Spaces:
Sleeping
Sleeping
File size: 4,104 Bytes
54b1993 7074d41 54b1993 072bc06 54b1993 072bc06 54b1993 df24eff ac37187 df24eff 9dbf189 df24eff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
#!/usr/bin/env python
import functools
import os
import pathlib
import cv2
import dlib
import gradio as gr
import huggingface_hub
import numpy as np
import pretrainedmodels
import torch
import torch.nn as nn
import torch.nn.functional as F
DESCRIPTION = '# [Age Estimation](https://github.com/yu4u/age-estimation-pytorch)'
def get_model(model_name='se_resnext50_32x4d',
num_classes=101,
pretrained='imagenet'):
model = pretrainedmodels.__dict__[model_name](pretrained=pretrained)
dim_feats = model.last_linear.in_features
model.last_linear = nn.Linear(dim_feats, num_classes)
model.avg_pool = nn.AdaptiveAvgPool2d(1)
return model
def load_model(device):
model = get_model(model_name='se_resnext50_32x4d', pretrained=None)
path = huggingface_hub.hf_hub_download(
'public-data/yu4u-age-estimation-pytorch', 'pretrained.pth')
model.load_state_dict(torch.load(path))
model = model.to(device)
model.eval()
return model
def load_image(path):
image = cv2.imread(path)
h_orig, w_orig = image.shape[:2]
size = max(h_orig, w_orig)
scale = 640 / size
w, h = int(w_orig * scale), int(h_orig * scale)
image = cv2.resize(image, (w, h))
return image
def draw_label(image,
point,
label,
font=cv2.FONT_HERSHEY_SIMPLEX,
font_scale=0.8,
thickness=1):
size = cv2.getTextSize(label, font, font_scale, thickness)[0]
x, y = point
cv2.rectangle(image, (x, y - size[1]), (x + size[0], y), (255, 0, 0),
cv2.FILLED)
cv2.putText(image,
label,
point,
font,
font_scale, (255, 255, 255),
thickness,
lineType=cv2.LINE_AA)
@torch.inference_mode()
def predict(image, model, face_detector, device, margin=0.4, input_size=224):
image = cv2.imread(image, cv2.IMREAD_COLOR)[:, :, ::-1].copy()
image_h, image_w = image.shape[:2]
# detect faces using dlib detector
detected = face_detector(image, 3)
faces = np.empty((len(detected), input_size, input_size, 3))
age_data = []
if len(detected) > 0:
for i, d in enumerate(detected):
x1, y1, x2, y2, w, h = d.left(), d.top(
), d.right() + 1, d.bottom() + 1, d.width(), d.height()
xw1 = max(int(x1 - margin * w), 0)
yw1 = max(int(y1 - margin * h), 0)
xw2 = min(int(x2 + margin * w), image_w - 1)
yw2 = min(int(y2 + margin * h), image_h - 1)
faces[i] = cv2.resize(image[yw1:yw2 + 1, xw1:xw2 + 1],
(input_size, input_size))
cv2.rectangle(image, (x1, y1), (x2, y2), (255, 255, 255), 2)
cv2.rectangle(image, (xw1, yw1), (xw2, yw2), (255, 0, 0), 2)
# predict ages
inputs = torch.from_numpy(
np.transpose(faces.astype(np.float32), (0, 3, 1, 2))).to(device)
outputs = F.softmax(model(inputs), dim=-1).cpu().numpy()
ages = np.arange(0, 101)
predicted_ages = (outputs * ages).sum(axis=-1)
# draw results
for age, d in zip(predicted_ages, detected):
age_text = f'{int(age)}'
age_data.append({'age': int(age), 'text': age_text, 'face_coordinates': (d.left(), d.top())})
return age_data
def main():
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
model = load_model(device)
face_detector = dlib.get_frontal_face_detector()
fn = functools.partial(predict, model=model, face_detector=face_detector, device=device)
image_dir = pathlib.Path('sample_images')
examples = [path.as_posix() for path in sorted(image_dir.glob('*.jpg'))]
demo = gr.Interface(
fn=fn,
inputs=gr.inputs.Image(type="filepath"),
outputs="json",
examples=examples,
title="Age Estimation",
description=DESCRIPTION,
cache_examples=os.getenv('CACHE_EXAMPLES') == '1'
)
demo.launch()
if __name__ == '__main__':
main()
|