Spaces:
Sleeping
Sleeping
import numpy as np | |
import pandas as pd | |
import streamlit as st | |
from PIL import Image | |
import sys | |
import io | |
import os | |
import glob | |
import json | |
import zipfile | |
from tqdm import tqdm | |
from itertools import chain | |
import torch | |
from torch.utils.data import DataLoader | |
sys.path.insert(0, os.path.abspath("src/")) | |
from clip.clip import _transform | |
from training.datasets import CellPainting | |
from clip.model import convert_weights, CLIPGeneral | |
from rdkit import Chem | |
from rdkit.Chem import Draw | |
from rdkit.Chem import AllChem | |
from rdkit.Chem import DataStructs | |
basepath = os.path.dirname(__file__) | |
MODEL_PATH = os.path.join(basepath, "epoch_55.pt") | |
CLOOME_PATH = "/home/ana/gitrepos/hti-cloob" | |
npzs = os.path.join(basepath, "npzs") | |
imgname = "I1" | |
molecule_features = "all_molecule_cellpainting_features.pkl" | |
image_features = "subset_image_cellpainting_features.pkl" | |
images_arr = "subset_npzs_dict_200.npz" | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model_type = "RN50" | |
image_resolution = 520 | |
######### CLOOME FUNCTIONS ######### | |
def convert_models_to_fp32(model): | |
for p in model.parameters(): | |
p.data = p.data.float() | |
if p.grad: | |
p.grad.data = p.grad.data.float() | |
def load(model_path, device, model, image_resolution): | |
state_dict = torch.load(model_path, map_location="cpu") | |
state_dict = state_dict["state_dict"] | |
model_config_file = f"{model.replace('/', '-')}.json" | |
print('Loading model from', model_config_file) | |
assert os.path.exists(model_config_file) | |
with open(model_config_file, 'r') as f: | |
model_info = json.load(f) | |
model = CLIPGeneral(**model_info) | |
convert_weights(model) | |
convert_models_to_fp32(model) | |
if str(device) == "cpu": | |
model.float() | |
print(device) | |
new_state_dict = {k[len('module.'):]: v for k,v in state_dict.items()} | |
model.load_state_dict(new_state_dict) | |
model.to(device) | |
model.eval() | |
return model | |
def get_features(dataset, model, device): | |
all_image_features = [] | |
all_text_features = [] | |
all_ids = [] | |
print(f"get_features {device}") | |
print(len(dataset)) | |
with torch.no_grad(): | |
for batch in tqdm(DataLoader(dataset, num_workers=1, batch_size=64)): | |
if type(batch) is dict: | |
imgs = batch | |
text_features = None | |
mols = None | |
elif type(batch) is torch.Tensor: | |
mols = batch | |
imgs = None | |
else: | |
imgs, mols = batch | |
if mols is not None: | |
text_features = model.encode_text(mols.to(device)) | |
text_features = text_features / text_features.norm(dim=-1, keepdim=True) | |
all_text_features.append(text_features) | |
molecules_exist = True | |
if imgs is not None: | |
images = imgs["input"] | |
ids = imgs["ID"] | |
img_features = model.encode_image(images.to(device)) | |
img_features = img_features / img_features.norm(dim=-1, keepdim=True) | |
all_image_features.append(img_features) | |
all_ids.append(ids) | |
all_ids = list(chain.from_iterable(all_ids)) | |
if imgs is not None and mols is not None: | |
return torch.cat(all_image_features), torch.cat(all_text_features), all_ids | |
elif imgs is not None: | |
return torch.cat(all_image_features), all_ids | |
elif mols is not None: | |
return torch.cat(all_text_features), all_ids | |
return | |
def read_array(file): | |
t = torch.load(file) | |
features = t["mol_features"] | |
ids = t["mol_ids"] | |
return features, ids | |
def main(df, model_path, model, img_path=None, mol_path=None, image_resolution=None): | |
# Load the model | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
print(torch.cuda.device_count()) | |
model = load(model_path, device, model, image_resolution) | |
