Spaces:
Sleeping
Sleeping
Ana Sanchez
commited on
Commit
·
81dc1fb
1
Parent(s):
01a8b16
Fix path
Browse files
app.py
CHANGED
@@ -34,10 +34,10 @@ CLOOME_PATH = "/home/ana/gitrepos/hti-cloob"
|
|
34 |
MODEL_PATH = os.path.join(datapath, "epoch_55.pt")
|
35 |
npzs = os.path.join(datapath, "npzs")
|
36 |
molecule_features = os.path.join(datapath, "all_molecule_cellpainting_features.pkl")
|
37 |
-
|
38 |
image_features = os.path.join(datapath, "subset_image_cellpainting_features.pkl")
|
39 |
images_arr = os.path.join(datapath, "subset_npzs_dict_.npz")
|
40 |
-
|
41 |
imgname = "I1"
|
42 |
|
43 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
@@ -376,7 +376,7 @@ def molecules_from_image():
|
|
376 |
mol_features, mol_ids = main(mol_index, MODEL_PATH, model_type, mol_path=molpath, image_resolution=image_resolution)
|
377 |
predefined_features = False
|
378 |
else:
|
379 |
-
mol_index = pd.read_csv(
|
380 |
mol_features_torch = torch.load(molecule_features, map_location=device)
|
381 |
mol_features = mol_features_torch["mol_features"]
|
382 |
mol_ids = mol_features_torch["mol_ids"]
|
@@ -458,7 +458,7 @@ def images_from_molecule():
|
|
458 |
top_probs = torch.flatten(top_probs)
|
459 |
top_labels = torch.flatten(top_labels)
|
460 |
|
461 |
-
img_index = pd.read_csv(
|
462 |
img_index.set_index(["SAMPLE_KEY"], inplace=True)
|
463 |
top_ids = [img_ids[i] for i in top_labels]
|
464 |
|
|
|
34 |
MODEL_PATH = os.path.join(datapath, "epoch_55.pt")
|
35 |
npzs = os.path.join(datapath, "npzs")
|
36 |
molecule_features = os.path.join(datapath, "all_molecule_cellpainting_features.pkl")
|
37 |
+
mol_index_file = os.path.join(datapath, "cellpainting-unique-molecule.csv")
|
38 |
image_features = os.path.join(datapath, "subset_image_cellpainting_features.pkl")
|
39 |
images_arr = os.path.join(datapath, "subset_npzs_dict_.npz")
|
40 |
+
img_index_file = os.path.join(datapath, "cellpainting-all-imgpermol.csv")
|
41 |
imgname = "I1"
|
42 |
|
43 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
376 |
mol_features, mol_ids = main(mol_index, MODEL_PATH, model_type, mol_path=molpath, image_resolution=image_resolution)
|
377 |
predefined_features = False
|
378 |
else:
|
379 |
+
mol_index = pd.read_csv(mol_index_file)
|
380 |
mol_features_torch = torch.load(molecule_features, map_location=device)
|
381 |
mol_features = mol_features_torch["mol_features"]
|
382 |
mol_ids = mol_features_torch["mol_ids"]
|
|
|
458 |
top_probs = torch.flatten(top_probs)
|
459 |
top_labels = torch.flatten(top_labels)
|
460 |
|
461 |
+
img_index = pd.read_csv(img_index_files)
|
462 |
img_index.set_index(["SAMPLE_KEY"], inplace=True)
|
463 |
top_ids = [img_ids[i] for i in top_labels]
|
464 |
|