Ana Sanchez commited on
Commit
979e31c
·
1 Parent(s): e504a65
app.py CHANGED
@@ -16,7 +16,8 @@ import torch
16
  from torch.utils.data import DataLoader
17
  from torch.utils.tensorboard import SummaryWriter
18
 
19
- import clip.clip as clip
 
20
  from clip.clip import _transform
21
  from training.datasets import CellPainting
22
  from clip.model import convert_weights, CLIPGeneral
 
16
  from torch.utils.data import DataLoader
17
  from torch.utils.tensorboard import SummaryWriter
18
 
19
+ sys.path.insert(0, os.path.abspath("src/"))
20
+
21
  from clip.clip import _transform
22
  from training.datasets import CellPainting
23
  from clip.model import convert_weights, CLIPGeneral
src/clip/__init__ ADDED
File without changes
src/clip/clip.py ADDED
@@ -0,0 +1,258 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Code ported from https://github.com/openai/CLIP
2
+
3
+ import hashlib
4
+ import os
5
+ import urllib
6
+ import warnings
7
+ from typing import Union, List
8
+
9
+ import torch
10
+ from PIL import Image
11
+ from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize, RandomResizedCrop, InterpolationMode, RandomCrop, RandomRotation
12
+ from tqdm import tqdm
13
+
14
+ from clip.model import build_model
15
+ # from clip.tokenizer import SimpleTokenizer as _Tokenizer
16
+
17
+ __all__ = ["available_models", "load", "tokenize"]
18
+ # _tokenizer = _Tokenizer()
19
+
20
+ _MODELS = {
21
+ "RN50": "https://openaipublic.azureedge.net/clip/models/afeb0e10f9e5a86da6080e35cf09123aca3b358a0c3e3b6c78a7b63bc04b6762/RN50.pt",
22
+ "RN101": "https://openaipublic.azureedge.net/clip/models/8fa8567bab74a42d41c5915025a8e4538c3bdbe8804a470a72f30b0d94fab599/RN101.pt",
23
+ "RN50x4": "https://openaipublic.azureedge.net/clip/models/7e526bd135e493cef0776de27d5f42653e6b4c8bf9e0f653bb11773263205fdd/RN50x4.pt",
24
+ "ViT-B/32": "https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt",
25
+ }
26
+
27
+
28
+ class NormalizeByImage(object):
29
+ """Normalize an tensor image with mean and standard deviation.
30
+ Given mean: ``(M1,...,Mn)`` and std: ``(S1,..,Sn)`` for ``n`` channels, this transform
31
+ will normalize each channel of the input ``torch.*Tensor`` i.e.
32
+ ``input[channel] = (input[channel] - mean[channel]) / std[channel]``
33
+ Args:
34
+ mean (sequence): Sequence of means for each channel.
35
+ std (sequence): Sequence of standard deviations for each channel.
36
+ """
37
+
38
+ def __call__(self, tensor):
39
+ """
40
+ Args:
41
+ tensor (Tensor): Tensor image of size (C, H, W) to be normalized.
42
+ Returns:
43
+ Tensor: Normalized Tensor image.
44
+ """
45
+ for t in tensor:
46
+ t.sub_(t.mean()).div_(t.std() + 1e-7)
47
+ return tensor
48
+
49
+
50
+ def _download(url: str, root: str = os.path.expanduser("~/.cache/clip")):
51
+ os.makedirs(root, exist_ok=True)
52
+ filename = os.path.basename(url)
53
+
54
+ expected_sha256 = url.split("/")[-2]
55
+ download_target = os.path.join(root, filename)
56
+
57
+ if os.path.exists(download_target) and not os.path.isfile(download_target):
58
+ raise RuntimeError(f"{download_target} exists and is not a regular file")
59
+
60
+ if os.path.isfile(download_target):
61
+ if hashlib.sha256(open(download_target, "rb").read()).hexdigest() == expected_sha256:
62
+ return download_target
63
+ else:
64
+ warnings.warn(f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file")
65
+
66
+ with urllib.request.urlopen(url) as source, open(download_target, "wb") as output:
67
+ with tqdm(total=int(source.info().get("Content-Length")), ncols=80, unit='iB', unit_scale=True) as loop:
68
+ while True:
69
+ buffer = source.read(8192)
70
+ if not buffer:
71
+ break
72
+
73
+ output.write(buffer)
74
+ loop.update(len(buffer))
75
+
76
+ if hashlib.sha256(open(download_target, "rb").read()).hexdigest() != expected_sha256:
77
+ raise RuntimeError(f"Model has been downloaded but the SHA256 checksum does not not match")
78
+
79
+ return download_target
80
+
81
+ def _convert_to_rgb(image):
82
+ return image.convert('RGB')
83
+
84
+ def _transform(n_px_tr: int, n_px_val: int, is_train: bool, normalize:str = "dataset", preprocess:str = "downsize"):
85
+ #normalize = Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
86
+ # print(n_px_tr)
87
+ # print(n_px_val)
88
+ if normalize == "img":
89
+ normalize = NormalizeByImage()
90
+ elif normalize == "dataset":
91
+ normalize = Normalize((47.1314, 40.8138, 53.7692, 46.2656, 28.7243), (47.1314, 40.8138, 53.7692, 46.2656, 28.7243)) # normalize for CellPainting
92
+ if normalize == "None":
93
+ normalize = None
94
+
95
+ if is_train:
96
+ if preprocess == "crop":
97
+ #resize = RandomResizedCrop(n_px_tr, scale=(0.25,0.3), ratio=(0.95, 1.05), interpolation=InterpolationMode.BICUBIC)
98
+ resize = RandomCrop(n_px_tr)
99
+ elif preprocess == "downsize":
100
+ resize = RandomResizedCrop(n_px_tr, scale=(0.9, 1.0), interpolation=InterpolationMode.BICUBIC)
101
+ elif preprocess == "rotate":
102
+ resize = Compose([
103
+ RandomRotation((0, 360)),
104
+ CenterCrop(n_px_tr)
105
+ ])
106
+
107
+ else:
108
+ if preprocess == "crop" or "rotate":
109
+ resize = Compose([
110
+ #RandomResizedCrop(n_px_tr, scale=(0.25,0.3), ratio=(0.95, 1.05), interpolation=InterpolationMode.BICUBIC)
111
+ CenterCrop(n_px_val),
112
+ ])
113
+ elif preprocess == "downsize":
114
+ resize = Compose([
115
+ Resize(n_px_val, interpolation=InterpolationMode.BICUBIC),
116
+ CenterCrop(n_px_val),
117
+ ])
118
+ if normalize:
119
+ return Compose([
120
+ ToTensor(),
121
+ resize,
122
+ normalize,
123
+ ])
124
+ else:
125
+ return Compose([
126
+ ToTensor(),
127
+ resize,
128
+ ])
129
+
130
+
131
+
132
+ def available_models() -> List[str]:
133
+ """Returns the names of available CLIP models"""
134
+ return list(_MODELS.keys())
135
+
136
+
137
+ def load(name: str, device: Union[str, torch.device] = "cuda" if torch.cuda.is_available() else "cpu", jit=True, is_train=False, pretrained=True):
138
+ """Load a CLIP model
139
+ Parameters
140
+ ----------
141
+ name : str
142
+ A model name listed by `clip.available_models()`, or the path to a model checkpoint containing the state_dict
143
+ device : Union[str, torch.device]
144
+ The device to put the loaded model
145
+ jit : bool
146
+ Whether to load the optimized JIT model (default) or more hackable non-JIT model.
