Update app.py
Browse files
app.py
CHANGED
@@ -144,7 +144,7 @@ data['score'] = (data['score_sanitaire'] + data['score_foyer']) / 2
|
|
144 |
# In[6]:
|
145 |
|
146 |
|
147 |
-
|
148 |
|
149 |
|
150 |
# In[7]:
|
@@ -397,80 +397,3 @@ st.plotly_chart(fig)
|
|
397 |
|
398 |
|
399 |
#gdf_merged_q.to_csv('merged_q.csv', index=False)
|
400 |
-
|
401 |
-
|
402 |
-
# In[ ]:
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
# # Scores de propreté - par régions
|
409 |
-
|
410 |
-
# In[78]:
|
411 |
-
|
412 |
-
|
413 |
-
#id_regions
|
414 |
-
|
415 |
-
|
416 |
-
# In[79]:
|
417 |
-
|
418 |
-
|
419 |
-
regions_id = list(id_regions.keys())
|
420 |
-
scores = list()
|
421 |
-
|
422 |
-
|
423 |
-
# In[80]:
|
424 |
-
|
425 |
-
|
426 |
-
rm = {}
|
427 |
-
for q in regions_id:
|
428 |
-
print(q)
|
429 |
-
rm[q] = moyenne_par_communaute(data, q)
|
430 |
-
|
431 |
-
#rm
|
432 |
-
|
433 |
-
|
434 |
-
# In[81]:
|
435 |
-
|
436 |
-
|
437 |
-
regions = [id_regions[i] for i in regions_id]
|
438 |
-
scores = list(rm.values())
|
439 |
-
|
440 |
-
|
441 |
-
# In[82]:
|
442 |
-
|
443 |
-
|
444 |
-
region_df = pd.DataFrame({
|
445 |
-
'region_id': regions_id,
|
446 |
-
'region': regions,
|
447 |
-
'scores': scores
|
448 |
-
})
|
449 |
-
|
450 |
-
|
451 |
-
|
452 |
-
# In[ ]:
|
453 |
-
|
454 |
-
|
455 |
-
|
456 |
-
|
457 |
-
|
458 |
-
# # Score de responsabilité - par quartiers (Préfectures)
|
459 |
-
|
460 |
-
# In[93]:
|
461 |
-
|
462 |
-
|
463 |
-
qm = {}
|
464 |
-
for q in quartiers:
|
465 |
-
qm[q] = moyenne_par_quartier(data, quartier_id[q], scoring="score responsabilité")
|
466 |
-
|
467 |
-
|
468 |
-
|
469 |
-
# In[ ]:
|
470 |
-
|
471 |
-
|
472 |
-
# In[ ]:
|
473 |
-
|
474 |
-
|
475 |
-
|
476 |
-
|
|
|
144 |
# In[6]:
|
145 |
|
146 |
|
147 |
+
data['score responsabilité'] = data['score_sanitaire'] - data['score_foyer']
|
148 |
|
149 |
|
150 |
# In[7]:
|
|
|
397 |
|
398 |
|
399 |
#gdf_merged_q.to_csv('merged_q.csv', index=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|