qa_table / app.py
analist's picture
Update app.py
ff9d3e4
raw
history blame contribute delete
502 Bytes
# Use a pipeline as a high-level helper
from transformers import pipeline
import streamlit as st
import pandas as pd
pipe = pipeline("table-question-answering", model="google/tapas-large-finetuned-wtq")
st.title('Query your data with text')
file = st.file_uploader('Upload a csv file here')
if file is not None:
query = st.text_input('Query')
data = pd.read_csv(file)
st.subheader('Data')
st.table(data.head())
if query:
st.write(pipe(table=data, query=query))