147
+ Returns
148
+ -------
149
+ model : torch.nn.Module
150
+ The CLIP model
151
+ preprocess : Callable[[PIL.Image], torch.Tensor]
152
+ A torchvision transform that converts a PIL image into a tensor that the returned model can take as its input
153
+ """
154
+ if name in _MODELS:
155
+ model_path = _download(_MODELS[name])
156
+ elif os.path.isfile(name):
157
+ model_path = name
158
+ else:
159
+ raise RuntimeError(f"Model {name} not found; available models = {available_models()}")
160
+
161
+ try:
162
+ # loading JIT archive
163
+ model = torch.jit.load(model_path, map_location=device if jit else "cpu").eval()
164
+ state_dict = None
165
+ except RuntimeError:
166
+ # loading saved state dict
167
+ if jit:
168
+ warnings.warn(f"File {model_path} is not a JIT archive. Loading as a state dict instead")
169
+ jit = False
170
+ state_dict = torch.load(model_path, map_location="cpu")
171
+
172
+ if not jit:
173
+ try:
174
+ model = build_model(state_dict or model.state_dict()).to(device)
175
+ except KeyError:
176
+ sd = {k[7:]: v for k,v in state_dict["state_dict"].items()}
177
+ model = build_model(sd).to(device)
178
+
179
+ if str(device) == "cpu":
180
+ model.float()
181
+ return model, \
182
+ _transform(model.visual.input_resolution, is_train=True), \
183
+ _transform(model.visual.input_resolution, is_train=False)
184
+
185
+ # patch the device names
186
+ device_holder = torch.jit.trace(lambda: torch.ones([]).to(torch.device(device)), example_inputs=[])
187
+ device_node = [n for n in device_holder.graph.findAllNodes("prim::Constant") if "Device" in repr(n)][-1]
188
+
189
+ def patch_device(module):
190
+ graphs = [module.graph] if hasattr(module, "graph") else []
191
+ if hasattr(module, "forward1"):
192
+ graphs.append(module.forward1.graph)
193
+
194
+ for graph in graphs:
195
+ for node in graph.findAllNodes("prim::Constant"):
196
+ if "value" in node.attributeNames() and str(node["value"]).startswith("cuda"):
197
+ node.copyAttributes(device_node)
198
+
199
+ model.apply(patch_device)
200
+ patch_device(model.encode_image)
201
+ patch_device(model.encode_text)
202
+
203
+ # patch dtype to float32 on CPU
204
+ if str(device) == "cpu":
205
+ float_holder = torch.jit.trace(lambda: torch.ones([]).float(), example_inputs=[])
206
+ float_input = list(float_holder.graph.findNode("aten::to").inputs())[1]
207
+ float_node = float_input.node()
208
+
209
+ def patch_float(module):
210
+ graphs = [module.graph] if hasattr(module, "graph") else []
211
+ if hasattr(module, "forward1"):
212
+ graphs.append(module.forward1.graph)
213
+
214
+ for graph in graphs:
215
+ for node in graph.findAllNodes("aten::to"):
216
+ inputs = list(node.inputs())
217
+ for i in [1, 2]: # dtype can be the second or third argument to aten::to()
218
+ if inputs[i].node()["value"] == 5:
219
+ inputs[i].node().copyAttributes(float_node)
220
+
221
+ model.apply(patch_float)
222
+ patch_float(model.encode_image)
223
+ patch_float(model.encode_text)
224
+
225
+ model.float()
226
+
227
+ return model, \
228
+ _transform(model.input_resolution.item(), is_train=True), \
229
+ _transform(model.input_resolution.item(), is_train=False)
230
+
231
+
232
+ def tokenize(texts: Union[str, List[str]], context_length: int = 77) -> torch.LongTensor:
233
+ """
234
+ Returns the tokenized representation of given input string(s)
235
+ Parameters
236
+ ----------
237
+ texts : Union[str, List[str]]
238
+ An input string or a list of input strings to tokenize
239
+ context_length : int
240
+ The context length to use; all CLIP models use 77 as the context length
241
+ Returns
242
+ -------
243
+ A two-dimensional tensor containing the resulting tokens, shape = [number of input strings, context_length]
244
+ """
245
+ if isinstance(texts, str):
246
+ texts = [texts]
247
+
248
+ sot_token = _tokenizer.encoder["<start_of_text>"]
249
+ eot_token = _tokenizer.encoder["<end_of_text>"]
250
+ all_tokens = [[sot_token] + _tokenizer.encode(text) + [eot_token] for text in texts]
251
+ result = torch.zeros(len(all_tokens), context_length, dtype=torch.long)
252
+
253
+ for i, tokens in enumerate(all_tokens):
254
+ if len(tokens) > context_length: # Truncate
255
+ tokens = tokens[:context_length]
256
+ result[i, :len(tokens)] = torch.tensor(tokens)
257
+
258
+ return result
src/clip/model.py ADDED
@@ -0,0 +1,736 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from collections import OrderedDict
2
+ from typing import Tuple, Union, List
3
+
4
+ import timm
5
+ import os
6
+ import json
7
+ import numpy as np
8
+ import torch
9
+ import torch.nn.functional as F
10
+ from torch import nn
11
+
12
+
13
+ class Bottleneck(nn.Module):
14
+ expansion = 4
15
+
16
+ def __init__(self, inplanes, planes, stride=1, downsample=None):
17
+ super().__init__()
18
+
19
+ # all conv layers have stride 1. an avgpool is performed after the second convolution when stride > 1
20
+ self.conv1 = nn.Conv2d(inplanes, planes, 1, bias=False)
21
+ self.bn1 = nn.BatchNorm2d(planes)
22
+
23
+ self.conv2 = nn.Conv2d(planes, planes, 3, padding=1, bias=False)
24
+ self.bn2 = nn.BatchNorm2d(planes)
25
+
26
+ self.avgpool = nn.AvgPool2d(stride) if stride > 1 else nn.Identity()
27
+
28
+ self.conv3 = nn.Conv2d(planes, planes * self.expansion, 1, bias=False)
29
+ self.bn3 = nn.BatchNorm2d(planes * self.expansion)
30
+
31
+ self.relu = nn.ReLU(inplace=True)
32
+ self.downsample = None
33
+ self.stride = stride
34
+
35
