Spaces:
Sleeping
Sleeping
Ana Sanchez
commited on
Commit
·
4f08713
1
Parent(s):
364f895
Init
Browse files
cloome.py
ADDED
@@ -0,0 +1,498 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pandas as pd
|
3 |
+
import streamlit as st
|
4 |
+
from PIL import Image
|
5 |
+
|
6 |
+
import sys
|
7 |
+
import io
|
8 |
+
import os
|
9 |
+
import glob
|
10 |
+
import json
|
11 |
+
import zipfile
|
12 |
+
from tqdm import tqdm
|
13 |
+
from itertools import chain
|
14 |
+
|
15 |
+
import torch
|
16 |
+
from torch.utils.data import DataLoader
|
17 |
+
from torch.utils.tensorboard import SummaryWriter
|
18 |
+
|
19 |
+
import clip.clip as clip
|
20 |
+
from clip.clip import _transform
|
21 |
+
from training.datasets import CellPainting
|
22 |
+
from clip.model import convert_weights, CLIPGeneral
|
23 |
+
|
24 |
+
from rdkit import Chem
|
25 |
+
from rdkit.Chem import Draw
|
26 |
+
from rdkit.Chem import AllChem
|
27 |
+
from rdkit.Chem import DataStructs
|
28 |
+
|
29 |
+
|
30 |
+
|
31 |
+
|
32 |
+
basepath = os.path.dirname(__file__)
|
33 |
+
|
34 |
+
MODEL_PATH = os.path.join(basepath, "epoch_55.pt")
|
35 |
+
CLOOME_PATH = "/home/ana/gitrepos/hti-cloob"
|
36 |
+
npzs = os.path.join(basepath, "npzs")
|
37 |
+
imgname = "I1"
|
38 |
+
molecule_features = "all_molecule_cellpainting_features.pkl"
|
39 |
+
image_features = "subset_image_cellpainting_features.pkl"
|
40 |
+
images_arr = "subset_npzs_dict_200.npz"
|
41 |
+
|
42 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
43 |
+
model_type = "RN50"
|
44 |
+
image_resolution = 520
|
45 |
+
|
46 |
+
######### CLOOME FUNCTIONS #########
|
47 |
+
def convert_models_to_fp32(model):
|
48 |
+
for p in model.parameters():
|
49 |
+
p.data = p.data.float()
|
50 |
+
if p.grad:
|
51 |
+
p.grad.data = p.grad.data.float()
|
52 |
+
|
53 |
+
|
54 |
+
def load(model_path, device, model, image_resolution):
|
55 |
+
state_dict = torch.load(model_path, map_location="cpu")
|
56 |
+
state_dict = state_dict["state_dict"]
|
57 |
+
|
58 |
+
model_config_file = f"{model.replace('/', '-')}.json"
|
59 |
+
print('Loading model from', model_config_file)
|
60 |
+
assert os.path.exists(model_config_file)
|
61 |
+
with open(model_config_file, 'r') as f:
|
62 |
+
model_info = json.load(f)
|
63 |
+
model = CLIPGeneral(**model_info)
|
64 |
+
convert_weights(model)
|
65 |
+
convert_models_to_fp32(model)
|
66 |
+
|
67 |
+
if str(device) == "cpu":
|
68 |
+
model.float()
|
69 |
+
print(device)
|
70 |
+
|
71 |
+
new_state_dict = {k[len('module.'):]: v for k,v in state_dict.items()}
|
72 |
+
|
73 |
+
model.load_state_dict(new_state_dict)
|
74 |
+
model.to(device)
|
75 |
+
model.eval()
|
76 |
+
|
77 |
+
return model
|
78 |
+
|
79 |
+
|
80 |
+
def get_features(dataset, model, device):
|
81 |
+
all_image_features = []
|
82 |
+
all_text_features = []
|
83 |
+
all_ids = []
|
84 |
+
|
85 |
+
print(f"get_features {device}")
|
86 |
+
print(len(dataset))
|
87 |
+
|
88 |
+
with torch.no_grad():
|
89 |
+
for batch in tqdm(DataLoader(dataset, num_workers=1, batch_size=64)):
|
90 |
+
if type(batch) is dict:
|
91 |
+
imgs = batch
|
92 |
+
text_features = None
|
93 |
+
mols = None
|
94 |
+