preprocess_val = _transform(image_resolution, image_resolution, is_train=False, normalize="dataset", preprocess="downsize") | |
# Load the dataset | |
val = CellPainting(df, | |
img_path, | |
mol_path, | |
transforms = preprocess_val) | |
# Calculate the image features | |
print("getting_features") | |
result = get_features(val, model, device) | |
if len(result) > 2: | |
val_img_features, val_text_features, val_ids = result | |
return val_img_features, val_text_features, val_ids | |
else: | |
val_img_features, val_ids = result | |
return val_img_features, val_ids | |
#val_img_features, val_ids = get_features(val, model, device) | |
#return val_img_features, val_text_features, val_ids | |
def img_to_numpy(file): | |
img = Image.open(file) | |
arr = np.array(img) | |
return arr | |
def illumination_threshold(arr, perc=0.0028): | |
""" Return threshold value to not display a percentage of highest pixels""" | |
perc = perc/100 | |
h = arr.shape[0] | |
w = arr.shape[1] | |
# find n pixels to delete | |
total_pixels = h * w | |
n_pixels = total_pixels * perc | |
n_pixels = int(np.around(n_pixels)) | |
# find indexes of highest pixels | |
flat_inds = np.argpartition(arr, -n_pixels, axis=None)[-n_pixels:] | |
inds = np.array(np.unravel_index(flat_inds, arr.shape)).T | |
max_values = [arr[i, j] for i, j in inds] | |
threshold = min(max_values) | |
return threshold | |
def process_image(arr): | |
threshold = illumination_threshold(arr) | |
scaled_img = sixteen_to_eight_bit(arr, threshold) | |
return scaled_img | |
def sixteen_to_eight_bit(arr, display_max, display_min=0): | |
threshold_image = ((arr.astype(float) - display_min) * (arr > display_min)) | |
scaled_image = (threshold_image * (256. / (display_max - display_min))) | |
scaled_image[scaled_image > 255] = 255 | |
scaled_image = scaled_image.astype(np.uint8) | |
return scaled_image | |
def process_image(arr): | |
threshold = illumination_threshold(arr) | |
scaled_img = sixteen_to_eight_bit(arr, threshold) | |
return scaled_img | |
def process_sample(imglst, channels, filenames, outdir, outfile): | |
sample = np.zeros((520, 696, 5), dtype=np.uint8) | |
filenames_dict, channels_dict = {}, {} | |
for i, (img, channel, fname) in enumerate(zip(imglst, channels, filenames)): | |
print(channel) | |
arr = img_to_numpy(img) | |
arr = process_image(arr) | |
sample[:,:,i] = arr | |
channels_dict[i] = channel | |
filenames_dict[channel] = fname | |
sample_dict = dict(sample=sample, | |
channels=channels_dict, | |
filenames=filenames_dict) | |
outfile = outfile + ".npz" | |
outpath = os.path.join(outdir, outfile) | |
np.savez(outpath, sample=sample, channels=channels, filenames=filenames) | |
return sample_dict, outpath | |
def display_cellpainting(sample): | |
arr = sample["sample"] | |
r = arr[:, :, 0].astype(np.float32) | |
g = arr[:, :, 3].astype(np.float32) | |
b = arr[:, :, 4].astype(np.float32) | |
rgb_arr = np.dstack((r, g, b)) | |
im = Image.fromarray(rgb_arr.astype("uint8")) | |
im_rgb = im.convert("RGB") | |
return im_rgb | |
def morgan_from_smiles(smiles, radius=3, nbits=1024, chiral=True): | |
mol = Chem.MolFromSmiles(smiles) | |
fp = AllChem.GetMorganFingerprintAsBitVect(mol, radius=3, nBits=nbits, useChirality=chiral) | |
arr = np.zeros((0,), dtype=np.int8) | |
DataStructs.ConvertToNumpyArray(fp,arr) | |
return arr | |
def save_hdf(fps, index, outfile_hdf): | |
ids = [i for i in range(len(fps))] | |
columns = [str(i) for i in range(fps[0].shape[0])] | |
df = pd.DataFrame(fps, index=ids, columns=columns) | |
df.to_hdf(outfile_hdf, key="df", mode="w") | |
return outfile_hdf | |
def create_index(outdir, ids, filename): | |
filepath = os.path.join(outdir, filename) | |
if type(ids) is str: | |
values = [ids] | |
else: | |
values = ids | |
data = {"SAMPLE_KEY": values} | |
print(data) | |
df = pd.DataFrame(data) | |