+ if stride > 1 or inplanes != planes * Bottleneck.expansion:
36
+ # downsampling layer is prepended with an avgpool, and the subsequent convolution has stride 1
37
+ self.downsample = nn.Sequential(OrderedDict([
38
+ ("-1", nn.AvgPool2d(stride)),
39
+ ("0", nn.Conv2d(inplanes, planes * self.expansion, 1, stride=1, bias=False)),
40
+ ("1", nn.BatchNorm2d(planes * self.expansion))
41
+ ]))
42
+
43
+ def forward(self, x: torch.Tensor):
44
+ identity = x
45
+
46
+ out = self.relu(self.bn1(self.conv1(x)))
47
+ out = self.relu(self.bn2(self.conv2(out)))
48
+ out = self.avgpool(out)
49
+ out = self.bn3(self.conv3(out))
50
+
51
+ if self.downsample is not None:
52
+ identity = self.downsample(x)
53
+
54
+ out += identity
55
+ out = self.relu(out)
56
+ return out
57
+
58
+
59
+ class ResNet(nn.Module):
60
+ def __init__(self, block="bottleneck", layers: list = (3, 4, 23, 3), input_shape=None, output_dim=None, regression=False):
61
+ self.inplanes = 64
62
+ self.input_resolution = input_shape
63
+
64
+ super().__init__()
65
+
66
+ if block == "bottleneck":
67
+ block = Bottleneck
68
+ elif block == "basic":
69
+ block = BasicBlock
70
+ #self.n_classes = num_classes
71
+ if input_shape is not None:
72
+ channels_in = input_shape
73
+ else:
74
+ channels_in = 3
75
+
76
+ self.is_regression = regression
77
+ self.conv1 = nn.Conv2d(channels_in, 64, kernel_size=7, stride=2, padding=3, bias=False)
78
+ self.bn1 = nn.BatchNorm2d(64)
79
+ self.relu = nn.ReLU(inplace=True)
80
+ self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
81
+ self.layer1 = self._make_layer(block, 64, layers[0])
82
+ self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
83
+ self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
84
+ self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
85
+ self.avgpool = nn.AvgPool2d(7, stride=1)
86
+ self.fc = nn.Linear(512 * block.expansion, output_dim)
87
+
88
+ for m in self.modules():
89
+ if isinstance(m, nn.Conv2d):
90
+ nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
91
+ elif isinstance(m, nn.BatchNorm2d):
92
+ nn.init.constant_(m.weight, 1)
93
+ nn.init.constant_(m.bias, 0)
94
+
95
+ def _make_layer(self, block, planes, blocks, stride=1):
96
+ downsample = None
97
+ if stride != 1 or self.inplanes != planes * block.expansion:
98
+ downsample = nn.Sequential(
99
+ nn.Conv2d(self.inplanes, planes * block.expansion,
100
+ kernel_size=1, stride=stride, bias=False),
101
+ nn.BatchNorm2d(planes * block.expansion),
102
+ )
103
+
104
+ layers = []
105
+ layers.append(block(self.inplanes, planes, stride, downsample))
106
+ self.inplanes = planes * block.expansion
107
+ for i in range(1, blocks):
108
+ layers.append(block(self.inplanes, planes))
109
+
110
+ return nn.Sequential(*layers)
111
+
112
+ def forward(self, x):
113
+ x = self.conv1(x)
114
+ x = self.bn1(x)
115
+ x = self.relu(x)
116
+ x = self.maxpool(x)
117
+
118
+ x = self.layer1(x)
119
+ x = self.layer2(x)
120
+ x = self.layer3(x)
121
+ x = self.layer4(x)
122
+
123
+ x = self.avgpool(x)
124
+ if x.shape[-2:] != (1, 1):
125
+ x = nn.AvgPool2d(x.shape[2:])(x)
126
+ x = x.view(x.size(0), -1)
127
+ x = self.fc(x)
128
+
129
+ return x
130
+
131
+
132
+ class MLP(nn.Module):
133
+ def __init__(self, input_dim, hidden_dim, output_dim, n_layers):
134
+ super().__init__()
135
+
136
+ self.layers = nn.ModuleList()
137
+
138
+ for layer in range(n_layers):
139
+ dim = input_dim if layer == 0 else hidden_dim
140
+ self.layers.append(nn.Sequential(
141
+ nn.Linear(dim, hidden_dim),
142
+ nn.BatchNorm1d(hidden_dim),
143
+ nn.ReLU())
144
+ )
145
+
146
+ self.layers.append(nn.Sequential(
147
+ nn.Linear(hidden_dim, output_dim))
148
+ )
149
+
150
+ def forward(self, x):
151
+ for layer in self.layers:
152
+ x = layer(x)
153
+ return x
154
+
155
+
156
+ class AttentionPool2d(nn.Module):
157
+ def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None):
158
+ super().__init__()
159
+ self.positional_embedding = nn.Parameter(torch.randn(spacial_dim ** 2 + 1, embed_dim) / embed_dim ** 0.5)
160
+ self.k_proj = nn.Linear(embed_dim, embed_dim)
161
+ self.q_proj = nn.Linear(embed_dim, embed_dim)
162
+ self.v_proj = nn.Linear(embed_dim, embed_dim)
163
+ self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim)
164
+ self.num_heads = num_heads
165
+
166
+ def forward(self, x):
167
+ x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3]).permute(2, 0, 1) # NCHW -> (HW)NC
168
+ x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (HW+1)NC
169
+ x = x + self.positional_embedding[:, None, :].to(x.dtype) # (HW+1)NC
170
+ x, _ = F.multi_head_attention_forward(
171
+ query=x, key=x, value=x,
172
+ embed_dim_to_check=x.shape[-1],
173
+ num_heads=self.num_heads,
174
+ q_proj_weight=self.q_proj.weight,
175
+ k_proj_weight=self.k_proj.weight,
176
+ v_proj_weight=self.v_proj.weight,
177
+ in_proj_weight=None,
178
+ in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]),
179
+ bias_k=None,
180
+ bias_v=None,
181
+ add_zero_attn=False,
182
+ dropout_p=0,
183
+ out_proj_weight=self.c_proj.weight,
184
+ out_proj_bias=self.c_proj.bias,
185
+ use_separate_proj_weight=True,
186
+ training=self.training,
187
+ need_weights=False
188
+ )
189
+
190
+ return x[0]
191
+
192
+
193
+ class ModifiedResNet(nn.Module):
194
+ """
195
+ A ResNet class that is similar to torchvision's but contains the following changes:
196
+ - There are now 3 "stem" convolutions as opposed to 1, with an average pool instead of a max pool.
