Spaces:
Runtime error
Runtime error
# Copyright 2023 UC Berkeley Team and The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim | |
from __future__ import annotations | |
import math | |
from dataclasses import dataclass | |
from typing import List, Optional, Tuple, Union | |
import numpy as np | |
from numpy import ndarray | |
import torch | |
from diffusers.configuration_utils import ConfigMixin, register_to_config | |
from diffusers.utils import BaseOutput | |
from diffusers.utils.torch_utils import randn_tensor | |
from diffusers.schedulers.scheduling_utils import ( | |
KarrasDiffusionSchedulers, | |
SchedulerMixin, | |
) | |
from diffusers.schedulers.scheduling_ddpm import ( | |
DDPMSchedulerOutput, | |
betas_for_alpha_bar, | |
DDPMScheduler as DiffusersDDPMScheduler, | |
) | |
from ..utils.noise_util import video_fusion_noise | |
class DDPMScheduler(DiffusersDDPMScheduler): | |
""" | |
`DDPMScheduler` explores the connections between denoising score matching and Langevin dynamics sampling. | |
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic | |
methods the library implements for all schedulers such as loading and saving. | |
Args: | |
num_train_timesteps (`int`, defaults to 1000): | |
The number of diffusion steps to train the model. | |
beta_start (`float`, defaults to 0.0001): | |
The starting `beta` value of inference. | |
beta_end (`float`, defaults to 0.02): | |
The final `beta` value. | |
beta_schedule (`str`, defaults to `"linear"`): | |
The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from | |
`linear`, `scaled_linear`, or `squaredcos_cap_v2`. | |
variance_type (`str`, defaults to `"fixed_small"`): | |
Clip the variance when adding noise to the denoised sample. Choose from `fixed_small`, `fixed_small_log`, | |
`fixed_large`, `fixed_large_log`, `learned` or `learned_range`. | |
clip_sample (`bool`, defaults to `True`): | |
Clip the predicted sample for numerical stability. | |
clip_sample_range (`float`, defaults to 1.0): | |
The maximum magnitude for sample clipping. Valid only when `clip_sample=True`. | |
prediction_type (`str`, defaults to `epsilon`, *optional*): | |
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process), | |
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen | |
Video](https://imagen.research.google/video/paper.pdf) paper). | |
thresholding (`bool`, defaults to `False`): | |
Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such | |
as Stable Diffusion. | |
dynamic_thresholding_ratio (`float`, defaults to 0.995): | |
The ratio for the dynamic thresholding method. Valid only when `thresholding=True`. | |
sample_max_value (`float`, defaults to 1.0): | |
The threshold value for dynamic thresholding. Valid only when `thresholding=True`. | |
timestep_spacing (`str`, defaults to `"leading"`): | |
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and | |
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information. | |
steps_offset (`int`, defaults to 0): | |
An offset added to the inference steps. You can use a combination of `offset=1` and | |
`set_alpha_to_one=False` to make the last step use step 0 for the previous alpha product like in Stable | |
Diffusion. | |
""" | |
_compatibles = [e.name for e in KarrasDiffusionSchedulers] | |
order = 1 | |
def __init__( | |
self, | |
num_train_timesteps: int = 1000, | |
beta_start: float = 0.0001, | |
beta_end: float = 0.02, | |
beta_schedule: str = "linear", | |
trained_betas: ndarray | List[float] | None = None, | |
variance_type: str = "fixed_small", | |
clip_sample: bool = True, | |
prediction_type: str = "epsilon", | |
thresholding: bool = False, | |
dynamic_thresholding_ratio: float = 0.995, | |
clip_sample_range: float = 1, | |
sample_max_value: float = 1, | |
timestep_spacing: str = "leading", | |
steps_offset: int = 0, | |
): | |
super().__init__( | |
num_train_timesteps, | |
beta_start, | |
beta_end, | |
beta_schedule, | |
trained_betas, | |
variance_type, | |
clip_sample, | |
prediction_type, | |
thresholding, | |
dynamic_thresholding_ratio, | |
clip_sample_range, | |
sample_max_value, | |
timestep_spacing, | |
steps_offset, | |
) | |
def step( | |
self, | |
model_output: torch.FloatTensor, | |
timestep: int, | |
sample: torch.FloatTensor, | |
generator=None, | |
return_dict: bool = True, | |
w_ind_noise: float = 0.5, | |
noise_type: str = "random", | |
) -> Union[DDPMSchedulerOutput, Tuple]: | |