elif type(batch) is torch.Tensor:
|
95 |
+
mols = batch
|
96 |
+
imgs = None
|
97 |
+
else:
|
98 |
+
imgs, mols = batch
|
99 |
+
|
100 |
+
if mols is not None:
|
101 |
+
text_features = model.encode_text(mols.to(device))
|
102 |
+
text_features = text_features / text_features.norm(dim=-1, keepdim=True)
|
103 |
+
all_text_features.append(text_features)
|
104 |
+
molecules_exist = True
|
105 |
+
|
106 |
+
if imgs is not None:
|
107 |
+
images = imgs["input"]
|
108 |
+
ids = imgs["ID"]
|
109 |
+
|
110 |
+
img_features = model.encode_image(images.to(device))
|
111 |
+
img_features = img_features / img_features.norm(dim=-1, keepdim=True)
|
112 |
+
all_image_features.append(img_features)
|
113 |
+
|
114 |
+
all_ids.append(ids)
|
115 |
+
|
116 |
+
|
117 |
+
all_ids = list(chain.from_iterable(all_ids))
|
118 |
+
|
119 |
+
if imgs is not None and mols is not None:
|
120 |
+
return torch.cat(all_image_features), torch.cat(all_text_features), all_ids
|
121 |
+
elif imgs is not None:
|
122 |
+
return torch.cat(all_image_features), all_ids
|
123 |
+
elif mols is not None:
|
124 |
+
return torch.cat(all_text_features), all_ids
|
125 |
+
return
|
126 |
+
|
127 |
+
|
128 |
+
def read_array(file):
|
129 |
+
t = torch.load(file)
|
130 |
+
features = t["mol_features"]
|
131 |
+
ids = t["mol_ids"]
|
132 |
+
return features, ids
|
133 |
+
|
134 |
+
|
135 |
+
def main(df, model_path, model, img_path=None, mol_path=None, image_resolution=None):
|
136 |
+
# Load the model
|
137 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
138 |
+
print(torch.cuda.device_count())
|
139 |
+
|
140 |
+
model = load(model_path, device, model, image_resolution)
|
141 |
+
|
142 |
+
preprocess_val = _transform(image_resolution, image_resolution, is_train=False, normalize="dataset", preprocess="downsize")
|
143 |
+
|
144 |
+
# Load the dataset
|
145 |
+
val = CellPainting(df,
|
146 |
+
img_path,
|
147 |
+
mol_path,
|
148 |
+
transforms = preprocess_val)
|
149 |
+
|
150 |
+
# Calculate the image features
|
151 |
+
print("getting_features")
|
152 |
+
result = get_features(val, model, device)
|
153 |
+
|
154 |
+
if len(result) > 2:
|
155 |
+
val_img_features, val_text_features, val_ids = result
|
156 |
+
return val_img_features, val_text_features, val_ids
|
157 |
+
else:
|
158 |
+
val_img_features, val_ids = result
|
159 |
+
return val_img_features, val_ids
|
160 |
+
|
161 |
+
#val_img_features, val_ids = get_features(val, model, device)
|
162 |
+
|
163 |
+
#return val_img_features, val_text_features, val_ids
|
164 |
+
|
165 |
+
def img_to_numpy(file):
|
166 |
+
img = Image.open(file)
|
167 |
+
arr = np.array(img)
|
168 |
+
return arr
|
169 |
+
|
170 |
+
|
171 |
+
def illumination_threshold(arr, perc=0.0028):
|
172 |
+
""" Return threshold value to not display a percentage of highest pixels"""
|
173 |
+
|
174 |
+
perc = perc/100
|
175 |
+
|
176 |
+
h = arr.shape[0]
|
177 |
+
w = arr.shape[1]
|
178 |
+
|
179 |
+
# find n pixels to delete
|
180 |
+
total_pixels = h * w
|
181 |
+
n_pixels = total_pixels * perc
|
182 |
+
n_pixels = int(np.around(n_pixels))
|
183 |
+
|
184 |
+
# find indexes of highest pixels
|
185 |
+
flat_inds = np.argpartition(arr, -n_pixels, axis=None)[-n_pixels:]