197
+ - Performs anti-aliasing strided convolutions, where an avgpool is prepended to convolutions with stride > 1
198
+ - The final pooling layer is a QKV attention instead of an average pool
199
+ """
200
+
201
+ def __init__(self, layers, output_dim, heads, input_resolution=224, width=64):
202
+ super().__init__()
203
+ self.output_dim = output_dim
204
+ self.input_resolution = input_resolution
205
+
206
+ # the 3-layer stem
207
+ self.conv1 = nn.Conv2d(3, width // 2, kernel_size=3, stride=2, padding=1, bias=False)
208
+ self.bn1 = nn.BatchNorm2d(width // 2)
209
+ self.conv2 = nn.Conv2d(width // 2, width // 2, kernel_size=3, padding=1, bias=False)
210
+ self.bn2 = nn.BatchNorm2d(width // 2)
211
+ self.conv3 = nn.Conv2d(width // 2, width, kernel_size=3, padding=1, bias=False)
212
+ self.bn3 = nn.BatchNorm2d(width)
213
+ self.avgpool = nn.AvgPool2d(2)
214
+ self.relu = nn.ReLU(inplace=True)
215
+
216
+ # residual layers
217
+ self._inplanes = width # this is a *mutable* variable used during construction
218
+ self.layer1 = self._make_layer(width, layers[0])
219
+ self.layer2 = self._make_layer(width * 2, layers[1], stride=2)
220
+ self.layer3 = self._make_layer(width * 4, layers[2], stride=2)
221
+ self.layer4 = self._make_layer(width * 8, layers[3], stride=2)
222
+
223
+ embed_dim = width * 32 # the ResNet feature dimension
224
+ self.attnpool = AttentionPool2d(input_resolution // 32, embed_dim, heads, output_dim)
225
+ self.initialize_parameters()
226
+
227
+ def _make_layer(self, planes, blocks, stride=1):
228
+ layers = [Bottleneck(self._inplanes, planes, stride)]
229
+
230
+ self._inplanes = planes * Bottleneck.expansion
231
+ for _ in range(1, blocks):
232
+ layers.append(Bottleneck(self._inplanes, planes))
233
+
234
+ return nn.Sequential(*layers)
235
+
236
+ def initialize_parameters(self):
237
+ if self.attnpool is not None:
238
+ std = self.attnpool.c_proj.in_features ** -0.5
239
+ nn.init.normal_(self.attnpool.q_proj.weight, std=std)
240
+ nn.init.normal_(self.attnpool.k_proj.weight, std=std)
241
+ nn.init.normal_(self.attnpool.v_proj.weight, std=std)
242
+ nn.init.normal_(self.attnpool.c_proj.weight, std=std)
243
+
244
+ for resnet_block in [self.layer1, self.layer2, self.layer3, self.layer4]:
245
+ for name, param in resnet_block.named_parameters():
246
+ if name.endswith("bn3.weight"):
247
+ nn.init.zeros_(param)
248
+
249
+ def forward(self, x):
250
+ def stem(x):
251
+ for conv, bn in [(self.conv1, self.bn1), (self.conv2, self.bn2), (self.conv3, self.bn3)]:
252
+ x = self.relu(bn(conv(x)))
253
+ x = self.avgpool(x)
254
+ return x
255
+
256
+ x = x.type(self.conv1.weight.dtype)
257
+ x = stem(x)
258
+ x = self.layer1(x)
259
+ x = self.layer2(x)
260
+ x = self.layer3(x)
261
+ x = self.layer4(x)
262
+ x = self.attnpool(x)
263
+
264
+ return x
265
+
266
+
267
+ class PretrainedResNet(nn.Module):
268
+ """docstring for PretrainedResNet."""
269
+
270
+ def __init__(self, input_shape, output_dim, adapt=False):
271
+ super().__init__()
272
+
273
+ self.adapt = adapt
274
+
275
+ if self.adapt:
276
+ input_channels = 3
277
+ else:
278
+ input_channels = input_shape
279
+
280
+ self.conv1 = nn.Conv2d(input_shape, input_channels, kernel_size=7, padding=1, bias=False)
281
+ self.pretrained_resnet = timm.create_model('resnet50', pretrained=True, in_chans=input_channels)
282
+ self.pretrained_resnet.fc = nn.Linear(2048, output_dim)
283
+
284
+ def forward(self, x: torch.Tensor):
285
+ if self.adapt:
286
+ x = self.conv1(x)
287
+ x = self.pretrained_resnet(x)
288
+ return x
289
+
290
+
291
+ class LayerNorm(nn.LayerNorm):
292
+ """Subclass torch's LayerNorm to handle fp16."""
293
+
294
+ def forward(self, x: torch.Tensor):
295
+ orig_type = x.dtype
296
+ ret = super().forward(x.type(torch.float32))
297
+ return ret.type(orig_type)
298
+
299
+
300
+ class QuickGELU(nn.Module):
301
+ def forward(self, x: torch.Tensor):
302
+ return x * torch.sigmoid(1.702 * x)
303
+
304
+
305
+ class ResidualAttentionBlock(nn.Module):
306
+ def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None):
307
+ super().__init__()
308
+
309
+ self.attn = nn.MultiheadAttention(d_model, n_head)
310
+ self.ln_1 = LayerNorm(d_model)
311
+ self.mlp = nn.Sequential(OrderedDict([
312
+ ("c_fc", nn.Linear(d_model, d_model * 4)),
313
+ ("gelu", QuickGELU()),
314
+ ("c_proj", nn.Linear(d_model * 4, d_model))
315
+ ]))
316
+ self.ln_2 = LayerNorm(d_model)
317
+ self.attn_mask = attn_mask
318
+
319
+ def attention(self, x: torch.Tensor):
320
+ self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None
321
+ return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0]
322
+
323
+ def forward(self, x: torch.Tensor):
324
+ x = x + self.attention(self.ln_1(x))
325
+ x = x + self.mlp(self.ln_2(x))
326
+ return x
327
+
328
+
329
+ class Transformer(nn.Module):
330
+ def __init__(self, width: int, layers: int, heads: int, attn_mask: torch.Tensor = None):
331
+ super().__init__()
332
+ self.width = width
333
+ self.layers = layers
334
+ self.resblocks = nn.Sequential(*[ResidualAttentionBlock(width, heads, attn_mask) for _ in range(layers)])
335
+
336
+ def forward(self, x: torch.Tensor):
337
+ return self.resblocks(x)
338
+
339
+
340
+ class VisualTransformer(nn.Module):
341
+ def __init__(self, input_resolution: int, patch_size: int, width: int, layers: int, heads: int, output_dim: int):
342
+ super().__init__()
343
+ self.input_resolution = input_resolution
344
+ self.output_dim = output_dim
345
+ self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False)
346
+
347
+ scale = width ** -0.5
348
+ self.class_embedding = nn.Parameter(scale * torch.randn(width))
349
+ self.positional_embedding = nn.Parameter(scale * torch.randn((input_resolution // patch_size) ** 2 + 1, width))
350
+ self.ln_pre = LayerNorm(width)
351
+
352
+ self.transformer = Transformer(width, layers, heads)
353
+
354
+ self.ln_post = LayerNorm(width)
355
+ self.proj = nn.Parameter(scale * torch.randn(width, output_dim))
356
+
357
+ def forward(self, x: torch.Tensor):
358
+ x = self.conv1(x) # shape = [*, width, grid, grid]
359
+ x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2]
360
+ x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
361
+ x = torch.cat(
362
+ [self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device),
363
+ x], dim=1) # shape = [*, grid ** 2 + 1, width]
364
+ x = x + self.positional_embedding.to(x.dtype)
365
+ x = self.ln_pre(x)
366
+
367
+ x = x.permute(1, 0, 2) # NLD -> LND
368
+ x = self.transformer(x)
369
+ x = x.permute(1, 0, 2) # LND -> NLD
370
+
371
+ x = self.ln_post(x[:, 0, :])
372
+
373
+ if self.proj is not None:
374
+ x = x @ self.proj
375
+
376
+ return x
377
+
378
+
379
+ class TextTransformer(nn.Module):
380
+ def __init__(self,
381
+ embed_dim: int,
382
+ context_length: int,
383
+ vocab_size: int,
384
+ transformer_width: int,
385
+ transformer_heads: int,
386
+ transformer_layers: int):
387
+ super().__init__()
388
+ self.context_length = context_length
389
+ self.transformer = Transformer(
390
+ width=transformer_width,
391
+ layers=transformer_layers,
