zyingt's picture
Upload 685 files
0d80816
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import os
from tqdm import tqdm
import glob
import json
import torchaudio
from utils.util import has_existed
from utils.io import save_audio
def get_splitted_utterances(
raw_wav_dir, trimed_wav_dir, n_utterance_splits, overlapping
):
res = []
raw_song_files = glob.glob(
os.path.join(raw_wav_dir, "**/pjs*_song.wav"), recursive=True
)
trimed_song_files = glob.glob(
os.path.join(trimed_wav_dir, "**/*.wav"), recursive=True
)
if len(raw_song_files) * n_utterance_splits == len(trimed_song_files):
print("Splitted done...")
for wav_file in tqdm(trimed_song_files):
uid = wav_file.split("/")[-1].split(".")[0]
utt = {"Dataset": "pjs", "Singer": "male1", "Uid": uid, "Path": wav_file}
waveform, sample_rate = torchaudio.load(wav_file)
duration = waveform.size(-1) / sample_rate
utt["Duration"] = duration
res.append(utt)
else:
for wav_file in tqdm(raw_song_files):
song_id = wav_file.split("/")[-1].split(".")[0]
waveform, sample_rate = torchaudio.load(wav_file)
trimed_waveform = torchaudio.functional.vad(waveform, sample_rate)
trimed_waveform = torchaudio.functional.vad(
trimed_waveform.flip(dims=[1]), sample_rate
).flip(dims=[1])
audio_len = trimed_waveform.size(-1)
lapping_len = overlapping * sample_rate
for i in range(n_utterance_splits):
start = i * audio_len // 3
end = start + audio_len // 3 + lapping_len
splitted_waveform = trimed_waveform[:, start:end]
utt = {
"Dataset": "pjs",
"Singer": "male1",
"Uid": "{}_{}".format(song_id, i),
}
# Duration
duration = splitted_waveform.size(-1) / sample_rate
utt["Duration"] = duration
# Save trimed wav
splitted_waveform_file = os.path.join(
trimed_wav_dir, "{}.wav".format(utt["Uid"])
)
save_audio(splitted_waveform_file, splitted_waveform, sample_rate)
# Path
utt["Path"] = splitted_waveform_file
res.append(utt)
res = sorted(res, key=lambda x: x["Uid"])
return res
def main(output_path, dataset_path, n_utterance_splits=3, overlapping=1):
"""
1. Split one raw utterance to three splits (since some samples are too long)
2. Overlapping of ajacent splits is 1 s
"""
print("-" * 10)
print("Preparing training dataset for PJS...")
save_dir = os.path.join(output_path, "pjs")
raw_wav_dir = os.path.join(dataset_path, "PJS_corpus_ver1.1")
# Trim for silence
trimed_wav_dir = os.path.join(dataset_path, "trim")
os.makedirs(trimed_wav_dir, exist_ok=True)
# Total utterances
utterances = get_splitted_utterances(
raw_wav_dir, trimed_wav_dir, n_utterance_splits, overlapping
)
total_uids = [utt["Uid"] for utt in utterances]
# Test uids
n_test_songs = 3
test_uids = []
for i in range(1, n_test_songs + 1):
test_uids += [
"pjs00{}_song_{}".format(i, split_id)
for split_id in range(n_utterance_splits)
]
# Train uids
train_uids = [uid for uid in total_uids if uid not in test_uids]
for dataset_type in ["train", "test"]:
output_file = os.path.join(save_dir, "{}.json".format(dataset_type))
if has_existed(output_file):
continue
uids = eval("{}_uids".format(dataset_type))
res = [utt for utt in utterances if utt["Uid"] in uids]
for i in range(len(res)):
res[i]["index"] = i
time = sum([utt["Duration"] for utt in res])
print(
"{}, Total size: {}, Total Duraions = {} s = {:.2f} hour\n".format(
dataset_type, len(res), time, time / 3600
)
)
# Save
os.makedirs(save_dir, exist_ok=True)
with open(output_file, "w") as f:
json.dump(res, f, indent=4, ensure_ascii=False)