Spaces:
Sleeping
Sleeping
amraly1983
commited on
Commit
•
5b6f5f1
1
Parent(s):
10fc421
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,6 @@
|
|
1 |
import gradio as gr
|
2 |
import os
|
3 |
from dotenv import load_dotenv
|
4 |
-
|
5 |
from langchain_community.document_loaders import PyPDFLoader
|
6 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
7 |
from langchain_community.vectorstores import Chroma
|
@@ -11,13 +10,11 @@ from langchain_community.llms import HuggingFacePipeline
|
|
11 |
from langchain.chains import ConversationChain
|
12 |
from langchain.memory import ConversationBufferMemory
|
13 |
from langchain_huggingface.llms import HuggingFaceEndpoint
|
14 |
-
|
15 |
-
|
16 |
from pathlib import Path
|
17 |
import chromadb
|
18 |
from unidecode import unidecode
|
19 |
-
|
20 |
-
# from transformers import AutoTokenizer
|
21 |
import transformers
|
22 |
import torch
|
23 |
import tqdm
|
@@ -28,30 +25,20 @@ load_dotenv()
|
|
28 |
|
29 |
huggingface_api_key = os.getenv("HUGGINGFACE_API_KEY")
|
30 |
|
31 |
-
|
32 |
|
33 |
-
|
34 |
-
list_llm = ["mistralai/Mistral-7B-Instruct-v0.3"]
|
35 |
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
|
36 |
|
37 |
-
# Load PDF document and create doc splits
|
38 |
def load_doc(list_file_path, chunk_size, chunk_overlap):
|
39 |
-
# Processing for one document only
|
40 |
-
# loader = PyPDFLoader(file_path)
|
41 |
-
# pages = loader.load()
|
42 |
loaders = [PyPDFLoader(x) for x in list_file_path]
|
43 |
pages = []
|
44 |
for loader in loaders:
|
45 |
pages.extend(loader.load())
|
46 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size = 600, chunk_overlap = 50)
|
47 |
-
#text_splitter = RecursiveCharacterTextSplitter(
|
48 |
-
# chunk_size = chunk_size,
|
49 |
-
# chunk_overlap = chunk_overlap)
|
50 |
doc_splits = text_splitter.split_documents(pages)
|
51 |
return doc_splits
|
52 |
|
53 |
-
|
54 |
-
# Create vector database
|
55 |
def create_db(splits, collection_name):
|
56 |
embedding = HuggingFaceEmbeddings()
|
57 |
new_client = chromadb.EphemeralClient()
|
@@ -60,100 +47,50 @@ def create_db(splits, collection_name):
|
|
60 |
embedding=embedding,
|
61 |
client=new_client,
|
62 |
collection_name=collection_name,
|
63 |
-
# persist_directory=default_persist_directory
|
64 |
)
|
65 |
return vectordb
|
66 |
|
67 |
-
|
68 |
-
# Load vector database
|
69 |
def load_db():
|
70 |
embedding = HuggingFaceEmbeddings()
|
71 |
-
vectordb = Chroma(
|
72 |
-
# persist_directory=default_persist_directory,
|
73 |
-
embedding_function=embedding)
|
74 |
return vectordb
|
75 |
|
76 |
-
|
77 |
-
# Initialize langchain LLM chain
|
78 |
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
79 |
progress(0.1, desc="Initializing HF tokenizer...")
|
80 |
-
# HuggingFacePipeline uses local model
|
81 |
-
# Note: it will download model locally...
|
82 |
-
# tokenizer=AutoTokenizer.from_pretrained(llm_model)
|
83 |
-
# progress(0.5, desc="Initializing HF pipeline...")
|
84 |
-
# pipeline=transformers.pipeline(
|
85 |
-
# "text-generation",
|
86 |
-
# model=llm_model,
|
87 |
-
# tokenizer=tokenizer,
|
88 |
-
# torch_dtype=torch.bfloat16,
|
89 |
-
# trust_remote_code=True,
|
90 |
-
# device_map="auto",
|
91 |
-
# # max_length=1024,
|
92 |
-
# max_new_tokens=max_tokens,
|
93 |
-
# do_sample=True,
|
94 |
-
# top_k=top_k,
|
95 |
-
# num_return_sequences=1,
|
96 |
-
# eos_token_id=tokenizer.eos_token_id
|
97 |
-
# )
|
98 |
-
# llm = HuggingFacePipeline(pipeline=pipeline, model_kwargs={'temperature': temperature})
|
99 |
-
|
100 |
-
# HuggingFaceHub uses HF inference endpoints
|
101 |
progress(0.5, desc="Initializing HF Hub...")
