Spaces:
Runtime error
Runtime error
add mmcm, musev
Browse files- .gitmodules +6 -0
- MMCM +1 -0
- MuseV +1 -0
- app_gradio_space.py +32 -2
- gradio_text2video.py +0 -949
- gradio_video2video.py +0 -1039
.gitmodules
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[submodule "MMCM"]
|
2 |
+
path = MMCM
|
3 |
+
url = https://github.com/TMElyralab/MMCM.git
|
4 |
+
[submodule "MuseV"]
|
5 |
+
path = MuseV
|
6 |
+
url = https://github.com/TMElyralab/MuseV.git
|
MMCM
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
Subproject commit 3a6ef08762f8bd9b50c09eb20402a13b74e839e3
|
MuseV
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
Subproject commit ddba6a41725db2f75f7b6dd91185cacb0fed556f
|
app_gradio_space.py
CHANGED
@@ -14,10 +14,40 @@ import subprocess
|
|
14 |
|
15 |
ProjectDir = os.path.abspath(os.path.dirname(__file__))
|
16 |
CheckpointsDir = os.path.join(ProjectDir, "checkpoints")
|
17 |
-
|
18 |
-
ignore_video2video = True
|
19 |
max_image_edge = 960
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
def download_model():
|
23 |
if not os.path.exists(CheckpointsDir):
|
|
|
14 |
|
15 |
ProjectDir = os.path.abspath(os.path.dirname(__file__))
|
16 |
CheckpointsDir = os.path.join(ProjectDir, "checkpoints")
|
17 |
+
ignore_video2video = False
|
|
|
18 |
max_image_edge = 960
|
19 |
|
20 |
+
sys.path.insert(0, ProjectDir)
|
21 |
+
sys.path.insert(0, f"{ProjectDir}/MMCM")
|
22 |
+
sys.path.insert(0, f"{ProjectDir}/diffusers/src")
|
23 |
+
sys.path.insert(0, f"{ProjectDir}/controlnet_aux/src")
|
24 |
+
sys.path.insert(0, f"{ProjectDir}/scripts/gradio")
|
25 |
+
|
26 |
+
result = subprocess.run(
|
27 |
+
["pip", "install", "--no-cache-dir", "-U", "openmim"],
|
28 |
+
capture_output=True,
|
29 |
+
text=True,
|
30 |
+
)
|
31 |
+
print(result)
|
32 |
+
|
33 |
+
result = subprocess.run(["mim", "install", "mmengine"], capture_output=True, text=True)
|
34 |
+
print(result)
|
35 |
+
|
36 |
+
result = subprocess.run(
|
37 |
+
["mim", "install", "mmcv>=2.0.1"], capture_output=True, text=True
|
38 |
+
)
|
39 |
+
print(result)
|
40 |
+
|
41 |
+
result = subprocess.run(
|
42 |
+
["mim", "install", "mmdet>=3.1.0"], capture_output=True, text=True
|
43 |
+
)
|
44 |
+
print(result)
|
45 |
+
|
46 |
+
result = subprocess.run(
|
47 |
+
["mim", "install", "mmpose>=1.1.0"], capture_output=True, text=True
|
48 |
+
)
|
49 |
+
print(result)
|
50 |
+
|
51 |
|
52 |
def download_model():
|
53 |
if not os.path.exists(CheckpointsDir):
|
gradio_text2video.py
DELETED
@@ -1,949 +0,0 @@
|
|
1 |
-
import argparse
|
2 |
-
import copy
|
3 |
-
import os
|
4 |
-
from pathlib import Path
|
5 |
-
import logging
|
6 |
-
from collections import OrderedDict
|
7 |
-
from pprint import pprint
|
8 |
-
import random
|
9 |
-
import gradio as gr
|
10 |
-
from argparse import Namespace
|
11 |
-
|
12 |
-
import numpy as np
|
13 |
-
from omegaconf import OmegaConf, SCMode
|
14 |
-
import torch
|
15 |
-
from einops import rearrange, repeat
|
16 |
-
import cv2
|
17 |
-
from PIL import Image
|
18 |
-
from diffusers.models.autoencoder_kl import AutoencoderKL
|
19 |
-
|
20 |
-
from mmcm.utils.load_util import load_pyhon_obj
|
21 |
-
from mmcm.utils.seed_util import set_all_seed
|
22 |
-
from mmcm.utils.signature import get_signature_of_string
|
23 |
-
from mmcm.utils.task_util import fiss_tasks, generate_tasks as generate_tasks_from_table
|
24 |
-
from mmcm.vision.utils.data_type_util import is_video, is_image, read_image_as_5d
|
25 |
-
from mmcm.utils.str_util import clean_str_for_save
|
26 |
-
from mmcm.vision.data.video_dataset import DecordVideoDataset
|
27 |
-
from musev.auto_prompt.util import generate_prompts
|
28 |
-
|
29 |
-
|
30 |
-
