Spaces:
Running
on
Zero
Running
on
Zero
Hecheng0625
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -4,8 +4,13 @@ import soundfile as sf
|
|
4 |
import gradio as gr
|
5 |
import torchaudio
|
6 |
import os
|
|
|
7 |
|
8 |
-
from Amphion.models.ns3_codec import
|
|
|
|
|
|
|
|
|
9 |
|
10 |
fa_encoder = FACodecEncoder(
|
11 |
ngf=32,
|
@@ -31,15 +36,27 @@ fa_decoder = FACodecDecoder(
|
|
31 |
use_gr_residual_phone=True,
|
32 |
)
|
33 |
|
34 |
-
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
38 |
fa_encoder = fa_encoder.to(device)
|
39 |
fa_decoder = fa_decoder.to(device)
|
|
|
40 |
fa_encoder.eval()
|
41 |
fa_decoder.eval()
|
42 |
-
|
43 |
|
44 |
def codec_inference(speech_path):
|
45 |
|
@@ -61,23 +78,69 @@ def codec_inference(speech_path):
|
|
61 |
return result_path
|
62 |
|
63 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
demo_inputs = [
|
65 |
gr.Audio(
|
66 |
sources=["upload", "microphone"],
|
67 |
-
label="Upload the speech file",
|
|
|
|
|
|
|
|
|
|
|
68 |
type="filepath",
|
69 |
),
|
70 |
]
|
71 |
|
72 |
-
demo_outputs =
|
|
|
|
|
|
|
|
|
73 |
|
74 |
demo = gr.Interface(
|
75 |
-
fn=
|
76 |
inputs=demo_inputs,
|
77 |
outputs=demo_outputs,
|
78 |
title="NaturalSpeech3 FACodec",
|
79 |
-
description=
|
80 |
-
"""
|
81 |
## FACodec: Speech Codec with Attribute Factorization used for NaturalSpeech 3
|
82 |
|
83 |
[![arXiv](https://img.shields.io/badge/arXiv-Paper-<COLOR>.svg)](https://arxiv.org/pdf/2403.03100.pdf)
|
@@ -96,3 +159,4 @@ demo = gr.Interface(
|
|
96 |
|
97 |
if __name__ == "__main__":
|
98 |
demo.launch()
|
|
|
|
4 |
import gradio as gr
|
5 |
import torchaudio
|
6 |
import os
|
7 |
+
from huggingface_hub import hf_hub_download
|
8 |
|
9 |
+
from Amphion.models.ns3_codec import (
|
10 |
+
FACodecEncoder,
|
11 |
+
FACodecDecoder,
|
12 |
+
FACodecRedecoder,
|
13 |
+
)
|
14 |
|
15 |
fa_encoder = FACodecEncoder(
|
16 |
ngf=32,
|
|
|
36 |
use_gr_residual_phone=True,
|
37 |
)
|
38 |
|
39 |
+
fa_redecoder = FACodecRedecoder()
|
40 |
+
|
41 |
+
# encoder_ckpt = hf_hub_download(repo_id="amphion/naturalspeech3_facodec", filename="ns3_facodec_encoder.bin")
|
42 |
+
# decoder_ckpt = hf_hub_download(repo_id="amphion/naturalspeech3_facodec", filename="ns3_facodec_decoder.bin")
|
43 |
+
# redecoder_ckpt = hf_hub_download(repo_id="amphion/naturalspeech3_facodec", filename="ns3_facodec_redecoder.bin")
|
44 |
+
|
45 |
+
encoder_ckpt = "ns3_facodec_encoder.bin"
|
46 |
+
decoder_ckpt = "ns3_facodec_decoder.bin"
|
47 |
+
redecoder_ckpt = "ns3_facodec_redecoder.bin"
|
48 |
+
|
49 |
+
fa_encoder.load_state_dict(torch.load(encoder_ckpt))
|
50 |
+
fa_decoder.load_state_dict(torch.load(decoder_ckpt))
|
51 |
+
fa_redecoder.load_state_dict(torch.load(redecoder_ckpt))
|
52 |
|
53 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
54 |
fa_encoder = fa_encoder.to(device)
|
55 |
fa_decoder = fa_decoder.to(device)
|
56 |
+
