheduler(
                self.cfg.train.base_lr,
                self.optimizer,
                self.cfg.model.decoder_dim,
                warmup_steps=self.cfg.train.warmup_steps,
            )
        elif self.cfg.train.scheduler.lower() == "cosine":
            scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
                self.cfg.train.warmup_steps,
                self.optimizer,
                eta_min=self.cfg.train.base_lr,
            )
        else:
            raise NotImplementedError(f"{self.cfg.train.scheduler}")

        return scheduler      

    def _train_epoch(self):
        r"""Training epoch. Should return average loss of a batch (sample) over
        one epoch. See ``train_loop`` for usage.
        """
        if isinstance(self.model, dict):
            for key in self.model.keys():
                self.model[key].train()
        else:
            self.model.train()

        epoch_sum_loss: float = 0.0
        epoch_losses: dict = {}
        epoch_step: int = 0
        for batch in tqdm(
            self.train_dataloader,
            desc=f"Training Epoch {self.epoch}",
            unit="batch",
            colour="GREEN",
            leave=False,
            dynamic_ncols=True,
            smoothing=0.04,
            disable=not self.accelerator.is_main_process,
        ):

            # Do training step and BP
            with self.accelerator.accumulate(self.model):
                total_loss, train_losses = self._train_step(batch)
                self.accelerator.backward(total_loss)  
                self.optimizer.step()
                self.optimizer.zero_grad()   
            self.batch_count += 1  

            if self.batch_count % self.cfg.train.gradient_accumulation_step == 0:
                if self.cfg.train.optimizer not in ["ScaledAdam", "Eve"]:
                    torch.nn.utils.clip_grad_norm_(self.model.parameters(), 1.0)

                for k in range(self.cfg.train.gradient_accumulation_step):
                    if isinstance(self.scheduler, Eden):
                        self.scheduler.step_batch(self.step)
                    else:
                        self.scheduler.step()
                                        
                epoch_sum_loss += total_loss.detach().cpu().item()
                
                if isinstance(train_losses, dict):
                    for key, value in train_losses.items():
                        if key not in epoch_losses.keys():
                            epoch_losses[key] = value
                        else:
                            epoch_losses[key] += value

                if isinstance(train_losses, dict):
                    for key, loss in train_losses.items():
                        self.accelerator.log(
                            {"Step/Train {}".format(key): "{:.6f}".format(loss)},
                            step=self.step,
                        )
                else:
                    self.accelerator.log(
                        {"Step/Train Loss": loss},
                        step=self.step,
                    )
                                        
                self.accelerator.log(
                    {"Step/lr": self.scheduler.get_last_lr()[0]},
                    step=self.step,
                )
                
                # print loss every log_epoch_step steps
                # if epoch_step % self.cfg.train.log_epoch_step == 0:
                #     for key, loss in train_losses.items():
                #         self.logger.info("Step/Train {}: {:.6f}".format(key, loss))
                #         print("Step/Train {}: {:.6f}".format(key, loss))
                    

                self.step += 1
                epoch_step += 1
              
                
        self.accelerator.wait_for_everyone()

        epoch_sum_loss = (
            epoch_sum_loss
            / len(self.train_dataloader)
            * self.cfg.train.gradient_accumulation_step
        )

        for key in epoch_losses.keys():
            epoch_losses[key] = (
                epoch_losses[key]
                / len(self.train_dataloader)
                * self.cfg.train.gradient_accumulation_step
            )

        return epoch_sum_loss, epoch_losses
               
    
    def _train_step(self, batch, is_training=True):
        text_tokens = batch["phone_seq"].to(self.device)
        text_tokens_lens = batch["phone_len"].to(self.device)
        assert text_tokens.ndim == 2

        audio_features = batch["acoustic_token"].to(self.device)
        audio_features_lens = batch["target_len"].to(self.device)
        assert audio_features.ndim == 3
  
                
        with torch.set_grad_enabled(is_training):
            loss, losses = self.model(
                x=text_tokens,
                x_lens=text_tokens_lens,
                y=audio_features,
                y_lens=audio_features_lens,
                train_stage=self.args.train_stage
            )
            
        assert loss.requires_grad == is_training

        loss_dict = {}
        frames_sum = (audio_features_lens).sum()
        
        avg_loss = loss / frames_sum
        
        loss_dict['loss'] = avg_loss.detach().cpu().item()
        for l in losses:
            loss_dict[l] = losses[l].detach().cpu().item() / frames_sum.item()
        
        return avg_loss, loss_dict
    
    def _valid_step(self, batch):
        valid_losses = {}
        total_loss = 0
        valid_stats = {}
        
        total_loss, valid_losses = self._train_step(
            batch=batch,
            is_training=False,
        )
        assert total_loss.requires_grad is False
        
        total_loss = total_loss.detach().cpu().item()
        
        return total_loss, valid_losses, valid_stats

    def add_arguments(parser: argparse.ArgumentParser):
            parser.add_argument(
                "--train_stage",
                type=int,
                default="1",
                help="0: train all modules, 1: AR Decoder, 2: NAR Decoder",
            )