Spaces:
Sleeping
Sleeping
import gradio as gr | |
import os | |
from dotenv import load_dotenv | |
from langchain_community.document_loaders import PyPDFLoader | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain_community.vectorstores import Chroma | |
from langchain.chains import ConversationalRetrievalChain | |
from langchain_community.embeddings import HuggingFaceEmbeddings | |
from langchain_community.llms import HuggingFacePipeline | |
from langchain.chains import ConversationChain | |
from langchain.memory import ConversationBufferMemory | |
from langchain_huggingface.llms import HuggingFaceEndpoint | |
from huggingface_hub import login | |
from pathlib import Path | |
import chromadb | |
from unidecode import unidecode | |
from transformers import AutoTokenizer | |
import transformers | |
import torch | |
import tqdm | |
import accelerate | |
import re | |
load_dotenv() | |
huggingface_api_key = os.getenv("HUGGINGFACE_API_KEY") | |
print('HF TOKEN: ', huggingface_api_key) | |
list_llm = ["mistralai/Mistral-7B-Instruct-v0.2"] | |
list_llm_simple = [os.path.basename(llm) for llm in list_llm] | |
def load_doc(list_file_path, chunk_size, chunk_overlap): | |
loaders = [PyPDFLoader(x) for x in list_file_path] | |
pages = [] | |
for loader in loaders: | |
pages.extend(loader.load()) | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size = 600, chunk_overlap = 50) | |
doc_splits = text_splitter.split_documents(pages) | |
return doc_splits | |
def create_db(splits, collection_name): | |
embedding = HuggingFaceEmbeddings() | |
new_client = chromadb.EphemeralClient() | |
vectordb = Chroma.from_documents( | |
documents=splits, | |
embedding=embedding, | |
client=new_client, | |
collection_name=collection_name, | |
) | |
return vectordb | |
def load_db(): | |
embedding = HuggingFaceEmbeddings() | |
vectordb = Chroma(embedding_function=embedding) | |
return vectordb | |
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()): | |
progress(0.1, desc="Initializing HF tokenizer...") | |
progress(0.5, desc="Initializing HF Hub...") | |
llm = HuggingFaceEndpoint( | |
repo_id=llm_model, | |
temperature = temperature, | |
max_new_tokens = max_tokens, | |
top_k = top_k, | |
) | |
progress(0.75, desc="Defining buffer memory...") | |
memory = ConversationBufferMemory( | |
memory_key="chat_history", | |
output_key='answer', | |
return_messages=True | |
) | |
retriever = vector_db.as_retriever() | |
progress(0.8, desc="Defining retrieval chain...") | |
qa_chain = ConversationalRetrievalChain.from_llm( | |
llm, | |
retriever=retriever, | |
chain_type="stuff", | |
memory=memory, | |
return_source_documents=True, | |
verbose=False, | |
) | |
progress(0.9, desc="Done!") | |
return qa_chain | |
def create_collection_name(filepath): | |
collection_name = Path(filepath).stem | |
collection_name = collection_name.replace(" ","-") | |
collection_name = unidecode(collection_name) | |
collection_name = re.sub('[^A-Za-z0-9]+', '-', collection_name) | |
collection_name = collection_name[:50] | |
if len(collection_name) < 3: | |
collection_name = collection_name + 'xyz' | |
if not collection_name[0].isalnum(): | |
collection_name = 'A' + collection_name[1:] | |
if not collection_name[-1].isalnum(): | |
collection_name = collection_name[:-1] + 'Z' | |
print('Filepath: ', filepath) | |
print('Collection name: ', collection_name) | |
return collection_name | |
def initialize_database(list_file_obj, chunk_size, chunk_overlap, progress=gr.Progress()): | |
list_file_path = [x.name for x in list_file_obj if x is not None] | |
progress(0.1, desc="Creating collection name...") | |
collection_name = create_collection_name(list_file_path[0]) | |
progress(0.25, desc="Loading document...") | |
doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap) | |
progress(0.5, desc="Generating vector database...") | |
vector_db = create_db(doc_splits, collection_name) | |
progress(0.9, desc="Done!") | |
return vector_db, collection_name, "Complete!" | |
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()): | |
llm_name = list_llm[llm_option] | |
print("llm_name: ",llm_name) | |
qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress) | |
return qa_chain, "Complete!" | |
def format_chat_history(message, chat_history): | |
formatted_chat_history = [] | |
for user_message, bot_message in chat_history: | |
formatted_chat_history.append(f"User: {user_message}") | |
formatted_chat_history.append(f"Assistant: {bot_message}") | |
return formatted_chat_history | |
def conversation(qa_chain, message, history): | |
formatted_chat_history = format_chat_history(message, history) | |
response = qa_chain({"question": message, "chat_history": formatted_chat_history}) | |
response_answer = response["answer"] | |
if response_answer.find("Helpful Answer:") != -1: | |
response_answer = response_answer.split("Helpful Answer:")[-1] | |
response_sources = response["source_documents"] | |
response_source1 = response_sources[0].page_content.strip() | |