""" | |
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion | |
process from the learned model outputs (most often the predicted noise). | |
Args: | |
model_output (`torch.FloatTensor`): | |
The direct output from learned diffusion model. | |
timestep (`float`): | |
The current discrete timestep in the diffusion chain. | |
sample (`torch.FloatTensor`): | |
A current instance of a sample created by the diffusion process. | |
generator (`torch.Generator`, *optional*): | |
A random number generator. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~schedulers.scheduling_ddpm.DDPMSchedulerOutput`] or `tuple`. | |
Returns: | |
[`~schedulers.scheduling_ddpm.DDPMSchedulerOutput`] or `tuple`: | |
If return_dict is `True`, [`~schedulers.scheduling_ddpm.DDPMSchedulerOutput`] is returned, otherwise a | |
tuple is returned where the first element is the sample tensor. | |
""" | |
t = timestep | |
prev_t = self.previous_timestep(t) | |
if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in [ | |
"learned", | |
"learned_range", | |
]: | |
model_output, predicted_variance = torch.split( | |
model_output, sample.shape[1], dim=1 | |
) | |
else: | |
predicted_variance = None | |
# 1. compute alphas, betas | |
alpha_prod_t = self.alphas_cumprod[t] | |
alpha_prod_t_prev = self.alphas_cumprod[prev_t] if prev_t >= 0 else self.one | |
beta_prod_t = 1 - alpha_prod_t | |
beta_prod_t_prev = 1 - alpha_prod_t_prev | |
current_alpha_t = alpha_prod_t / alpha_prod_t_prev | |
current_beta_t = 1 - current_alpha_t | |
# 2. compute predicted original sample from predicted noise also called | |
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf | |
if self.config.prediction_type == "epsilon": | |
pred_original_sample = ( | |
sample - beta_prod_t ** (0.5) * model_output | |
) / alpha_prod_t ** (0.5) | |
elif self.config.prediction_type == "sample": | |
pred_original_sample = model_output | |
elif self.config.prediction_type == "v_prediction": | |
pred_original_sample = (alpha_prod_t**0.5) * sample - ( | |
beta_prod_t**0.5 | |
) * model_output | |
else: | |
raise ValueError( | |
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` or" | |
" `v_prediction` for the DDPMScheduler." | |
) | |
# 3. Clip or threshold "predicted x_0" | |
if self.config.thresholding: | |
pred_original_sample = self._threshold_sample(pred_original_sample) | |
elif self.config.clip_sample: | |
pred_original_sample = pred_original_sample.clamp( | |
-self.config.clip_sample_range, self.config.clip_sample_range | |
) | |
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t | |
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf | |
pred_original_sample_coeff = ( | |
alpha_prod_t_prev ** (0.5) * current_beta_t | |
) / beta_prod_t | |
current_sample_coeff = current_alpha_t ** (0.5) * beta_prod_t_prev / beta_prod_t | |
# 5. Compute predicted previous sample µ_t | |
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf | |
pred_prev_sample = ( | |
pred_original_sample_coeff * pred_original_sample | |
+ current_sample_coeff * sample | |
) | |
# 6. Add noise | |
variance = 0 | |
if t > 0: | |
device = model_output.device | |
# if variance_noise is None: | |
# variance_noise = randn_tensor( | |
# model_output.shape, | |
# generator=generator, | |
# device=model_output.device, | |
# dtype=model_output.dtype, | |
# ) | |
device = model_output.device | |
if noise_type == "random": | |
variance_noise = randn_tensor( | |
model_output.shape, | |
dtype=model_output.dtype, | |
device=device, | |
generator=generator, | |
) | |
elif noise_type == "video_fusion": | |
variance_noise = video_fusion_noise( | |
model_output, w_ind_noise=w_ind_noise, generator=generator | |
) | |
if self.variance_type == "fixed_small_log": | |
variance = ( | |
self._get_variance(t, predicted_variance=predicted_variance) | |
* variance_noise | |
) | |
elif self.variance_type == "learned_range": | |
variance = self._get_variance(t, predicted_variance=predicted_variance) | |
variance = torch.exp(0.5 * variance) * variance_noise | |
else: | |
variance = ( | |
self._get_variance(t, predicted_variance=predicted_variance) ** 0.5 | |
) * variance_noise | |
pred_prev_sample = pred_prev_sample + variance | |
if not return_dict: | |
return (pred_prev_sample,) | |
return DDPMSchedulerOutput( | |
prev_sample=pred_prev_sample, pred_original_sample=pred_original_sample | |
) | |