fa_redecoder = fa_redecoder.to(device)
|
57 |
fa_encoder.eval()
|
58 |
fa_decoder.eval()
|
59 |
+
fa_redecoder.eval()
|
60 |
|
61 |
def codec_inference(speech_path):
|
62 |
|
|
|
78 |
return result_path
|
79 |
|
80 |
|
81 |
+
def codec_voice_conversion(speech_path_a, speech_path_b):
|
82 |
+
|
83 |
+
with torch.no_grad():
|
84 |
+
|
85 |
+
wav_a, sr = librosa.load(speech_path_a, sr=16000)
|
86 |
+
wav_a = torch.tensor(wav_a).to(device).unsqueeze(0).unsqueeze(0)
|
87 |
+
wav_b, sr = librosa.load(speech_path_b, sr=16000)
|
88 |
+
wav_b = torch.tensor(wav_b).to(device).unsqueeze(0).unsqueeze(0)
|
89 |
+
|
90 |
+
enc_out_a = fa_encoder(wav_a)
|
91 |
+
enc_out_b = fa_encoder(wav_b)
|
92 |
+
|
93 |
+
vq_post_emb_a, vq_id_a, _, quantized, spk_embs_a = fa_decoder(
|
94 |
+
enc_out_a, eval_vq=False, vq=True
|
95 |
+
)
|
96 |
+
vq_post_emb_b, vq_id_b, _, quantized, spk_embs_b = fa_decoder(
|
97 |
+
enc_out_b, eval_vq=False, vq=True
|
98 |
+
)
|
99 |
+
|
100 |
+
recon_wav_a = fa_decoder.inference(vq_post_emb_a, spk_embs_a)
|
101 |
+
recon_wav_b = fa_decoder.inference(vq_post_emb_b, spk_embs_b)
|
102 |
+
|
103 |
+
vq_post_emb_a_to_b = fa_redecoder.vq2emb(
|
104 |
+
vq_id_a, spk_embs_b, use_residual=False
|
105 |
+
)
|
106 |
+
recon_wav_a_to_b = fa_redecoder.inference(vq_post_emb_a_to_b, spk_embs_b)
|
107 |
+
|
108 |
+
os.makedirs("temp", exist_ok=True)
|
109 |
+
recon_a_result_path = "temp/result_a.wav"
|
110 |
+
recon_b_result_path = "temp/result_b.wav"
|
111 |
+
vc_result_path = "temp/result_vc.wav"
|
112 |
+
sf.write(vc_result_path, recon_wav_a_to_b[0, 0].cpu().numpy(), 16000)
|
113 |
+
sf.write(recon_a_result_path, recon_wav_a[0, 0].cpu().numpy(), 16000)
|
114 |
+
sf.write(recon_b_result_path, recon_wav_b[0, 0].cpu().numpy(), 16000)
|
115 |
+
|
116 |
+
return recon_a_result_path, recon_b_result_path, vc_result_path
|
117 |
+
|
118 |
+
|
119 |
demo_inputs = [
|
120 |
gr.Audio(
|
121 |
sources=["upload", "microphone"],
|
122 |
+
label="Upload the source speech file",
|
123 |
+
type="filepath",
|
124 |
+
),
|
125 |
+
gr.Audio(
|
126 |
+
sources=["upload", "microphone"],
|
127 |
+
label="Upload the reference speech file",
|
128 |
type="filepath",
|
129 |
),
|
130 |
]
|
131 |
|
132 |
+
demo_outputs = [
|
133 |
+
gr.Audio(label="Source speech reconstructed"),
|
134 |
+
gr.Audio(label="Reference speech reconstructed"),
|
135 |
+
gr.Audio(label="Voice conversion result"),
|
136 |
+
]
|
137 |
|
138 |
demo = gr.Interface(
|
139 |
+
fn=codec_voice_conversion,
|
140 |
inputs=demo_inputs,
|
141 |
outputs=demo_outputs,
|
142 |
title="NaturalSpeech3 FACodec",
|
143 |
+
description="""
|
|
|
144 |
## FACodec: Speech Codec with Attribute Factorization used for NaturalSpeech 3
|
145 |
|
146 |
[![arXiv](https://img.shields.io/badge/arXiv-Paper-<COLOR>.svg)](https://arxiv.org/pdf/2403.03100.pdf)
|
|
|
159 |
|
160 |
if __name__ == "__main__":
|
161 |
demo.launch()
|
162 |
+
|