Text-to-Speech / models /vocoders /vocoder_trainer.py
zyingt's picture
Upload 685 files
0d80816
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import os
import random
from pathlib import Path
import re
import accelerate
import json5
import numpy as np
import torch
from accelerate.utils import ProjectConfiguration
from torch.utils.data import DataLoader
from tqdm import tqdm
from models.vocoders.vocoder_dataset import VocoderConcatDataset
from models.vocoders.vocoder_sampler import build_samplers
class VocoderTrainer:
def __init__(self):
super().__init__()
def _init_accelerator(self):
"""Initialize the accelerator components."""
self.exp_dir = os.path.join(
os.path.abspath(self.cfg.log_dir), self.args.exp_name
)
project_config = ProjectConfiguration(
project_dir=self.exp_dir, logging_dir=os.path.join(self.exp_dir, "log")
)
self.accelerator = accelerate.Accelerator(
gradient_accumulation_steps=self.cfg.train.gradient_accumulation_step,
log_with=self.cfg.train.tracker,
project_config=project_config,
)
if self.accelerator.is_main_process:
os.makedirs(project_config.project_dir, exist_ok=True)
os.makedirs(project_config.logging_dir, exist_ok=True)
with self.accelerator.main_process_first():
self.accelerator.init_trackers(self.args.exp_name)
def _build_dataset(self):
pass
def _build_criterion(self):
pass
def _build_model(self):
pass
def _build_dataloader(self):
"""Build dataloader which merges a series of datasets."""
# Build dataset instance for each dataset and combine them by ConcatDataset
Dataset, Collator = self._build_dataset()
# Build train set
datasets_list = []
for dataset in self.cfg.dataset:
subdataset = Dataset(self.cfg, dataset, is_valid=False)
datasets_list.append(subdataset)
train_dataset = VocoderConcatDataset(datasets_list, full_audio_inference=True)
train_collate = Collator(self.cfg)
_, batch_sampler = build_samplers(train_dataset, self.cfg, self.logger, "train")
train_loader = DataLoader(
train_dataset,
collate_fn=train_collate,
batch_sampler=batch_sampler,
num_workers=self.cfg.train.dataloader.num_worker,
pin_memory=self.cfg.train.dataloader.pin_memory,
)
# Build test set
datasets_list = []
for dataset in self.cfg.dataset:
subdataset = Dataset(self.cfg, dataset, is_valid=True)
datasets_list.append(subdataset)
valid_dataset = VocoderConcatDataset(datasets_list, full_audio_inference=True)
valid_collate = Collator(self.cfg)
_, batch_sampler = build_samplers(valid_dataset, self.cfg, self.logger, "train")
valid_loader = DataLoader(
valid_dataset,
collate_fn=valid_collate,
batch_sampler=batch_sampler,
num_workers=self.cfg.train.dataloader.num_worker,
pin_memory=self.cfg.train.dataloader.pin_memory,
)
return train_loader, valid_loader
def _build_optimizer(self):
pass
def _build_scheduler(self):
pass
def _load_model(self, checkpoint_dir, checkpoint_path=None, resume_type="resume"):
"""Load model from checkpoint. If a folder is given, it will
load the latest checkpoint in checkpoint_dir. If a path is given
it will load the checkpoint specified by checkpoint_path.
**Only use this method after** ``accelerator.prepare()``.
"""
if checkpoint_path is None:
ls = [str(i) for i in Path(checkpoint_dir).glob("*")]
ls.sort(key=lambda x: int(x.split("_")[-3].split("-")[-1]), reverse=True)
checkpoint_path = ls[0]
if resume_type == "resume":
self.accelerator.load_state(checkpoint_path)
elif resume_type == "finetune":
accelerate.load_checkpoint_and_dispatch(
self.accelerator.unwrap_model(self.model),
os.path.join(checkpoint_path, "pytorch_model.bin"),
)
self.logger.info("Load model weights for finetune SUCCESS!")
else:
raise ValueError("Unsupported resume type: {}".format(resume_type))
self.epoch = int(checkpoint_path.split("_")[-3].split("-")[-1]) + 1
self.step = int(checkpoint_path.split("_")[-2].split("-")[-1]) + 1
return checkpoint_path
def train_loop(self):
pass
def _train_epoch(self):
pass
def _valid_epoch(self):
pass
def _train_step(self):
pass
def _valid_step(self):
pass
def _inference(self):
pass
def _set_random_seed(self, seed):
"""Set random seed for all possible random modules."""
random.seed(seed)
np.random.seed(seed)
torch.random.manual_seed(seed)
def _check_nan(self, loss):
if torch.any(torch.isnan(loss)):
self.logger.fatal("Fatal Error: NaN!")
self.logger.error("loss = {:.6f}".format(loss.item()), in_order=True)
def _check_basic_configs(self):
if self.cfg.train.gradient_accumulation_step <= 0:
self.logger.fatal("Invalid gradient_accumulation_step value!")
self.logger.error(
f"Invalid gradient_accumulation_step value: {self.cfg.train.gradient_accumulation_step}. It should be positive."
)
self.accelerator.end_training()
raise ValueError(
f"Invalid gradient_accumulation_step value: {self.cfg.train.gradient_accumulation_step}. It should be positive."
)
def _count_parameters(self):
pass
def _dump_cfg(self, path):
os.makedirs(os.path.dirname(path), exist_ok=True)
json5.dump(
self.cfg,
open(path, "w"),
indent=4,
sort_keys=True,
ensure_ascii=False,
quote_keys=True,
)
def _is_valid_pattern(self, directory_name):
directory_name = str(directory_name)
pattern = r"^epoch-\d{4}_step-\d{7}_loss-\d{1}\.\d{6}"
return re.match(pattern, directory_name) is not None