|
102 |
-
# Use of trust_remote_code as model_kwargs
|
103 |
-
# Warning: langchain issue
|
104 |
-
# URL: https://github.com/langchain-ai/langchain/issues/6080
|
105 |
-
#login(token=huggingface_api_key)
|
106 |
llm = HuggingFaceEndpoint(
|
107 |
repo_id=llm_model,
|
108 |
-
#model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k, "trust_remote_code": True, "torch_dtype": "auto"}
|
109 |
-
#model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k}
|
110 |
temperature = temperature,
|
111 |
max_new_tokens = max_tokens,
|
112 |
top_k = top_k,
|
113 |
)
|
114 |
-
|
115 |
progress(0.75, desc="Defining buffer memory...")
|
116 |
memory = ConversationBufferMemory(
|
117 |
memory_key="chat_history",
|
118 |
output_key='answer',
|
119 |
return_messages=True
|
120 |
)
|
121 |
-
|
122 |
-
retriever=vector_db.as_retriever()
|
123 |
progress(0.8, desc="Defining retrieval chain...")
|
124 |
qa_chain = ConversationalRetrievalChain.from_llm(
|
125 |
llm,
|
126 |
retriever=retriever,
|
127 |
chain_type="stuff",
|
128 |
memory=memory,
|
129 |
-
# combine_docs_chain_kwargs={"prompt": your_prompt})
|
130 |
return_source_documents=True,
|
131 |
-
#return_generated_question=False,
|
132 |
verbose=False,
|
133 |
)
|
134 |
progress(0.9, desc="Done!")
|
135 |
return qa_chain
|
136 |
|
137 |
-
|
138 |
-
# Generate collection name for vector database
|
139 |
-
# - Use filepath as input, ensuring unicode text
|
140 |
def create_collection_name(filepath):
|
141 |
-
# Extract filename without extension
|
142 |
collection_name = Path(filepath).stem
|
143 |
-
# Fix potential issues from naming convention
|
144 |
-
## Remove space
|
145 |
collection_name = collection_name.replace(" ","-")
|
146 |
-
## ASCII transliterations of Unicode text
|
147 |
collection_name = unidecode(collection_name)
|
148 |
-
## Remove special characters
|
149 |
-
#collection_name = re.findall("[\dA-Za-z]*", collection_name)[0]
|
150 |
collection_name = re.sub('[^A-Za-z0-9]+', '-', collection_name)
|
151 |
-
## Limit length to 50 characters
|
152 |
collection_name = collection_name[:50]
|
153 |
-
## Minimum length of 3 characters
|
154 |
if len(collection_name) < 3:
|
155 |
collection_name = collection_name + 'xyz'
|
156 |
-
## Enforce start and end as alphanumeric character
|
157 |
if not collection_name[0].isalnum():
|
158 |
collection_name = 'A' + collection_name[1:]
|
159 |
if not collection_name[-1].isalnum():
|
@@ -162,46 +99,32 @@ def create_collection_name(filepath):
|
|
162 |
print('Collection name: ', collection_name)
|
163 |
return collection_name
|
164 |
|
165 |
-
|
166 |
-
# Initialize database
|
167 |
def initialize_database(list_file_obj, chunk_size, chunk_overlap, progress=gr.Progress()):
|
168 |
-
# Create list of documents (when valid)
|
169 |
list_file_path = [x.name for x in list_file_obj if x is not None]
|
170 |
-
# Create collection_name for vector database
|
171 |
progress(0.1, desc="Creating collection name...")
|
172 |
collection_name = create_collection_name(list_file_path[0])
|
173 |
progress(0.25, desc="Loading document...")
|
174 |
-
# Load document and create splits
|
175 |
doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap)
|
176 |
-
# Create or load vector database
|
177 |
progress(0.5, desc="Generating vector database...")