response_source2 = response_sources[1].page_content.strip() | |
response_source3 = response_sources[2].page_content.strip() | |
response_source1_page = response_sources[0].metadata["page"] + 1 | |
response_source2_page = response_sources[1].metadata["page"] + 1 | |
response_source3_page = response_sources[2].metadata["page"] + 1 | |
new_history = history + [(message, response_answer)] | |
return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page | |
def upload_file(file_obj): | |
list_file_path = [] | |
for idx, file in enumerate(file_obj): | |
file_path = file_obj.name | |
list_file_path.append(file_path) | |
return list_file_path | |
def demo(): | |
with gr.Blocks(theme="base") as demo: | |
vector_db = gr.State() | |
qa_chain = gr.State() | |
collection_name = gr.State() | |
gr.Markdown( | |
"""<center><h2>PDF-based chatbot</center></h2> | |
<h3>Ask any questions about your PDF documents</h3>""") | |
gr.Markdown( | |
"""<b>Note:</b> This AI assistant, using Langchain and open-source LLMs, performs retrieval-augmented generation (RAG) from your PDF documents. \ | |
The user interface explicitely shows multiple steps to help understand the RAG workflow. | |
This chatbot takes past questions into account when generating answers (via conversational memory), and includes document references for clarity purposes.<br> | |
<br><b>Warning:</b> This space uses the free CPU Basic hardware from Hugging Face. Some steps and LLM models used below (free inference endpoints) can take some time to generate a reply. | |
""") | |
with gr.Tab("Step 1 - Upload PDF"): | |
with gr.Row(): | |
document = gr.Files(height=100, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload your PDF documents (single or multiple)") | |
with gr.Tab("Step 2 - Process document"): | |
with gr.Row(): | |
db_btn = gr.Radio(["ChromaDB"], label="Vector database type", value = "ChromaDB", type="index", info="Choose your vector database") | |
with gr.Accordion("Advanced options - Document text splitter", open=False): | |
with gr.Row(): | |
slider_chunk_size = gr.Slider(minimum = 100, maximum = 1000, value=600, step=20, label="Chunk size", info="Chunk size", interactive=True) | |
with gr.Row(): | |
slider_chunk_overlap = gr.Slider(minimum = 10, maximum = 200, value=40, step=10, label="Chunk overlap", info="Chunk overlap", interactive=True) | |
with gr.Row(): | |
db_progress = gr.Textbox(label="Vector database initialization", value="None") | |
with gr.Row(): | |
db_generate_btn = gr.Button("Generate vector database") | |
with gr.Tab("Step 3 - Initialize QA chain"): | |
with gr.Row(): | |
llm_btn = gr.Radio(list_llm_simple, \ | |
label="LLM models", value = list_llm_simple[0], type="index", info="Choose your LLM model") | |
with gr.Accordion("Advanced options - LLM model", open=False): | |
with gr.Row(): | |
slider_temperature = gr.Slider(minimum = 0.01, maximum = 1.0, value=0.7, step=0.1, label="Temperature", info="Model temperature", interactive=True) | |
with gr.Row(): | |
slider_maxtokens = gr.Slider(minimum = 32, maximum = 2048, value=1024, step=16, label="Max tokens", info="Maximum tokens", interactive=True) | |
with gr.Row(): | |
slider_topk = gr.Slider(minimum = 10, maximum = 50, value=40, step=2, label="Top K", info="Top K", interactive=True) | |
with gr.Row(): | |
llm_progress = gr.Textbox(label="LLM initialization", value="None") | |
with gr.Row(): | |
llm_generate_btn = gr.Button("Initialize LLM chain") | |
with gr.Tab("Step 4 - Ask questions to your chatbot"): | |
with gr.Row(): | |
chatbot = gr.Chatbot(label="Langchain PDF chatbot", height=400) | |
with gr.Row(): | |
msg = gr.Textbox(label="Ask anything about your PDF document", placeholder="Type your message here...", show_label=False) | |
with gr.Row(): | |
response_source1 = gr.Textbox(label="Source document #1", value="", interactive=False) | |
response_source1_page = gr.Number(label="Page", value=0, interactive=False) | |
with gr.Row(): | |
response_source2 = gr.Textbox(label="Source document #2", value="", interactive=False) | |
response_source2_page = gr.Number(label="Page", value=0, interactive=False) | |
with gr.Row(): | |
response_source3 = gr.Textbox(label="Source document #3", value="", interactive=False) | |
response_source3_page = gr.Number(label="Page", value=0, interactive=False) | |
with gr.Row(): | |
clear = gr.Button("Clear") | |
document.upload(upload_file, [document], [document]) | |
db_generate_btn.click(initialize_database, inputs=[document, slider_chunk_size, slider_chunk_overlap], outputs=[vector_db, collection_name, db_progress]) | |
llm_generate_btn.click(initialize_LLM, inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db], outputs=[qa_chain, llm_progress]) | |
msg.submit(conversation, [qa_chain, msg, chatbot], [qa_chain, msg, chatbot, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page]) | |
clear.click(lambda: None, None, chatbot, queue=False) | |
return demo | |
if __name__ == "__main__": | |
demo().queue().launch(debug=True, server_port=7861) # Use a different port, e.g., 7861 | |