Spaces:
Running
on
Zero
Running
on
Zero
Hecheng0625
commited on
Create melspec.py
Browse files
Amphion/models/ns3_codec/melspec.py
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import pyworld as pw
|
3 |
+
import numpy as np
|
4 |
+
import soundfile as sf
|
5 |
+
import os
|
6 |
+
from torchaudio.functional import pitch_shift
|
7 |
+
import librosa
|
8 |
+
from librosa.filters import mel as librosa_mel_fn
|
9 |
+
import torch.nn as nn
|
10 |
+
import torch.nn.functional as F
|
11 |
+
|
12 |
+
|
13 |
+
def dynamic_range_compression(x, C=1, clip_val=1e-5):
|
14 |
+
return np.log(np.clip(x, a_min=clip_val, a_max=None) * C)
|
15 |
+
|
16 |
+
|
17 |
+
def dynamic_range_decompression(x, C=1):
|
18 |
+
return np.exp(x) / C
|
19 |
+
|
20 |
+
|
21 |
+
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
|
22 |
+
return torch.log(torch.clamp(x, min=clip_val) * C)
|
23 |
+
|
24 |
+
|
25 |
+
def dynamic_range_decompression_torch(x, C=1):
|
26 |
+
return torch.exp(x) / C
|
27 |
+
|
28 |
+
|
29 |
+
def spectral_normalize_torch(magnitudes):
|
30 |
+
output = dynamic_range_compression_torch(magnitudes)
|
31 |
+
return output
|
32 |
+
|
33 |
+
|
34 |
+
def spectral_de_normalize_torch(magnitudes):
|
35 |
+
output = dynamic_range_decompression_torch(magnitudes)
|
36 |
+
return output
|
37 |
+
|
38 |
+
|
39 |
+
class MelSpectrogram(nn.Module):
|
40 |
+
def __init__(
|
41 |
+
self,
|
42 |
+
n_fft,
|
43 |
+
num_mels,
|
44 |
+
sampling_rate,
|
45 |
+
hop_size,
|
46 |
+
win_size,
|
47 |
+
fmin,
|
48 |
+
fmax,
|
49 |
+
center=False,
|
50 |
+
):
|
51 |
+
super(MelSpectrogram, self).__init__()
|
52 |
+
self.n_fft = n_fft
|
53 |
+
self.hop_size = hop_size
|
54 |
+
self.win_size = win_size
|
55 |
+
self.sampling_rate = sampling_rate
|
56 |
+
self.num_mels = num_mels
|
57 |
+
self.fmin = fmin
|
58 |
+
self.fmax = fmax
|
59 |
+
self.center = center
|
60 |
+
|
61 |
+
mel_basis = {}
|
62 |
+
hann_window = {}
|
63 |
+
|
64 |
+
mel = librosa_mel_fn(
|
65 |
+
sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax
|
66 |
+
)
|
67 |
+
mel_basis = torch.from_numpy(mel).float()
|
68 |
+
hann_window = torch.hann_window(win_size)
|
69 |
+
|
70 |
+
self.register_buffer("mel_basis", mel_basis)
|
71 |
+
self.register_buffer("hann_window", hann_window)
|
72 |
+
|
73 |
+
def forward(self, y):
|
74 |
+
y = torch.nn.functional.pad(
|
75 |
+
y.unsqueeze(1),
|
76 |
+
(
|
77 |
+
int((self.n_fft - self.hop_size) / 2),
|
78 |
+
int((self.n_fft - self.hop_size) / 2),
|
79 |
+
),
|
80 |
+
mode="reflect",
|
81 |
+
)
|
82 |
+
y = y.squeeze(1)
|
83 |
+
spec = torch.stft(
|
84 |
+
y,
|
85 |
+
self.n_fft,
|
86 |
+
hop_length=self.hop_size,
|
87 |
+
win_length=self.win_size,
|
88 |
+
window=self.hann_window,
|
89 |
+
center=self.center,
|
90 |
+
pad_mode="reflect",
|
91 |
+
normalized=False,
|
92 |
+
onesided=True,
|
93 |
+
return_complex=True,
|
94 |
+
)
|
95 |
+
spec = torch.view_as_real(spec)
|
96 |
+
|
97 |
+
spec = torch.sqrt(spec.pow(2).sum(-1) + (1e-9))
|
98 |
+
|
99 |
+
spec = torch.matmul(self.mel_basis, spec)
|
100 |
+
spec = spectral_normalize_torch(spec)
|
101 |
+
|
102 |
+
return spec
|