|
178 |
-
# global vector_db
|
179 |
vector_db = create_db(doc_splits, collection_name)
|
180 |
progress(0.9, desc="Done!")
|
181 |
return vector_db, collection_name, "Complete!"
|
182 |
|
183 |
-
|
184 |
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
185 |
-
# print("llm_option",llm_option)
|
186 |
llm_name = list_llm[llm_option]
|
187 |
print("llm_name: ",llm_name)
|
188 |
qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress)
|
189 |
return qa_chain, "Complete!"
|
190 |
|
191 |
-
|
192 |
def format_chat_history(message, chat_history):
|
193 |
formatted_chat_history = []
|
194 |
for user_message, bot_message in chat_history:
|
195 |
formatted_chat_history.append(f"User: {user_message}")
|
196 |
formatted_chat_history.append(f"Assistant: {bot_message}")
|
197 |
return formatted_chat_history
|
198 |
-
|
199 |
|
200 |
def conversation(qa_chain, message, history):
|
201 |
formatted_chat_history = format_chat_history(message, history)
|
202 |
-
#print("formatted_chat_history",formatted_chat_history)
|
203 |
-
|
204 |
-
# Generate response using QA chain
|
205 |
response = qa_chain({"question": message, "chat_history": formatted_chat_history})
|
206 |
response_answer = response["answer"]
|
207 |
if response_answer.find("Helpful Answer:") != -1:
|
@@ -210,29 +133,19 @@ def conversation(qa_chain, message, history):
|
|
210 |
response_source1 = response_sources[0].page_content.strip()
|
211 |
response_source2 = response_sources[1].page_content.strip()
|
212 |
response_source3 = response_sources[2].page_content.strip()
|
213 |
-
# Langchain sources are zero-based
|
214 |
response_source1_page = response_sources[0].metadata["page"] + 1
|
215 |
response_source2_page = response_sources[1].metadata["page"] + 1
|
216 |
response_source3_page = response_sources[2].metadata["page"] + 1
|
217 |
-
# print ('chat response: ', response_answer)
|
218 |
-
# print('DB source', response_sources)
|
219 |
-
|
220 |
-
# Append user message and response to chat history
|
221 |
new_history = history + [(message, response_answer)]
|
222 |
-
# return gr.update(value=""), new_history, response_sources[0], response_sources[1]
|
223 |
return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
|
224 |
-
|
225 |
|
226 |
def upload_file(file_obj):
|
227 |
list_file_path = []
|
228 |
for idx, file in enumerate(file_obj):
|
229 |
file_path = file_obj.name
|
230 |
list_file_path.append(file_path)
|
231 |
-
# print(file_path)
|
232 |
-
# initialize_database(file_path, progress)
|
233 |
return list_file_path
|
234 |
|
235 |
-
|
236 |
def demo():
|
237 |
with gr.Blocks(theme="base") as demo:
|
238 |
vector_db = gr.State()
|
@@ -252,7 +165,6 @@ def demo():
|
|
252 |
with gr.Tab("Step 1 - Upload PDF"):
|
253 |
with gr.Row():
|
254 |
document = gr.Files(height=100, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload your PDF documents (single or multiple)")
|
255 |
-
# upload_btn = gr.UploadButton("Loading document...", height=100, file_count="multiple", file_types=["pdf"], scale=1)
|
256 |
|
257 |
with gr.Tab("Step 2 - Process document"):
|
258 |
with gr.Row():
|
@@ -265,7 +177,7 @@ def demo():
|
|
265 |
with gr.Row():
|
266 |
db_progress = gr.Textbox(label="Vector database initialization", value="None")
|
267 |
with gr.Row():
|
268 |
-
|
269 |
|
270 |
with gr.Tab("Step 3 - Initialize QA chain"):
|
271 |
with gr.Row():
|
@@ -275,59 +187,38 @@ def demo():
|
|
275 |
with gr.Row():
|
276 |
slider_temperature = gr.Slider(minimum = 0.01, maximum = 1.0, value=0.7, step=0.1, label="Temperature", info="Model temperature", interactive=True)
|
277 |
with gr.Row():