df.to_csv(filepath) | |
return filepath | |
def draw_molecules(smiles_lst): | |
mols = [Chem.MolFromSmiles(s) for s in smiles_lst] | |
mol_imgs = [Chem.Draw.MolToImage(m) for m in mols] | |
return mol_imgs | |
def reshape_image(arr): | |
c, h, w = arr.shape | |
reshaped_image = np.empty((h, w, c)) | |
reshaped_image[:,:,0] = arr[0] | |
reshaped_image[:,:,1] = arr[1] | |
reshaped_image[:,:,2] = arr[2] | |
reshaped_pil = Image.fromarray(reshaped_image.astype("uint8")) | |
return reshaped_pil | |
# missing functions: save morgan to to_hdf, create index, load features, calculate similarities | |
#model = load(MODEL_PATH, device, model_type, image_resolution) | |
##### STREAMLIT FUNCTIONS ###### | |
st.title('CLOOME: Contrastive Learning for Molecule Representation with Microscopy Images and Chemical Structures') | |
def main_page(): | |
st.markdown( | |
""" | |
Contrastive learning for self-supervised representation learning has brought a | |
strong improvement to many application areas, such as computer vision and natural | |
language processing. With the availability of large collections of unlabeled data in | |
vision and language, contrastive learning of language and image representations | |
has shown impressive results. The contrastive learning methods CLIP and CLOOB | |
have demonstrated that the learned representations are highly transferable to a | |
large set of diverse tasks when trained on multi-modal data from two different | |
domains. In drug discovery, similar large, multi-modal datasets comprising both | |
cell-based microscopy images and chemical structures of molecules are available. | |
However, contrastive learning has not yet been used for this type of multi-modal data, | |
although transferable representations could be a remedy for the | |
time-consuming and cost-expensive label acquisition in this domain. In this work, | |
we present a contrastive learning method for image-based and structure-based | |
representations of small molecules for drug discovery. | |
Our method, Contrastive Leave One Out boost for Molecule Encoders (CLOOME), is based on CLOOB | |
and comprises an encoder for microscopy data, an encoder for chemical structures | |
and a contrastive learning objective. On the benchmark dataset ”Cell Painting”, | |
we demonstrate the ability of our method to learn transferable representations by | |
performing linear probing for activity prediction tasks. Additionally, we show that | |
the representations could also be useful for bioisosteric replacement tasks. | |
""" | |
) | |
def molecules_from_image(): | |
## TODO: Check if expander can be automatically collapsed | |
exp = st.expander("Upload a microscopy image") | |
with exp: | |
channels = ['Mito', 'ERSyto', 'ERSytoBleed', 'Ph_golgi', 'Hoechst'] | |
imglst, filenames = [], [] | |
for c in channels: | |
file_obj = st.file_uploader(f'Choose a TIF image for {c}:', ".tif") | |
if file_obj is not None: | |
imglst.append(file_obj) | |
filenames.append(file_obj.name) | |
if imglst: | |
if not os.path.isdir(npzs): | |
os.mkdir(npzs) | |
sample_dict, imgpath = process_sample(imglst, channels, filenames, npzs, imgname) | |
print(imglst) | |
i = display_cellpainting(sample_dict) | |
st.image(i) | |
uploaded_file = st.file_uploader("Choose a molecule file to retrieve from (optional)") | |
if imglst: | |
if uploaded_file is not None: | |
molecule_df = pd.read_csv(uploaded_file) | |
smiles = molecule_df["SMILES"].tolist() | |
morgan = [morgan_from_smiles(s) for s in smiles] | |
molnames = [f"M{i}" for i in range(len(morgan))] | |
mol_index_fname = "mol_index.csv" | |
mol_index = create_index(basepath, molnames, mol_index_fname) | |
molpath = os.path.join(basepath, "mols.hdf") | |
fps_fname = save_hdf(morgan, molnames, molpath) | |
mol_imgs = draw_molecules(smiles) | |