|
186 |
+
inds = np.array(np.unravel_index(flat_inds, arr.shape)).T
|
187 |
+
|
188 |
+
max_values = [arr[i, j] for i, j in inds]
|
189 |
+
|
190 |
+
threshold = min(max_values)
|
191 |
+
|
192 |
+
return threshold
|
193 |
+
|
194 |
+
|
195 |
+
def process_image(arr):
|
196 |
+
threshold = illumination_threshold(arr)
|
197 |
+
scaled_img = sixteen_to_eight_bit(arr, threshold)
|
198 |
+
return scaled_img
|
199 |
+
|
200 |
+
|
201 |
+
def sixteen_to_eight_bit(arr, display_max, display_min=0):
|
202 |
+
threshold_image = ((arr.astype(float) - display_min) * (arr > display_min))
|
203 |
+
|
204 |
+
scaled_image = (threshold_image * (256. / (display_max - display_min)))
|
205 |
+
scaled_image[scaled_image > 255] = 255
|
206 |
+
|
207 |
+
scaled_image = scaled_image.astype(np.uint8)
|
208 |
+
|
209 |
+
return scaled_image
|
210 |
+
|
211 |
+
|
212 |
+
def process_image(arr):
|
213 |
+
threshold = illumination_threshold(arr)
|
214 |
+
scaled_img = sixteen_to_eight_bit(arr, threshold)
|
215 |
+
return scaled_img
|
216 |
+
|
217 |
+
|
218 |
+
def process_sample(imglst, channels, filenames, outdir, outfile):
|
219 |
+
sample = np.zeros((520, 696, 5), dtype=np.uint8)
|
220 |
+
|
221 |
+
filenames_dict, channels_dict = {}, {}
|
222 |
+
|
223 |
+
for i, (img, channel, fname) in enumerate(zip(imglst, channels, filenames)):
|
224 |
+
print(channel)
|
225 |
+
arr = img_to_numpy(img)
|
226 |
+
arr = process_image(arr)
|
227 |
+
|
228 |
+
sample[:,:,i] = arr
|
229 |
+
|
230 |
+
channels_dict[i] = channel
|
231 |
+
filenames_dict[channel] = fname
|
232 |
+
|
233 |
+
sample_dict = dict(sample=sample,
|
234 |
+
channels=channels_dict,
|
235 |
+
filenames=filenames_dict)
|
236 |
+
|
237 |
+
outfile = outfile + ".npz"
|
238 |
+
outpath = os.path.join(outdir, outfile)
|
239 |
+
|
240 |
+
np.savez(outpath, sample=sample, channels=channels, filenames=filenames)
|
241 |
+
|
242 |
+
return sample_dict, outpath
|
243 |
+
|
244 |
+
|
245 |
+
def display_cellpainting(sample):
|
246 |
+
arr = sample["sample"]
|
247 |
+
r = arr[:, :, 0].astype(np.float32)
|
248 |
+
g = arr[:, :, 3].astype(np.float32)
|
249 |
+
b = arr[:, :, 4].astype(np.float32)
|
250 |
+
|
251 |
+
rgb_arr = np.dstack((r, g, b))
|
252 |
+
|
253 |
+
im = Image.fromarray(rgb_arr.astype("uint8"))
|
254 |
+
im_rgb = im.convert("RGB")
|
255 |
+
return im_rgb
|
256 |
+
|
257 |
+
|
258 |
+
def morgan_from_smiles(smiles, radius=3, nbits=1024, chiral=True):
|
259 |
+
mol = Chem.MolFromSmiles(smiles)
|
260 |
+
fp = AllChem.GetMorganFingerprintAsBitVect(mol, radius=3, nBits=nbits, useChirality=chiral)
|
261 |
+
arr = np.zeros((0,), dtype=np.int8)
|
262 |
+
DataStructs.ConvertToNumpyArray(fp,arr)
|
263 |
+
return arr
|
264 |
+
|
265 |
+
|
266 |
+
def save_hdf(fps, index, outfile_hdf):
|
267 |
+
ids = [i for i in range(len(fps))]
|
268 |
+
columns = [str(i) for i in range(fps[0].shape[0])]
|
269 |
+
df = pd.DataFrame(fps, index=ids, columns=columns)
|
270 |
+
df.to_hdf(outfile_hdf, key="df", mode="w")
|
271 |
+
return outfile_hdf
|
272 |
+
|
273 |
+
|
274 |
+
def create_index(outdir, ids, filename):
|
275 |
+
filepath = os.path.join(outdir, filename)