|
278 |
-
slider_maxtokens = gr.Slider(minimum =
|
279 |
with gr.Row():
|
280 |
-
slider_topk = gr.Slider(minimum =
|
281 |
with gr.Row():
|
282 |
-
llm_progress = gr.Textbox(
|
283 |
with gr.Row():
|
284 |
-
|
285 |
|
286 |
-
with gr.Tab("Step 4 -
|
287 |
-
chatbot = gr.Chatbot(height=300)
|
288 |
-
with gr.Accordion("Advanced - Document references", open=False):
|
289 |
-
with gr.Row():
|
290 |
-
doc_source1 = gr.Textbox(label="Reference 1", lines=2, container=True, scale=20)
|
291 |
-
source1_page = gr.Number(label="Page", scale=1)
|
292 |
-
with gr.Row():
|
293 |
-
doc_source2 = gr.Textbox(label="Reference 2", lines=2, container=True, scale=20)
|
294 |
-
source2_page = gr.Number(label="Page", scale=1)
|
295 |
-
with gr.Row():
|
296 |
-
doc_source3 = gr.Textbox(label="Reference 3", lines=2, container=True, scale=20)
|
297 |
-
source3_page = gr.Number(label="Page", scale=1)
|
298 |
with gr.Row():
|
299 |
-
|
300 |
with gr.Row():
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
|
314 |
-
queue=False)
|
315 |
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
submit_btn.click(conversation, \
|
322 |
-
inputs=[qa_chain, msg, chatbot], \
|
323 |
-
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
|
324 |
-
queue=False)
|
325 |
-
clear_btn.click(lambda:[None,"",0,"",0,"",0], \
|
326 |
-
inputs=None, \
|
327 |
-
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
|
328 |
-
queue=False)
|
329 |
-
demo.queue().launch(debug=True)
|
330 |
|
|
|
331 |
|
332 |
if __name__ == "__main__":
|
333 |
-
|
|
|
1 |
import gradio as gr
|
2 |
import os
|
3 |
from dotenv import load_dotenv
|
|
|
4 |
from langchain_community.document_loaders import PyPDFLoader
|
5 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
6 |
from langchain_community.vectorstores import Chroma
|
|
|
10 |
from langchain.chains import ConversationChain
|
11 |
from langchain.memory import ConversationBufferMemory
|
12 |
from langchain_huggingface.llms import HuggingFaceEndpoint
|
13 |
+
from huggingface_hub import login
|
|
|
14 |
from pathlib import Path
|
15 |
import chromadb
|
16 |
from unidecode import unidecode
|
17 |
+
from transformers import AutoTokenizer
|
|
|
18 |
import transformers
|
19 |
import torch
|
20 |
import tqdm
|
|
|
25 |
|
26 |
huggingface_api_key = os.getenv("HUGGINGFACE_API_KEY")
|
27 |
|
28 |
+
print('HF TOKEN: ', huggingface_api_key)
|
29 |
|
30 |
+
list_llm = ["mistralai/Mistral-7B-Instruct-v0.2"]
|
|
|
31 |
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
|
32 |
|
|
|
33 |
def load_doc(list_file_path, chunk_size, chunk_overlap):
|
|
|
|
|
|
|
34 |
loaders = [PyPDFLoader(x) for x in list_file_path]
|
35 |
pages = []
|
36 |
for loader in loaders:
|
37 |
pages.extend(loader.load())
|
38 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size = 600, chunk_overlap = 50)
|
|
|
|
|
|
|
39 |
doc_splits = text_splitter.split_documents(pages)
|
40 |
return doc_splits
|
41 |
|
|
|
|
|
42 |
def create_db(splits, collection_name):
|
43 |
embedding = HuggingFaceEmbeddings()
|
44 |
new_client = chromadb.EphemeralClient()
|
|
|
47 |
embedding=embedding,
|
48 |
client=new_client,
|
49 |
collection_name=collection_name,
|
|
|
50 |
)
|
51 |
return vectordb
|
52 |
|
|
|
|
|
53 |
def load_db():
|
54 |
embedding = HuggingFaceEmbeddings()
|
55 |
+
vectordb = Chroma(embedding_function=embedding)
|
|
|
|
|
56 |
return vectordb
|
57 |
|
|
|
|
|
58 |
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
59 |
progress(0.1, desc="Initializing HF tokenizer...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
progress(0.5, desc="Initializing HF Hub...")