392
+ heads=transformer_heads,
393
+ attn_mask=self.build_attention_mask()
394
+ )
395
+ self.vocab_size = vocab_size
396
+ self.token_embedding = nn.Embedding(vocab_size, transformer_width)
397
+ self.positional_embedding = nn.Parameter(
398
+ torch.empty(self.context_length, transformer_width))
399
+ self.ln_final = LayerNorm(transformer_width)
400
+ self.text_projection = nn.Parameter(
401
+ torch.empty(transformer_width, embed_dim))
402
+ self.initialize_parameters()
403
+
404
+ def initialize_parameters(self):
405
+ torch.nn.init.normal_(self.token_embedding.weight, std=0.02)
406
+ torch.nn.init.normal_(self.positional_embedding, std=0.01)
407
+ proj_std = (self.transformer.width ** -0.5) * (
408
+ (2 * self.transformer.layers) ** -0.5)
409
+ attn_std = self.transformer.width ** -0.5
410
+ fc_std = (2 * self.transformer.width) ** -0.5
411
+ for block in self.transformer.resblocks:
412
+ nn.init.normal_(block.attn.in_proj_weight, std=attn_std)
413
+ nn.init.normal_(block.attn.out_proj.weight, std=proj_std)
414
+ nn.init.normal_(block.mlp.c_fc.weight, std=fc_std)
415
+ nn.init.normal_(block.mlp.c_proj.weight, std=proj_std)
416
+
417
+ if self.text_projection is not None:
418
+ nn.init.normal_(
419
+ self.text_projection, std=self.transformer.width ** -0.5)
420
+
421
+ @property
422
+ def dtype(self):
423
+ return self.text_projection.dtype
424
+
425
+ def build_attention_mask(self):
426
+ # lazily create causal attention mask, with full attention between the vision tokens
427
+ # pytorch uses additive attention mask; fill with -inf
428
+ mask = torch.empty(self.context_length, self.context_length)
429
+ mask.fill_(float("-inf"))
430
+ mask.triu_(1) # zero out the lower diagonal
431
+ return mask
432
+
433
+ def forward(self, text):
434
+ x = self.token_embedding(text).type(self.dtype) # [batch_size, n_ctx, d_model]
435
+
436
+ x = x + self.positional_embedding.type(self.dtype)
437
+ x = x.permute(1, 0, 2) # NLD -> LND
438
+ x = self.transformer(x)
439
+ x = x.permute(1, 0, 2) # LND -> NLD
440
+ x = self.ln_final(x).type(self.dtype)
441
+
442
+ # x.shape = [batch_size, n_ctx, transformer.width]
443
+ # take features from the eot embedding (eot_token is the highest number in each sequence)
444
+ x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection
445
+ return x
446
+
447
+
448
+ def get_backbone(architecture, **kwargs):
449
+ if 'seed' in kwargs.keys():
450
+ torch.manual_seed(kwargs['seed'])
451
+ if architecture == "ResNet-pre":
452
+ print(PretrainedResNet(kwargs['input_channels'], kwargs['embed_dim'], adapt=kwargs['adapt']))
453
+ return PretrainedResNet(
454
+ input_shape=kwargs['input_channels'],
455
+ output_dim=kwargs['embed_dim'],
456
+ adapt=kwargs['adapt'])
457
+ if architecture == 'ResNet':
458
+ return ResNet(
459
+ layers=kwargs['vision_layers'],
460
+ output_dim=kwargs['embed_dim'],
461
+ input_shape=kwargs['input_channels'])
462
+ if architecture == 'MLP':
463
+ return MLP(
464
+ input_dim=kwargs['input_size'],
465
+ n_layers=kwargs['molecule_layers'],
466
+ hidden_dim=kwargs['hidden_dim'],
467
+ output_dim=kwargs['embed_dim'])
468
+ if architecture == 'ModifiedResNet':
469
+ return ModifiedResNet(
470
+ layers=kwargs['vision_layers'],
471
+ output_dim=kwargs['embed_dim'],
472
+ heads=kwargs['vision_width'] * 32 // 64,
473
+ input_resolution=kwargs['image_resolution'],
474
+ width=kwargs['vision_width'])
475
+ elif architecture == 'VisualTransformer':
476
+ return VisualTransformer(
477
+ input_resolution=kwargs['image_resolution'],
478
+ patch_size=kwargs['vision_patch_size'],
479
+ width=kwargs['vision_width'],
480
+ layers=kwargs['vision_layers'],
481
+ heads=kwargs['vision_width'] // 64,
482
+ output_dim=kwargs['embed_dim'])
483
+ elif architecture == 'TextTransformer':
484
+ return TextTransformer(
485
+ embed_dim=kwargs['embed_dim'],
486
+ context_length=kwargs['context_length'],
487
+ vocab_size=kwargs['vocab_size'],
488
+ transformer_width=kwargs['transformer_width'],
489
+ transformer_heads=kwargs['transformer_heads'],
490
+ transformer_layers=kwargs['transformer_layers'])
491
+
492
+
493
+ class CLIPGeneral(nn.Module):
494
+ def __init__(self,
495
+ init_inv_tau: float = 14.3,
496
+ learnable_inv_tau: bool = True,
497
+ backbone_architecture: List[str] = ['ResNet', 'MLP'],
498
+ **kwargs
499
+ ):
500
+ super().__init__()
501
+
502
+ self.visual = get_backbone(
503
+ backbone_architecture[0],
504
+ **kwargs.get(f"{backbone_architecture[0]}-0", kwargs))
505
+ self.transformer = get_backbone(
506
+ backbone_architecture[1],
507
+ **kwargs.get(f"{backbone_architecture[1]}-1", kwargs))
508
+
509
+ # Logit scales for the inner product in the InfoNCE loss
510
+ self.logit_inv_tau = nn.Parameter(torch.ones([]) * np.log(init_inv_tau))
511
+ self.logit_inv_tau.requires_grad = learnable_inv_tau
512
+
513
+ @property
514
+ def dtype(self):
515
+ try:
516
+ return self.visual.conv1.weight.dtype
517
+ except:
518
+ return self.visual.fc.weight.dtype
519
+
520
+ def encode_image(self, image):
521
+ return self.visual(image.type(self.dtype))
522
+
523
+ def encode_text(self, text):
524
+ return self.transformer(text.type(self.dtype))
525
+
526
+ def forward(self, image, text):
527
+ if image is None:
528
+ return self.encode_text(text)
529
+ elif text is None:
530
+ return self.encode_image(image)
531
+ image_features = self.encode_image(image)
532
+ text_features = self.encode_text(text)
533
+
534
+ image_features = image_features / image_features.norm(dim=-1, keepdim=True)
535
+ text_features = text_features / text_features.norm(dim=-1, keepdim=True)
536
+
537
+ return image_features, text_features, self.logit_inv_tau.exp()
538
+
539
+
540
+ class CLIP(nn.Module):
541
+ def __init__(self,
542
+ embed_dim: int,
543
+ # vision
544
+ image_resolution: int,
545
+ vision_layers: Union[Tuple[int, int, int, int], int],
546
+ vision_width: int,
547
+ vision_patch_size: int,
548
+ # text
549
+ context_length: int,
550
+ vocab_size: int,
551
+ transformer_width: int,
552
+ transformer_heads: int,
553
+ transformer_layers: int,
554
+ init_inv_tau: float = 14.3,
555
+ learnable_inv_tau: bool = True
556
+ ):
557
+ super().__init__()
558
+
559
+ self.context_length = context_length
560
+
561
+ if isinstance(vision_layers, (tuple, list)):
562
+ vision_heads = vision_width * 32 // 64
563
+ self.visual = ModifiedResNet(
564
+ layers=vision_layers,
565
+ output_dim=embed_dim,
566
+ heads=vision_heads,
567
+ input_resolution=image_resolution,
568
+ width=vision_width
569
+ )
570
+ else:
571
+ vision_heads = vision_width // 64
572
+ self.visual = VisualTransformer(
573
+ input_resolution=image_resolution,
574
+ patch_size=vision_patch_size,
575
+ width=vision_width,
576
+ layers=vision_layers,
577
+ heads=vision_heads,
578
+ output_dim=embed_dim
579
+ )
580
+
581
+ self.transformer = Transformer(
582
+ width=transformer_width,
583
+ layers=transformer_layers,
584
+ heads=transformer_heads,
585
+ attn_mask=self.build_attention_mask()
586
+ )
587
+
588
+ self.vocab_size = vocab_size
589
