Spaces:
Sleeping
Sleeping
amraly1983
commited on
Commit
β’
b10004d
1
Parent(s):
9a367c7
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
3 |
+
from langchain.vectorstores import FAISS
|
4 |
+
from langchain.llms import HuggingFaceHub
|
5 |
+
from langchain.chains import RetrievalQA
|
6 |
+
from langchain.text_splitter import CharacterTextSplitter
|
7 |
+
import fitz
|
8 |
+
import os
|
9 |
+
from langchain.schema import Document
|
10 |
+
|
11 |
+
def process_pdf(file):
|
12 |
+
"""Extract text from PDF, split into chunks, and create embeddings."""
|
13 |
+
try:
|
14 |
+
# Save the uploaded file temporarily
|
15 |
+
with open("temp_pdf.pdf", "wb") as f:
|
16 |
+
f.write(file.getbuffer())
|
17 |
+
|
18 |
+
text = ""
|
19 |
+
with fitz.open("temp_pdf.pdf") as doc:
|
20 |
+
for page in doc:
|
21 |
+
text += page.get_text()
|
22 |
+
|
23 |
+
# Create Document objects for the text splitter
|
24 |
+
texts = [Document(page_content=text)]
|
25 |
+
|
26 |
+
# Split text into smaller chunks
|
27 |
+
text_splitter = CharacterTextSplitter(
|
28 |
+
separator="\n",
|
29 |
+
chunk_size=300,
|
30 |
+
chunk_overlap=30
|
31 |
+
)
|
32 |
+
documents = text_splitter.split_documents(texts)
|
33 |
+
|
34 |
+
embeddings = HuggingFaceEmbeddings()
|
35 |
+
vectorstore = FAISS.from_documents(documents, embeddings)
|
36 |
+
|
37 |
+
os.remove("temp_pdf.pdf")
|
38 |
+
|
39 |
+
return vectorstore
|
40 |
+
except Exception as e:
|
41 |
+
st.error(f"Error processing PDF: {e}")
|
42 |
+
return None
|
43 |
+
|
44 |
+
# --- Streamlit UI ---
|
45 |
+
st.title("PDF Chatbot")
|
46 |
+
uploaded_file = st.file_uploader("Upload a PDF", type=["pdf"])
|
47 |
+
|
48 |
+
if uploaded_file:
|
49 |
+
vectorstore = process_pdf(uploaded_file)
|
50 |
+
|
51 |
+
if vectorstore:
|
52 |
+
# --- Chat Functionality ---
|
53 |
+
llm = HuggingFaceHub(
|
54 |
+
repo_id="google/flan-t5-xxl",
|
55 |
+
model_kwargs={"temperature": 0.7, "max_length": 512},
|
56 |
+
huggingfacehub_api_token=HF_TOKEN # Replace with your actual API token
|
57 |
+
)
|
58 |
+
qa_chain = RetrievalQA.from_chain_type(
|
59 |
+
llm=llm,
|
60 |
+
chain_type="stuff",
|
61 |
+
retriever=vectorstore.as_retriever(search_kwargs={"k": 2})
|
62 |
+
)
|
63 |
+
|
64 |
+
user_question = st.text_input("Ask a question about the PDF:")
|
65 |
+
if user_question:
|
66 |
+
with st.spinner("Generating answer..."):
|
67 |
+
response = qa_chain({"query": user_question})
|
68 |
+
answer = response['result']
|
69 |
+
st.write(answer)
|
70 |
+
|
71 |
+
# --- Feedback Mechanism ---
|
72 |
+
st.write("Was this answer helpful?")
|
73 |
+
col1, col2 = st.columns(2)
|
74 |
+
with col1:
|
75 |
+
if st.button("π"):
|
76 |
+
st.write("Thanks for the feedback!")
|
77 |
+
with col2:
|
78 |
+
if st.button("π"):
|
79 |
+
st.write("We appreciate your feedback. We'll work on improving!")
|