Text-to-Speech / config /comosvc.json
zyingt's picture
Upload 685 files
0d80816
{
"base_config": "config/base.json",
"model_type": "DiffComoSVC",
"task_type": "svc",
"use_custom_dataset": false,
"preprocess": {
// data augmentations
"use_pitch_shift": false,
"use_formant_shift": false,
"use_time_stretch": false,
"use_equalizer": false,
// acoustic features
"extract_mel": true,
"mel_min_max_norm": true,
"extract_pitch": true,
"pitch_extractor": "parselmouth",
"extract_uv": true,
"extract_energy": true,
// content features
"extract_whisper_feature": false,
"whisper_sample_rate": 16000,
"extract_contentvec_feature": false,
"contentvec_sample_rate": 16000,
"extract_wenet_feature": false,
"wenet_sample_rate": 16000,
"extract_mert_feature": false,
"mert_sample_rate": 16000,
// Default config for whisper
"whisper_frameshift": 0.01,
"whisper_downsample_rate": 2,
// Default config for content vector
"contentvec_frameshift": 0.02,
// Default config for mert
"mert_model": "m-a-p/MERT-v1-330M",
"mert_feature_layer": -1,
"mert_hop_size": 320,
// 24k
"mert_frameshit": 0.01333,
// 10ms
"wenet_frameshift": 0.01,
// wenetspeech is 4, gigaspeech is 6
"wenet_downsample_rate": 4,
// Default config
"n_mel": 100,
"win_size": 1024,
// todo
"hop_size": 256,
"sample_rate": 24000,
"n_fft": 1024,
// todo
"fmin": 0,
"fmax": 12000,
// todo
"f0_min": 50,
// ~C2
"f0_max": 1100,
//1100, // ~C6(1100), ~G5(800)
"pitch_bin": 256,
"pitch_max": 1100.0,
"pitch_min": 50.0,
"is_label": true,
"is_mu_law": true,
"bits": 8,
"mel_min_max_stats_dir": "mel_min_max_stats",
"whisper_dir": "whisper",
"contentvec_dir": "contentvec",
"wenet_dir": "wenet",
"mert_dir": "mert",
// Extract content features using dataloader
"pin_memory": true,
"num_workers": 8,
"content_feature_batch_size": 16,
// Features used for model training
"use_mel": true,
"use_min_max_norm_mel": true,
"use_frame_pitch": true,
"use_uv": true,
"use_frame_energy": true,
"use_log_scale_pitch": false,
"use_log_scale_energy": false,
"use_spkid": true,
// Meta file
"train_file": "train.json",
"valid_file": "test.json",
"spk2id": "singers.json",
"utt2spk": "utt2singer"
},
"model": {
"teacher_model_path": "[Your Teacher Model Path].bin",
"condition_encoder": {
"merge_mode": "add",
"input_melody_dim": 1,
"use_log_f0": true,
"n_bins_melody": 256,
//# Quantization (0 for not quantization)
"output_melody_dim": 384,
"input_loudness_dim": 1,
"use_log_loudness": true,
"n_bins_loudness": 256,
"output_loudness_dim": 384,
"use_whisper": false,
"use_contentvec": false,
"use_wenet": false,
"use_mert": false,
"whisper_dim": 1024,
"contentvec_dim": 256,
"mert_dim": 256,
"wenet_dim": 512,
"content_encoder_dim": 384,
"output_singer_dim": 384,
"singer_table_size": 512,
"output_content_dim": 384,
"use_spkid": true
},
"comosvc": {
"distill": false,
// conformer encoder
"input_dim": 384,
"output_dim": 100,
"n_heads": 2,
"n_layers": 6,
"filter_channels": 512,
"dropout": 0.1,
// karras diffusion
"P_mean": -1.2,
"P_std": 1.2,
"sigma_data": 0.5,
"sigma_min": 0.002,
"sigma_max": 80,
"rho": 7,
"n_timesteps": 40,
},
"diffusion": {
// Diffusion steps encoder
"step_encoder": {
"dim_raw_embedding": 128,
"dim_hidden_layer": 512,
"activation": "SiLU",
"num_layer": 2,
"max_period": 10000
},
// Diffusion decoder
"model_type": "bidilconv",
// bidilconv, unet2d, TODO: unet1d
"bidilconv": {
"base_channel": 384,
"n_res_block": 20,
"conv_kernel_size": 3,
"dilation_cycle_length": 4,
// specially, 1 means no dilation
"conditioner_size": 100
}
},
},
"train": {
// Basic settings
"fast_steps": 0,
"batch_size": 32,
"gradient_accumulation_step": 1,
"max_epoch": -1,
// -1 means no limit
"save_checkpoint_stride": [
10,
100
],
// unit is epoch
"keep_last": [
3,
-1
],
// -1 means infinite, if one number will broadcast
"run_eval": [
false,
true
],
// if one number will broadcast
// Fix the random seed
"random_seed": 10086,
// Batchsampler
"sampler": {
"holistic_shuffle": true,
"drop_last": true
},
// Dataloader
"dataloader": {
"num_worker": 32,
"pin_memory": true
},
// Trackers
"tracker": [
"tensorboard"
// "wandb",
// "cometml",
// "mlflow",
],
// Optimizer
"optimizer": "AdamW",
"adamw": {
"lr": 4.0e-4
// nn model lr
},
// LR Scheduler
"scheduler": "ReduceLROnPlateau",
"reducelronplateau": {
"factor": 0.8,
"patience": 10,
// unit is epoch
"min_lr": 1.0e-4
}
},
"inference": {
"comosvc": {
"inference_steps": 40
}
}
}