|
276 |
+
if type(ids) is str:
|
277 |
+
values = [ids]
|
278 |
+
else:
|
279 |
+
values = ids
|
280 |
+
data = {"SAMPLE_KEY": values}
|
281 |
+
print(data)
|
282 |
+
df = pd.DataFrame(data)
|
283 |
+
df.to_csv(filepath)
|
284 |
+
return filepath
|
285 |
+
|
286 |
+
|
287 |
+
def draw_molecules(smiles_lst):
|
288 |
+
mols = [Chem.MolFromSmiles(s) for s in smiles_lst]
|
289 |
+
mol_imgs = [Chem.Draw.MolToImage(m) for m in mols]
|
290 |
+
return mol_imgs
|
291 |
+
|
292 |
+
|
293 |
+
def reshape_image(arr):
|
294 |
+
c, h, w = arr.shape
|
295 |
+
reshaped_image = np.empty((h, w, c))
|
296 |
+
|
297 |
+
reshaped_image[:,:,0] = arr[0]
|
298 |
+
reshaped_image[:,:,1] = arr[1]
|
299 |
+
reshaped_image[:,:,2] = arr[2]
|
300 |
+
|
301 |
+
reshaped_pil = Image.fromarray(reshaped_image.astype("uint8"))
|
302 |
+
|
303 |
+
return reshaped_pil
|
304 |
+
|
305 |
+
|
306 |
+
# missing functions: save morgan to to_hdf, create index, load features, calculate similarities
|
307 |
+
|
308 |
+
|
309 |
+
#model = load(MODEL_PATH, device, model_type, image_resolution)
|
310 |
+
|
311 |
+
##### STREAMLIT FUNCTIONS ######
|
312 |
+
st.title('CLOOME: Contrastive Learning for Molecule Representation with Microscopy Images and Chemical Structures')
|
313 |
+
|
314 |
+
|
315 |
+
def main_page():
|
316 |
+
st.markdown(
|
317 |
+
"""
|
318 |
+
Contrastive learning for self-supervised representation learning has brought a
|
319 |
+
strong improvement to many application areas, such as computer vision and natural
|
320 |
+
language processing. With the availability of large collections of unlabeled data in
|
321 |
+
vision and language, contrastive learning of language and image representations
|
322 |
+
has shown impressive results. The contrastive learning methods CLIP and CLOOB
|
323 |
+
have demonstrated that the learned representations are highly transferable to a
|
324 |
+
large set of diverse tasks when trained on multi-modal data from two different
|
325 |
+
domains. In drug discovery, similar large, multi-modal datasets comprising both
|
326 |
+
cell-based microscopy images and chemical structures of molecules are available.
|
327 |
+
|
328 |
+
However, contrastive learning has not yet been used for this type of multi-modal data,
|
329 |
+
although transferable representations could be a remedy for the
|
330 |
+
time-consuming and cost-expensive label acquisition in this domain. In this work,
|
331 |
+
we present a contrastive learning method for image-based and structure-based
|
332 |
+
representations of small molecules for drug discovery.
|
333 |
+
|
334 |
+
Our method, Contrastive Leave One Out boost for Molecule Encoders (CLOOME), is based on CLOOB
|
335 |
+
and comprises an encoder for microscopy data, an encoder for chemical structures
|
336 |
+
and a contrastive learning objective. On the benchmark dataset ”Cell Painting”,
|
337 |
+
we demonstrate the ability of our method to learn transferable representations by
|
338 |
+
performing linear probing for activity prediction tasks. Additionally, we show that
|
339 |
+
the representations could also be useful for bioisosteric replacement tasks.
