Spaces:
Runtime error
Runtime error
import traceback | |
import datasets | |
import gradio as gr | |
import matplotlib.pyplot as plt | |
import numpy as np | |
from sklearn.linear_model import LinearRegression | |
from sklearn.metrics import r2_score | |
def process_data(vendor, model): | |
data = datasets.load_dataset('anakib1/mango-ria', '13.08.2024')['train'] | |
# Handle cases where vendor or model is None or empty string | |
if vendor: | |
vendor = vendor.strip().lower() | |
else: | |
vendor = '' | |
if model: | |
model = model.strip().lower() | |
else: | |
model = '' | |
rows = data.filter(lambda x: vendor in x['Title'].lower() and model in x['Title'].lower()) | |
dots = [] | |
for row in rows: | |
# row[2] is the 'Title' field | |
try: | |
price = float(row['Price']) | |
mileage = float(row['Mileage'].split()[0]) | |
dots.append((price, mileage)) | |
except: | |
print(f"Could not parse row {row}. Ex = {traceback.format_exc()}") | |
if not dots: | |
return "No data found for the specified vendor and model.", None, None | |
price, mileage = list(zip(*dots)) | |
# First plot: Histogram of prices | |
fig1, ax1 = plt.subplots() | |
ax1.hist(price) | |
ax1.set_title('Histogram of Prices') | |
ax1.set_xlabel('Price') | |
ax1.set_ylabel('Frequency') | |
# Second plot: Scatter plot with regression line | |
fig2, ax2 = plt.subplots() | |
model_lr = LinearRegression() | |
model_lr.fit(np.array(mileage).reshape(-1, 1), price) | |
y_hat = model_lr.predict(np.array(mileage).reshape(-1, 1)) | |
ax2.scatter(mileage, price) | |
ax2.plot(mileage, y_hat, color='r', | |
label='y = {:.2f} * x + {:.2f}. R2 = {:.2f}'.format(model_lr.coef_[0], model_lr.intercept_, | |
r2_score(y_true=price, y_pred=y_hat))) | |
ax2.legend() | |
ax2.set_xlabel('Mileage') | |
ax2.set_ylabel('Price') | |
ax2.set_title('Price vs Mileage with Regression Line') | |
# Return the figures | |
return None, fig1, fig2 | |
with gr.Blocks() as demo: | |
gr.Markdown("# Car Data Analysis") | |
with gr.Row(): | |
vendor_input = gr.Textbox(lines=1, label="Vendor", placeholder="Enter vendor, e.g., infiniti") | |
model_input = gr.Textbox(lines=1, label="Model", placeholder="Enter model, e.g., q50") | |
submit_btn = gr.Button("Submit") | |
message_output = gr.Textbox(label="Message", interactive=False) | |
plot_output1 = gr.Plot(label="Histogram of Prices") | |
plot_output2 = gr.Plot(label="Price vs Mileage with Regression Line") | |
submit_btn.click(process_data, inputs=[vendor_input, model_input], | |
outputs=[message_output, plot_output1, plot_output2]) | |
demo.launch() | |