|
|
|
|
|
|
|
|
|
61 |
llm = HuggingFaceEndpoint(
|
62 |
repo_id=llm_model,
|
|
|
|
|
63 |
temperature = temperature,
|
64 |
max_new_tokens = max_tokens,
|
65 |
top_k = top_k,
|
66 |
)
|
|
|
67 |
progress(0.75, desc="Defining buffer memory...")
|
68 |
memory = ConversationBufferMemory(
|
69 |
memory_key="chat_history",
|
70 |
output_key='answer',
|
71 |
return_messages=True
|
72 |
)
|
73 |
+
retriever = vector_db.as_retriever()
|
|
|
74 |
progress(0.8, desc="Defining retrieval chain...")
|
75 |
qa_chain = ConversationalRetrievalChain.from_llm(
|
76 |
llm,
|
77 |
retriever=retriever,
|
78 |
chain_type="stuff",
|
79 |
memory=memory,
|
|
|
80 |
return_source_documents=True,
|
|
|
81 |
verbose=False,
|
82 |
)
|
83 |
progress(0.9, desc="Done!")
|
84 |
return qa_chain
|
85 |
|
|
|
|
|
|
|
86 |
def create_collection_name(filepath):
|
|
|
87 |
collection_name = Path(filepath).stem
|
|
|
|
|
88 |
collection_name = collection_name.replace(" ","-")
|
|
|
89 |
collection_name = unidecode(collection_name)
|
|
|
|
|
90 |
collection_name = re.sub('[^A-Za-z0-9]+', '-', collection_name)
|
|
|
91 |
collection_name = collection_name[:50]
|
|
|
92 |
if len(collection_name) < 3:
|
93 |
collection_name = collection_name + 'xyz'
|
|
|
94 |
if not collection_name[0].isalnum():
|
95 |
collection_name = 'A' + collection_name[1:]
|
96 |
if not collection_name[-1].isalnum():
|
|
|
99 |
print('Collection name: ', collection_name)
|
100 |
return collection_name
|
101 |
|
|
|
|
|
102 |
def initialize_database(list_file_obj, chunk_size, chunk_overlap, progress=gr.Progress()):
|
|
|
103 |
list_file_path = [x.name for x in list_file_obj if x is not None]
|
|
|
104 |
progress(0.1, desc="Creating collection name...")
|
105 |
collection_name = create_collection_name(list_file_path[0])
|
106 |
progress(0.25, desc="Loading document...")
|
|
|
107 |
doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap)
|
|
|
108 |
progress(0.5, desc="Generating vector database...")
|
|
|
109 |
vector_db = create_db(doc_splits, collection_name)
|
110 |
progress(0.9, desc="Done!")
|
111 |
return vector_db, collection_name, "Complete!"
|
112 |
|
|
|
113 |
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
|
|
114 |
llm_name = list_llm[llm_option]
|
115 |
print("llm_name: ",llm_name)
|
116 |
qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress)
|
117 |
return qa_chain, "Complete!"