|
340 |
+
"""
|
341 |
+
)
|
342 |
+
|
343 |
+
|
344 |
+
def molecules_from_image():
|
345 |
+
## TODO: Check if expander can be automatically collapsed
|
346 |
+
exp = st.expander("Upload a microscopy image")
|
347 |
+
with exp:
|
348 |
+
channels = ['Mito', 'ERSyto', 'ERSytoBleed', 'Ph_golgi', 'Hoechst']
|
349 |
+
imglst, filenames = [], []
|
350 |
+
|
351 |
+
for c in channels:
|
352 |
+
file_obj = st.file_uploader(f'Choose a TIF image for {c}:', ".tif")
|
353 |
+
if file_obj is not None:
|
354 |
+
imglst.append(file_obj)
|
355 |
+
filenames.append(file_obj.name)
|
356 |
+
|
357 |
+
|
358 |
+
if imglst:
|
359 |
+
if not os.path.isdir(npzs):
|
360 |
+
os.mkdir(npzs)
|
361 |
+
|
362 |
+
sample_dict, imgpath = process_sample(imglst, channels, filenames, npzs, imgname)
|
363 |
+
print(imglst)
|
364 |
+
|
365 |
+
|
366 |
+
i = display_cellpainting(sample_dict)
|
367 |
+
st.image(i)
|
368 |
+
|
369 |
+
uploaded_file = st.file_uploader("Choose a molecule file to retrieve from (optional)")
|
370 |
+
|
371 |
+
if imglst:
|
372 |
+
if uploaded_file is not None:
|
373 |
+
molecule_df = pd.read_csv(uploaded_file)
|
374 |
+
smiles = molecule_df["SMILES"].tolist()
|
375 |
+
morgan = [morgan_from_smiles(s) for s in smiles]
|
376 |
+
molnames = [f"M{i}" for i in range(len(morgan))]
|
377 |
+
mol_index_fname = "mol_index.csv"
|
378 |
+
mol_index = create_index(basepath, molnames, mol_index_fname)
|
379 |
+
molpath = os.path.join(basepath, "mols.hdf")
|
380 |
+
fps_fname = save_hdf(morgan, molnames, molpath)
|
381 |
+
mol_imgs = draw_molecules(smiles)
|
382 |
+
mol_features, mol_ids = main(mol_index, MODEL_PATH, model_type, mol_path=molpath, image_resolution=image_resolution)
|
383 |
+
predefined_features = False
|
384 |
+
else:
|
385 |
+
mol_index = pd.read_csv("cellpainting-unique-molecule.csv")
|
386 |
+
mol_features_torch = torch.load("all_molecule_cellpainting_features.pkl")
|
387 |
+
mol_features = mol_features_torch["mol_features"]
|
388 |
+
mol_ids = mol_features_torch["mol_ids"]
|
389 |
+
print(len(mol_ids))
|
390 |
+
predefined_features = True
|
391 |
+
|
392 |
+
img_index_fname = "img_index.csv"
|
393 |
+
img_index = create_index(basepath, imgname, img_index_fname)
|
394 |
+
img_features, img_ids = main(img_index, MODEL_PATH, model_type, img_path=npzs, image_resolution=image_resolution)
|
395 |
+
|
396 |
+
print(img_features.shape)
|
397 |
+
print(mol_features.shape)
|
398 |
+
|
399 |
+
logits = img_features @ mol_features.T
|
400 |
+
mol_probs = (30.0 * logits).softmax(dim=-1)
|
401 |
+
top_probs, top_labels = mol_probs.cpu().topk(5, dim=-1)
|
402 |
+
|
403 |
+
# Delete this if want to allow retrieval for multiple images
|
404 |
+
top_probs = torch.flatten(top_probs)
|
405 |
+
top_labels = torch.flatten(top_labels)
|
406 |
+
|
407 |
+
print(top_probs.shape)
|
408 |
+
print(top_labels.shape)
|
409 |
+
|
410 |
+
if predefined_features:
|
411 |
+
mol_index.set_index(["SAMPLE_KEY"], inplace=True)
|
412 |
+
top_ids = [mol_ids[i] for i in top_labels]
|
413 |
+
smiles = mol_index.loc[top_ids]["SMILES"].tolist()
|
414 |
+
mol_imgs = draw_molecules(smiles)