+ self.token_embedding = nn.Embedding(vocab_size, transformer_width)
590
+ self.positional_embedding = nn.Parameter(torch.empty(self.context_length, transformer_width))
591
+ self.ln_final = LayerNorm(transformer_width)
592
+
593
+ self.text_projection = nn.Parameter(torch.empty(transformer_width, embed_dim))
594
+
595
+ # Logit scales for the inner product in the InfoNCE loss
596
+ self.logit_inv_tau = nn.Parameter(torch.ones([]) * np.log(init_inv_tau))
597
+ self.logit_inv_tau.requires_grad = learnable_inv_tau
598
+
599
+ self.initialize_parameters()
600
+
601
+ def initialize_parameters(self):
602
+ nn.init.normal_(self.token_embedding.weight, std=0.02)
603
+ nn.init.normal_(self.positional_embedding, std=0.01)
604
+
605
+ if isinstance(self.visual, ModifiedResNet):
606
+ if self.visual.attnpool is not None:
607
+ std = self.visual.attnpool.c_proj.in_features ** -0.5
608
+ nn.init.normal_(self.visual.attnpool.q_proj.weight, std=std)
609
+ nn.init.normal_(self.visual.attnpool.k_proj.weight, std=std)
610
+ nn.init.normal_(self.visual.attnpool.v_proj.weight, std=std)
611
+ nn.init.normal_(self.visual.attnpool.c_proj.weight, std=std)
612
+
613
+ for resnet_block in [self.visual.layer1, self.visual.layer2, self.visual.layer3, self.visual.layer4]:
614
+ for name, param in resnet_block.named_parameters():
615
+ if name.endswith("bn3.weight"):
616
+ nn.init.zeros_(param)
617
+
618
+ proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5)
619
+ attn_std = self.transformer.width ** -0.5
620
+ fc_std = (2 * self.transformer.width) ** -0.5
621
+ for block in self.transformer.resblocks:
622
+ nn.init.normal_(block.attn.in_proj_weight, std=attn_std)
623
+ nn.init.normal_(block.attn.out_proj.weight, std=proj_std)
624
+ nn.init.normal_(block.mlp.c_fc.weight, std=fc_std)
625
+ nn.init.normal_(block.mlp.c_proj.weight, std=proj_std)
626
+
627
+ if self.text_projection is not None:
628
+ nn.init.normal_(self.text_projection, std=self.transformer.width ** -0.5)
629
+
630
+ def build_attention_mask(self):
631
+ # lazily create causal attention mask, with full attention between the vision tokens
632
+ # pytorch uses additive attention mask; fill with -inf
633
+ mask = torch.empty(self.context_length, self.context_length)
634
+ mask.fill_(float("-inf"))
635
+ mask.triu_(1) # zero out the lower diagonal
636
+ return mask
637
+
638
+ @property
639
+ def dtype(self):
640
+ return self.visual.conv1.weight.dtype
641
+
642
+ def encode_image(self, image):
643
+ return self.visual(image.type(self.dtype))
644
+
645
+ def encode_text(self, text):
646
+ x = self.token_embedding(text).type(self.dtype) # [batch_size, n_ctx, d_model]
647
+
648
+ x = x + self.positional_embedding.type(self.dtype)
649
+ x = x.permute(1, 0, 2) # NLD -> LND
650
+ x = self.transformer(x)
651
+ x = x.permute(1, 0, 2) # LND -> NLD
652
+ x = self.ln_final(x).type(self.dtype)
653
+
654
+ # x.shape = [batch_size, n_ctx, transformer.width]
655
+ # take features from the eot embedding (eot_token is the highest number in each sequence)
656
+ x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection
657
+
658
+ return x
659
+
660
+ def forward(self, image, text):
661
+ if image is None:
662
+ return self.encode_text(text)
663
+ elif text is None:
664
+ return self.encode_image(image)
665
+ image_features = self.encode_image(image)
666
+ text_features = self.encode_text(text)
667
+
668
+ image_features = image_features / image_features.norm(dim=-1, keepdim=True)
669
+ text_features = text_features / text_features.norm(dim=-1, keepdim=True)
670
+ return image_features, text_features, self.logit_inv_tau.exp()
671
+
672
+
673
+ def convert_weights(model: nn.Module):
674
+ """Convert applicable model parameters to fp16"""
675
+
676
+ def _convert_weights_to_fp16(l):
677
+ if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)):
678
+ l.weight.data = l.weight.data.half()
679
+ if l.bias is not None:
680
+ l.bias.data = l.bias.data.half()
681
+
682
+ if isinstance(l, nn.MultiheadAttention):
683
+ for attr in [*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]], "in_proj_bias", "bias_k", "bias_v"]:
684
+ tensor = getattr(l, attr)
685
+ if tensor is not None:
686
+ tensor.data = tensor.data.half()
687
+
688
+ for name in ["text_projection", "proj"]:
689
+ if hasattr(l, name):
690
+ attr = getattr(l, name)
691
+ if attr is not None:
692
+ attr.data = attr.data.half()
693
+
694
+ model.apply(_convert_weights_to_fp16)
695
+
696
+
697
+ def build_model(state_dict: dict):
698
+ vit = "visual.proj" in state_dict
699
+
700
+ if vit:
701
+ vision_width = state_dict["visual.conv1.weight"].shape[0]
702
+ vision_layers = len(
703
+ [k for k in state_dict.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")])
704
+ vision_patch_size = state_dict["visual.conv1.weight"].shape[-1]
705
+ grid_size = round((state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5)
706
+ image_resolution = vision_patch_size * grid_size
707
+ else:
708
+ counts: list = [len(set(k.split(".")[2] for k in state_dict if k.startswith(f"visual.layer{b}"))) for b in
709
+ [1, 2, 3, 4]]
710
+ vision_layers = tuple(counts)
711
+ vision_width = state_dict["visual.layer1.0.conv1.weight"].shape[0]
712
+ output_width = round((state_dict["visual.attnpool.positional_embedding"].shape[0] - 1) ** 0.5)
713
+ vision_patch_size = None
714
+ assert output_width ** 2 + 1 == state_dict["visual.attnpool.positional_embedding"].shape[0]
715
+ image_resolution = output_width * 32
716
+
717
+ embed_dim = state_dict["text_projection"].shape[1]
718
+ context_length = state_dict["positional_embedding"].shape[0]
719
+ vocab_size = state_dict["token_embedding.weight"].shape[0]
720
+ transformer_width = state_dict["ln_final.weight"].shape[0]
721
+ transformer_heads = transformer_width // 64
722
+ transformer_layers = len(set(k.split(".")[2] for k in state_dict if k.startswith(f"transformer.resblocks")))
723
+
724
+ model = CLIP(
725
+ embed_dim,
726
+ image_resolution, vision_layers, vision_width, vision_patch_size,
727
+ context_length, vocab_size, transformer_width, transformer_heads, transformer_layers
728
+ )
729
+
730
+ for key in ["input_resolution", "context_length", "vocab_size"]:
731
+ if key in state_dict:
732
+ del state_dict[key]
733
+
734
+ convert_weights(model)
735
+ model.load_state_dict(state_dict)
736
+ return model.eval()
src/training/datasets.py ADDED
@@ -0,0 +1,240 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import torch
3
+ import numpy as np
4
+ import pandas as pd
5
+ from pathlib import Path
6
+ from scipy.io import mmread
7
+ from torchvision.transforms import Compose
8
+ from torch.utils.data import Dataset
9
+
10
+ class CellPainting(Dataset):
11
+ def __init__(self, sample_index_file: str, image_directory_path: str = None, molecule_file: str = None, label_matrix_file: str = None,
12
+ label_row_index_file: str = None, label_col_index_file: str = None, auxiliary_labels=None,
13
+ transforms=None, group_views: bool = False,
14
+ subset: float = 1., num_classes: int = None, verbose: bool = False):
15
+ """ Read samples from cellpainting dataset."""
