import traceback import datasets import gradio as gr import matplotlib.pyplot as plt import numpy as np from sklearn.linear_model import LinearRegression from sklearn.metrics import r2_score def process_data(vendor, model): data = datasets.load_dataset('anakib1/mango-ria', '13.08.2024')['train'] # Handle cases where vendor or model is None or empty string if vendor: vendor = vendor.strip().lower() else: vendor = '' if model: model = model.strip().lower() else: model = '' rows = data.filter(lambda x: vendor in x['Title'].lower() and model in x['Title'].lower()) dots = [] for row in rows: # row[2] is the 'Title' field try: price = float(row['Price']) mileage = float(row['Mileage'].split()[0]) dots.append((price, mileage)) except: print(f"Could not parse row {row}. Ex = {traceback.format_exc()}") if not dots: return "No data found for the specified vendor and model.", None, None price, mileage = list(zip(*dots)) # First plot: Histogram of prices fig1, ax1 = plt.subplots() ax1.hist(price) ax1.set_title('Histogram of Prices') ax1.set_xlabel('Price') ax1.set_ylabel('Frequency') # Second plot: Scatter plot with regression line fig2, ax2 = plt.subplots() model_lr = LinearRegression() model_lr.fit(np.array(mileage).reshape(-1, 1), price) y_hat = model_lr.predict(np.array(mileage).reshape(-1, 1)) ax2.scatter(mileage, price) ax2.plot(mileage, y_hat, color='r', label='y = {:.2f} * x + {:.2f}. R2 = {:.2f}'.format(model_lr.coef_[0], model_lr.intercept_, r2_score(y_true=price, y_pred=y_hat))) ax2.legend() ax2.set_xlabel('Mileage') ax2.set_ylabel('Price') ax2.set_title('Price vs Mileage with Regression Line') # Return the figures return None, fig1, fig2 with gr.Blocks() as demo: gr.Markdown("# Car Data Analysis") with gr.Row(): vendor_input = gr.Textbox(lines=1, label="Vendor", placeholder="Enter vendor, e.g., infiniti") model_input = gr.Textbox(lines=1, label="Model", placeholder="Enter model, e.g., q50") submit_btn = gr.Button("Submit") message_output = gr.Textbox(label="Message", interactive=False) plot_output1 = gr.Plot(label="Histogram of Prices") plot_output2 = gr.Plot(label="Price vs Mileage with Regression Line") submit_btn.click(process_data, inputs=[vendor_input, model_input], outputs=[message_output, plot_output1, plot_output2]) demo.launch()