|
415 |
+
|
416 |
+
with st.container():
|
417 |
+
#st.write("Ranking of most similar molecules")
|
418 |
+
columns = st.columns(len(top_probs))
|
419 |
+
for i, col in enumerate(columns):
|
420 |
+
if predefined_features:
|
421 |
+
image_id = i
|
422 |
+
else:
|
423 |
+
image_id = top_labels[i]
|
424 |
+
index = i+1
|
425 |
+
col.image(mol_imgs[image_id], width=140, caption=index)
|
426 |
+
|
427 |
+
print(mol_probs.sum(dim=-1))
|
428 |
+
print((top_probs, top_labels))
|
429 |
+
|
430 |
+
def images_from_molecule():
|
431 |
+
smiles = st.text_input("Enter a SMILES string", value="CC(=O)OC1=CC=CC=C1C(=O)O", placeholder="CC(=O)OC1=CC=CC=C1C(=O)O")
|
432 |
+
if smiles:
|
433 |
+
smiles = [smiles]
|
434 |
+
morgan = [morgan_from_smiles(s) for s in smiles]
|
435 |
+
molnames = [f"M{i}" for i in range(len(morgan))]
|
436 |
+
mol_index_fname = "mol_index.csv"
|
437 |
+
mol_index = create_index(basepath, molnames, mol_index_fname)
|
438 |
+
molpath = os.path.join(basepath, "mols.hdf")
|
439 |
+
fps_fname = save_hdf(morgan, molnames, molpath)
|
440 |
+
mol_imgs = draw_molecules(smiles)
|
441 |
+
|
442 |
+
mol_features, mol_ids = main(mol_index, MODEL_PATH, model_type, mol_path=molpath, image_resolution=image_resolution)
|
443 |
+
|
444 |
+
col1, col2, col3 = st.columns(3)
|
445 |
+
|
446 |
+
with col1:
|
447 |
+
st.write("")
|
448 |
+
|
449 |
+
with col2:
|
450 |
+
st.image(mol_imgs, width = 140)
|
451 |
+
|
452 |
+
with col3:
|
453 |
+
st.write("")
|
454 |
+
|
455 |
+
|
456 |
+
img_features_torch = torch.load(image_features)
|
457 |
+
img_features = img_features_torch["img_features"]
|
458 |
+
img_ids = img_features_torch["img_ids"]
|
459 |
+
|
460 |
+
logits = mol_features @ img_features.T
|
461 |
+
img_probs = (30.0 * logits).softmax(dim=-1)
|
462 |
+
top_probs, top_labels = img_probs.cpu().topk(5, dim=-1)
|
463 |
+
|
464 |
+
top_probs = torch.flatten(top_probs)
|
465 |
+
top_labels = torch.flatten(top_labels)
|
466 |
+
|
467 |
+
img_index = pd.read_csv("cellpainting-all-imgpermol.csv")
|
468 |
+
img_index.set_index(["SAMPLE_KEY"], inplace=True)
|
469 |
+
top_ids = [img_ids[i] for i in top_labels]
|
470 |
+
|
471 |
+
images_dict = np.load(images_arr, allow_pickle = True)
|
472 |
+
|
473 |
+
with st.container():
|
474 |
+
columns = st.columns(len(top_probs))
|
475 |
+
for i, col in enumerate(columns):
|
476 |
+
id = top_ids[i]
|
477 |
+
id = f"{id}.npz"
|
478 |
+
image = images_dict[id]
|
479 |
+
|
480 |
+
## TODO: generalize and functionalize
|
481 |
+
im = reshape_image(image)
|
482 |
+
|
483 |
+
index = i+1
|
484 |
+
col.image(im, caption=index)
|
485 |
+
|
486 |
+
|
487 |
+
page_names_to_funcs = {
|
488 |
+
"-": main_page,
|
489 |
+
"Molecules from a microscopy image": molecules_from_image,
|
490 |
+
"Microscopy images from a molecule": images_from_molecule,
|
491 |
+
}
|
492 |
+
|
493 |
+
|
494 |
+
selected_page = st.sidebar.selectbox("What would you like to retrieve?", page_names_to_funcs.keys())
|
495 |
+
page_names_to_funcs[selected_page]()
|
496 |
+
|
497 |
+
# print(img_features.shape)
|
498 |
+
# print(img_ids)
|