16
+ self.verbose = verbose
17
+ self.molecules = False
18
+ self.images = False
19
+
20
+ assert (os.path.exists(sample_index_file))
21
+ print(image_directory_path)
22
+ print(molecule_file)
23
+ # Read sample index
24
+ sample_index = pd.read_csv(sample_index_file, sep=",", header=0)
25
+ sample_index.set_index(["SAMPLE_KEY"])
26
+
27
+ # read auxiliary labels if provided
28
+ if auxiliary_labels is not None:
29
+ pddata = pd.read_csv(auxiliary_labels, sep=",", header=0)
30
+ self.auxiliary_data = pddata.as_matrix()[:, 2:].astype(np.float32)
31
+ # threshold
32
+ self.auxiliary_data[self.auxiliary_data < 0.75] = -1
33
+ self.auxiliary_data[self.auxiliary_data >= 0.75] = 1
34
+ self.auxiliary_assays = list(pddata)[2:]
35
+ self.n_auxiliary_classes = len(self.auxiliary_assays)
36
+ self.auxiliary_smiles = pddata["SMILES"].tolist()
37
+ else:
38
+ self.n_auxiliary_classes = 0
39
+
40
+ if image_directory_path:
41
+ self.images = True
42
+ assert (os.path.exists(image_directory_path))
43
+
44
+ if group_views:
45
+ sample_groups = sample_index.groupby(['PLATE_ID', 'WELL_POSITION'])
46
+ sample_keys = list(sample_groups.groups.keys())
47
+ sample_index = sample_groups
48
+ self.sample_to_smiles = None # TODO
49
+ else:
50
+ sample_keys = sample_index['SAMPLE_KEY'].tolist()
51
+
52
+ if auxiliary_labels is not None:
53
+ self.sample_to_smiles = dict(zip(sample_index.SAMPLE_KEY, [self.auxiliary_smiles.index(s) for s in sample_index.SMILES]))
54
+ else:
55
+ self.sample_to_smiles = None
56
+
57
+ if molecule_file:
58
+ self.molecules = True
59
+
60
+ assert (os.path.exists(molecule_file))
61
+
62
+ molecule_df = pd.read_hdf(molecule_file, key="df")
63
+ #molecule_objs = {index: row.values for index, row in molecule_df.iterrows()}
64
+
65
+ #keys = list(set(sample_keys) & set(list(molecule_df.index.values)))
66
+ mol_keys = list(molecule_df.index.values)
67
+
68
+ if self.images and self.molecules:
69
+ keys = list(set(sample_keys) & set(list(molecule_df.index.values)))
70
+ elif self.images:
71
+ keys = sample_keys
72
+ elif self.molecules:
73
+ keys = mol_keys
74
+
75
+
76
+ if len(keys) == 0:
77
+ raise Exception("Empty dataset!")
78
+ else:
79
+ self.log("Found {} samples".format(len(keys)))
80
+
81
+ if subset != 1.:
82
+ sample_keys = sample_keys[:int(len(sample_keys) * subset)]
83
+
84
+ # Read Label Matrix if specified
85
+ if label_matrix_file is not None:
86
+ assert (os.path.exists(label_matrix_file))
87
+
88
+ assert (os.path.exists(label_row_index_file))
89
+
90
+ assert (os.path.exists(label_col_index_file))
91
+
92
+
93
+ if label_row_index_file is not None and label_col_index_file is not None:
94
+ col_index = pd.read_csv(label_col_index_file, sep=",", header=0)
95
+ row_index = pd.read_csv(label_row_index_file, sep=",", header=0)
96
+ label_matrix = mmread(label_matrix_file).tocsr()
97
+ # --
98
+ self.label_matrix = label_matrix
99
+ self.row_index = row_index
100
+ self.col_index = col_index
101
+ if group_views:
102
+ self.label_dict = dict(
103
+ (key, sample_groups.get_group(key).iloc[0].ROW_NR_LABEL_MAT) for key in sample_keys)
104
+ else:
105
+ self.label_dict = dict(zip(sample_index.SAMPLE_KEY, sample_index.ROW_NR_LABEL_MAT))
106
+ self.n_classes = label_matrix.shape[1]
107
+ else:
108
+ raise Exception("If label is specified index files must be passed!")
109
+ else:
110
+ self.label_matrix = None
111
+ self.row_index = None
112
+ self.col_index = None
113
+ self.label_dict = None
114
+ self.n_classes = num_classes
115
+
116
+ if auxiliary_labels is not None:
117
+ self.n_classes += self.n_auxiliary_classes
118
+
119
+ # expose everything important
120
+ self.data_directory = image_directory_path
121
+ self.sample_index = sample_index
122
+ if self.molecules:
123
+ self.molecule_objs = molecule_df
124
+ self.keys = keys
125
+ self.n_samples = len(keys)
126
+ self.sample_keys = list(keys)
127
+ self.group_views = group_views
128
+ self.transforms = transforms
129
+
130
+ # load first sample and check shape
131
+ i = 0
132
+
133
+ sample = self[i][0] if self.molecules else self[i] #getitem returns tuple of img and fp
134
+
135
+
136
+ # while sample["input"] is np.nan and i < len(self):
137
+ # sample = self[i][0] if self.molecules else self[i]
138
+ # i += 1
139
+ #
140
+ # if sample["input"] is not None and not np.nan:
141
+ # self.data_shape = sample["input"].shape
142
+ # else:
143
+ # self.data_shape = "Unknown"
144
+ # self.log("Discovered {} samples (subset={}) with shape {}".format(self.n_samples, subset, self.data_shape))
145
+
146
+
147
+ def __len__(self):
148
+ return len(self.keys)
149
+
150
+ ## TODO: Clean!