mol_features, mol_ids = main(mol_index, MODEL_PATH, model_type, mol_path=molpath, image_resolution=image_resolution) | |
predefined_features = False | |
else: | |
mol_index = pd.read_csv("cellpainting-unique-molecule.csv") | |
mol_features_torch = torch.load("all_molecule_cellpainting_features.pkl") | |
mol_features = mol_features_torch["mol_features"] | |
mol_ids = mol_features_torch["mol_ids"] | |
print(len(mol_ids)) | |
predefined_features = True | |
img_index_fname = "img_index.csv" | |
img_index = create_index(basepath, imgname, img_index_fname) | |
img_features, img_ids = main(img_index, MODEL_PATH, model_type, img_path=npzs, image_resolution=image_resolution) | |
print(img_features.shape) | |
print(mol_features.shape) | |
logits = img_features @ mol_features.T | |
mol_probs = (30.0 * logits).softmax(dim=-1) | |
top_probs, top_labels = mol_probs.cpu().topk(5, dim=-1) | |
# Delete this if want to allow retrieval for multiple images | |
top_probs = torch.flatten(top_probs) | |
top_labels = torch.flatten(top_labels) | |
print(top_probs.shape) | |
print(top_labels.shape) | |
if predefined_features: | |
mol_index.set_index(["SAMPLE_KEY"], inplace=True) | |
top_ids = [mol_ids[i] for i in top_labels] | |
smiles = mol_index.loc[top_ids]["SMILES"].tolist() | |
mol_imgs = draw_molecules(smiles) | |
with st.container(): | |
#st.write("Ranking of most similar molecules") | |
columns = st.columns(len(top_probs)) | |
for i, col in enumerate(columns): | |
if predefined_features: | |
image_id = i | |
else: | |
image_id = top_labels[i] | |
index = i+1 | |
col.image(mol_imgs[image_id], width=140, caption=index) | |
print(mol_probs.sum(dim=-1)) | |
print((top_probs, top_labels)) | |
def images_from_molecule(): | |
smiles = st.text_input("Enter a SMILES string", value="CC(=O)OC1=CC=CC=C1C(=O)O", placeholder="CC(=O)OC1=CC=CC=C1C(=O)O") | |
if smiles: | |
smiles = [smiles] | |
morgan = [morgan_from_smiles(s) for s in smiles] | |
molnames = [f"M{i}" for i in range(len(morgan))] | |
mol_index_fname = "mol_index.csv" | |
mol_index = create_index(basepath, molnames, mol_index_fname) | |
molpath = os.path.join(basepath, "mols.hdf") | |
fps_fname = save_hdf(morgan, molnames, molpath) | |
mol_imgs = draw_molecules(smiles) | |
mol_features, mol_ids = main(mol_index, MODEL_PATH, model_type, mol_path=molpath, image_resolution=image_resolution) | |
col1, col2, col3 = st.columns(3) | |
with col1: | |
st.write("") | |
with col2: | |
st.image(mol_imgs, width = 140) | |
with col3: | |
st.write("") | |
img_features_torch = torch.load(image_features) | |
img_features = img_features_torch["img_features"] | |
img_ids = img_features_torch["img_ids"] | |
logits = mol_features @ img_features.T | |
img_probs = (30.0 * logits).softmax(dim=-1) | |
top_probs, top_labels = img_probs.cpu().topk(5, dim=-1) | |
top_probs = torch.flatten(top_probs) | |
top_labels = torch.flatten(top_labels) | |
img_index = pd.read_csv("cellpainting-all-imgpermol.csv") | |
img_index.set_index(["SAMPLE_KEY"], inplace=True) | |
top_ids = [img_ids[i] for i in top_labels] | |
images_dict = np.load(images_arr, allow_pickle = True) | |
with st.container(): | |
columns = st.columns(len(top_probs)) | |
for i, col in enumerate(columns): | |
id = top_ids[i] | |
id = f"{id}.npz" | |
image = images_dict[id] | |
## TODO: generalize and functionalize | |
im = reshape_image(image) | |
index = i+1 | |
col.image(im, caption=index) | |
page_names_to_funcs = { | |
"-": main_page, | |
"Molecules from a microscopy image": molecules_from_image, | |
"Microscopy images from a molecule": images_from_molecule, | |
} | |
selected_page = st.sidebar.selectbox("What would you like to retrieve?", page_names_to_funcs.keys()) | |
page_names_to_funcs[selected_page]() | |
# print(img_features.shape) | |
# print(img_ids) | |