|
118 |
|
|
|
119 |
def format_chat_history(message, chat_history):
|
120 |
formatted_chat_history = []
|
121 |
for user_message, bot_message in chat_history:
|
122 |
formatted_chat_history.append(f"User: {user_message}")
|
123 |
formatted_chat_history.append(f"Assistant: {bot_message}")
|
124 |
return formatted_chat_history
|
|
|
125 |
|
126 |
def conversation(qa_chain, message, history):
|
127 |
formatted_chat_history = format_chat_history(message, history)
|
|
|
|
|
|
|
128 |
response = qa_chain({"question": message, "chat_history": formatted_chat_history})
|
129 |
response_answer = response["answer"]
|
130 |
if response_answer.find("Helpful Answer:") != -1:
|
|
|
133 |
response_source1 = response_sources[0].page_content.strip()
|
134 |
response_source2 = response_sources[1].page_content.strip()
|
135 |
response_source3 = response_sources[2].page_content.strip()
|
|
|
136 |
response_source1_page = response_sources[0].metadata["page"] + 1
|
137 |
response_source2_page = response_sources[1].metadata["page"] + 1
|
138 |
response_source3_page = response_sources[2].metadata["page"] + 1
|
|
|
|
|
|
|
|
|
139 |
new_history = history + [(message, response_answer)]
|
|
|
140 |
return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
|
|
|
141 |
|
142 |
def upload_file(file_obj):
|
143 |
list_file_path = []
|
144 |
for idx, file in enumerate(file_obj):
|
145 |
file_path = file_obj.name
|
146 |
list_file_path.append(file_path)
|
|
|
|
|
147 |
return list_file_path
|
148 |
|
|
|
149 |
def demo():
|
150 |
with gr.Blocks(theme="base") as demo:
|
151 |
vector_db = gr.State()
|
|
|
165 |
with gr.Tab("Step 1 - Upload PDF"):
|
166 |
with gr.Row():
|
167 |
document = gr.Files(height=100, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload your PDF documents (single or multiple)")
|
|
|
168 |
|
169 |
with gr.Tab("Step 2 - Process document"):
|
170 |
with gr.Row():
|
|
|
177 |
with gr.Row():
|
178 |
db_progress = gr.Textbox(label="Vector database initialization", value="None")
|
179 |
with gr.Row():
|
180 |
+
db_generate_btn = gr.Button("Generate vector database")
|
181 |
|
182 |
with gr.Tab("Step 3 - Initialize QA chain"):
|
183 |
with gr.Row():
|
|
|
187 |
with gr.Row():
|
188 |
slider_temperature = gr.Slider(minimum = 0.01, maximum = 1.0, value=0.7, step=0.1, label="Temperature", info="Model temperature", interactive=True)
|
189 |
with gr.Row():
|
190 |
+
slider_maxtokens = gr.Slider(minimum = 32, maximum = 2048, value=1024, step=16, label="Max tokens", info="Maximum tokens", interactive=True)
|
191 |
with gr.Row():
|
192 |
+
slider_topk = gr.Slider(minimum = 10, maximum = 50, value=40, step=2, label="Top K", info="Top K", interactive=True)
|
193 |
with gr.Row():
|
194 |
+
llm_progress = gr.Textbox(label="LLM initialization", value="None")
|
195 |
with gr.Row():
|
196 |
+
llm_generate_btn = gr.Button("Initialize LLM chain")
|
197 |
|
198 |
+
with gr.Tab("Step 4 - Ask questions to your chatbot"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
199 |
with gr.Row():
|
200 |
+
chatbot = gr.Chatbot(label="Langchain PDF chatbot", height=400)
|
201 |
with gr.Row():
|
202 |
+
msg = gr.Textbox(label="Ask anything about your PDF document", placeholder="Type your message here...", show_label=False).style(container=False)
|
203 |
+
with gr.Row():
|
204 |
+
response_source1 = gr.Textbox(label="Source document #1", value="", interactive=False)
|
205 |
+
response_source1_page = gr.Number(label="Page", value=0, interactive=False)
|
206 |
+
with gr.Row():
|
207 |
+
response_source2 = gr.Textbox(label="Source document #2", value="", interactive=False)
|
208 |
+
response_source2_page = gr.Number(label="Page", value=0, interactive=False)
|
209 |
+
with gr.Row():
|
210 |
+
response_source3 = gr.Textbox(label="Source document #3", value="", interactive=False)
|
211 |
+
response_source3_page = gr.Number(label="Page", value=0, interactive=False)
|
212 |
+
with gr.Row():
|
213 |
+
clear = gr.Button("Clear")
|
|
|
|
|
214 |
|
215 |
+
document.upload(upload_file, [document], [document])
|
216 |
+
db_generate_btn.click(initialize_database, inputs=[document, slider_chunk_size, slider_chunk_overlap], outputs=[vector_db, collection_name, db_progress])
|
217 |
+
llm_generate_btn.click(initialize_LLM, inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db], outputs=[qa_chain, llm_progress])
|
218 |
+
msg.submit(conversation, [qa_chain, msg, chatbot], [qa_chain, msg, chatbot, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page])
|
219 |
+
clear.click(lambda: None, None, chatbot, queue=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
220 |
|
221 |
+
return demo
|
222 |
|
223 |
if __name__ == "__main__":
|
224 |
+
demo().queue().launch(debug=True, server_port=7861) # Use a different port, e.g., 7861
|