151
+ def __getitem__(self, idx):
152
+ sample_key = self.keys[idx]
153
+
154
+
155
+ if self.molecules and self.images:
156
+ mol = self.molecule_objs.loc[sample_key].values
157
+ img = self.read_img(sample_key)
158
+ # mol = list(self.molecule_objs.loc[sample_key].values)
159
+ return img, mol
160
+ elif self.images:
161
+ img = self.read_img(sample_key)
162
+ return img
163
+ elif self.molecules:
164
+ mol = self.molecule_objs.loc[sample_key].values
165
+ return mol
166
+
167
+
168
+ @property
169
+ def shape(self):
170
+ return self.data_shape
171
+
172
+ @property
173
+ def num_classes(self):
174
+ return self.n_classes
175
+
176
+ def log(self, message):
177
+ if self.verbose:
178
+ print(message)
179
+
180
+
181
+ def read_img(self, key):
182
+ if self.group_views:
183
+ X = self.load_view_group(key)
184
+ else:
185
+ filepath = os.path.join(self.data_directory, "{}.npz".format(key))
186
+ if os.path.exists(filepath):
187
+ X = self.load_view(filepath=filepath)
188
+
189
+ index = int(np.where(self.sample_index["SAMPLE_KEY"]==key)[0])
190
+
191
+ #cpd = str(self.sample_index["CPD_NAME"])
192
+
193
+ else:
194
+ #print("ERROR: Missing sample '{}'".format(key))
195
+ return dict(input=np.nan, ID=key)
196
+
197
+ if self.transforms:
198
+ X = self.transforms(X)
199
+
200
+ # get label
201
+ if self.label_dict is not None:
202
+ label_idx = self.label_dict[key]
203
+ y = self.label_matrix[label_idx].toarray()[0].astype(np.float32)
204
+ if self.sample_to_smiles is not None and key in self.sample_to_smiles:
205
+ y = np.concatenate([y, self.auxiliary_data[self.sample_to_smiles[key], :]])
206
+
207
+ return dict(input=X, target=y, ID=key)
208
+ else:
209
+ return dict(input=X, row_id=index, ID=key)
210
+
211
+
212
+ def get_sample_keys(self):
213
+ return self.sample_keys.copy()
214
+
215
+ def load_view(self, filepath):
216
+ """Load all channels for one sample"""
217
+ npz = np.load(filepath, allow_pickle=True)
218
+ if "sample" in npz:
219
+ image = npz["sample"].astype(np.float32)
220
+ #image_reshaped = np.transpose(image, (2, 0, 1))
221
+ # for c in range(image.shape[-1]):
222
+ # image[:, :, c] = (image[:, :, c] - image[:, :, c].mean()) / image[:, :, c].std()
223
+ # image[:, :, c] = ((image[:, :, c] - image[:, :, c].mean()) / image[:, :, c].std() * 255).astype(np.uint8)
224
+ # image = (image - image.mean()) / image.std()
225
+ return image
226
+
227
+ return None
228
+
229
+ def load_view_group(self, groupkey):
230
+ result = np.empty((1040, 2088 - 12, 5), dtype=np.uint8)
231
+ viewgroup = self.sample_index.get_group(groupkey)
232
+ for i, view in enumerate(viewgroup.sort_values("SITE", ascending=True).iterrows()):
233
+ corner = (0 if int(i / 3) == 0 else 520, i % 3 * 692)
234
+ filepath = os.path.join(self.data_directory, "{}.npz".format(view[1].SAMPLE_KEY))
235
+ v = self.load_view(filepath=filepath)[:, 4:, :]
236
+ # for j in range(v.shape[-1]):
237
+ # plt.imshow(v[:, :, j])
238
+ # plt.savefig("{}-{}-{}-{}.png".format(groupkey[0], groupkey[1], i, j))
239
+ result[corner[0]:corner[0] + 520, corner[1]:corner[1] + 692, :] = v
240
+ return result
src/training/model_configs/RN101.json ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "embed_dim": 512,
3
+ "image_resolution": 224,
4
+ "vision_layers": [
5
+ 3,
6
+ 4,
7
+ 23,
8
+ 3
9
+ ],
10
+ "vision_width": 64,
11
+ "vision_patch_size": null,
12
+ "context_length": 77,
13
+ "vocab_size": 49408,
14
+ "transformer_width": 512,
15
+ "transformer_heads": 8,
16
+ "transformer_layers": 12
17
+ }
src/training/model_configs/RN50-pre.json ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "embed_dim": 512,
3
+ "vision_block": "bottleneck",
4
+ "input_channels": 5,
5
+ "vision_layers": [
6
+ 3,
7
+ 4,
8
+ 6,
9
+ 3
10
+ ],
11
+ "vision_width": 64,
12
+ "input_size": 1024,
13
+ "molecule_layers": 4,
14
+ "hidden_dim": 1024,
15
+ "adapt": true,
16
+ "backbone_architecture": ["ResNet-pre", "MLP"]
17
+ }
src/training/model_configs/RN50.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "embed_dim": 512,
3
+ "vision_block": "bottleneck",
4
+ "input_channels": 5,
5
+ "vision_layers": [
6
+ 3,
7
+ 4,
8
+ 6,
9
+ 3
10
+ ],
11
+ "vision_width": 64,
12
+ "input_size": 1024,
13
+ "molecule_layers": 4,
14
+ "hidden_dim": 1024
15
+ }
src/training/model_configs/RN50x16.json ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "embed_dim": 768,
3
+ "image_resolution": 384,
4
+ "vision_layers": [
5
+ 6,
6
+ 8,
7
+ 18,
8
+ 8
9
+ ],
10
+ "vision_width": 96,
11
+ "vision_patch_size": null,
12
+ "context_length": 77,
13
+ "vocab_size": 49408,
14
+ "transformer_width": 768,
15
+ "transformer_heads": 12,
16
+ "transformer_layers": 12
17
+ }
src/training/model_configs/RN50x4.json ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "embed_dim": 640,
3
+ "image_resolution": 288,
4
+ "vision_layers": [
5
+ 4,
6
+ 6,
7
+ 10,
8
+ 6
9
+ ],
10
+ "vision_width": 80,
11
+ "vision_patch_size": null,
12
+ "context_length": 77,
13
+ "vocab_size": 49408,
14
+ "transformer_width": 640,
15
+ "transformer_heads": 10,
16
+ "transformer_layers": 12
17
+ }
src/training/model_configs/ViT-B-16.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "embed_dim": 512,
3
+ "image_resolution": 224,
4
+ "vision_layers": 12,
5
+ "vision_width": 768,
6
+ "vision_patch_size": 16,
7
+ "context_length": 77,
8
+ "vocab_size": 49408,
9
+ "transformer_width": 512,
10
+ "transformer_heads": 8,
11
+ "transformer_layers": 12
12
+ }
src/training/model_configs/ViT-B-32.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "embed_dim": 512,
3
+ "image_resolution": 224,
4
+ "vision_layers": 12,
5
+ "vision_width": 768,
6
+ "vision_patch_size": 32,
7
+ "context_length": 77,
8
+ "vocab_size": 49408,
9
+ "transformer_width": 512,
10
+ "transformer_heads": 8,
11
+ "transformer_layers": 12
12
+ }