from musev.models.facein_loader import load_facein_extractor_and_proj_by_name
|
31 |
-
from musev.models.referencenet_loader import load_referencenet_by_name
|
32 |
-
from musev.models.ip_adapter_loader import (
|
33 |
-
load_ip_adapter_vision_clip_encoder_by_name,
|
34 |
-
load_vision_clip_encoder_by_name,
|
35 |
-
load_ip_adapter_image_proj_by_name,
|
36 |
-
)
|
37 |
-
from musev.models.ip_adapter_face_loader import (
|
38 |
-
load_ip_adapter_face_extractor_and_proj_by_name,
|
39 |
-
)
|
40 |
-
from musev.pipelines.pipeline_controlnet_predictor import (
|
41 |
-
DiffusersPipelinePredictor,
|
42 |
-
)
|
43 |
-
from musev.models.referencenet import ReferenceNet2D
|
44 |
-
from musev.models.unet_loader import load_unet_by_name
|
45 |
-
from musev.utils.util import save_videos_grid_with_opencv
|
46 |
-
from musev import logger
|
47 |
-
|
48 |
-
use_v2v_predictor = False
|
49 |
-
if use_v2v_predictor:
|
50 |
-
from gradio_video2video import sd_predictor as video_sd_predictor
|
51 |
-
|
52 |
-
logger.setLevel("INFO")
|
53 |
-
|
54 |
-
file_dir = os.path.dirname(__file__)
|
55 |
-
PROJECT_DIR = os.path.join(os.path.dirname(__file__), "./")
|
56 |
-
DATA_DIR = os.path.join(PROJECT_DIR, "data")
|
57 |
-
CACHE_PATH = "./t2v_input_image"
|
58 |
-
|
59 |
-
|
60 |
-
# TODO:use group to group arguments
|
61 |
-
|
62 |
-
|
63 |
-
args_dict = {
|
64 |
-
"add_static_video_prompt": False,
|
65 |
-
"context_batch_size": 1,
|
66 |
-
"context_frames": 12,
|
67 |
-
"context_overlap": 4,
|
68 |
-
"context_schedule": "uniform_v2",
|
69 |
-
"context_stride": 1,
|
70 |
-
"cross_attention_dim": 768,
|
71 |
-
"face_image_path": None,
|
72 |
-
"facein_model_cfg_path": os.path.join(PROJECT_DIR, "./configs/model/facein.py"),
|
73 |
-
"facein_model_name": None,
|
74 |
-
"facein_scale": 1.0,
|
75 |
-
"fix_condition_images": False,
|
76 |
-
"fixed_ip_adapter_image": True,
|
77 |
-
"fixed_refer_face_image": True,
|
78 |
-
"fixed_refer_image": True,
|
79 |
-
"fps": 4,
|
80 |
-
"guidance_scale": 7.5,
|
81 |
-
"height": None,
|
82 |
-
"img_length_ratio": 1.0,
|
83 |
-
"img_weight": 0.001,
|
84 |
-
"interpolation_factor": 1,
|
85 |
-
"ip_adapter_face_model_cfg_path": os.path.join(
|
86 |
-
PROJECT_DIR, "./configs/model/ip_adapter.py"
|
87 |
-
),
|
88 |
-
"ip_adapter_face_model_name": None,
|
89 |
-
"ip_adapter_face_scale": 1.0,
|
90 |
-
"ip_adapter_model_cfg_path": os.path.join(
|
91 |
-
PROJECT_DIR, "./configs/model/ip_adapter.py"
|
92 |
-
),
|
93 |
-
"ip_adapter_model_name": "musev_referencenet",
|
94 |
-
"ip_adapter_scale": 1.0,
|
95 |
-
"ipadapter_image_path": None,
|
96 |
-
"lcm_model_cfg_path": os.path.join(PROJECT_DIR, "./configs/model/lcm_model.py"),
|
97 |
-
"lcm_model_name": None,
|
98 |
-
"log_level": "INFO",
|
99 |
-
"motion_speed": 8.0,
|
100 |
-
"n_batch": 1,
|
101 |
-
"n_cols": 3,
|
102 |
-
"n_repeat": 1,
|
103 |
-
"n_vision_condition": 1,
|
104 |
-
"need_hist_match": False,
|
105 |
-
"need_img_based_video_noise": True,
|
106 |
-
"need_redraw": False,
|
107 |
-
"negative_prompt": "V2",
|
108 |
-
"negprompt_cfg_path": os.path.join(
|
109 |
-
PROJECT_DIR, "./configs/model/negative_prompt.py"
|
110 |
-
),
|
111 |
-
"noise_type": "video_fusion",
|
112 |
-
"num_inference_steps": 30,
|
113 |
-
"output_dir": "./results/",
|
114 |
-
"overwrite": False,
|
115 |
-
"prompt_only_use_image_prompt": False,
|
116 |
-
"record_mid_video_latents": False,
|
117 |
-
"record_mid_video_noises": False,
|
118 |
-
"redraw_condition_image": False,
|
119 |
-
"redraw_condition_image_with_facein": True,
|
120 |
-
"redraw_condition_image_with_ip_adapter_face": True,
|
121 |
-
"redraw_condition_image_with_ipdapter": True,
|
122 |
-
"redraw_condition_image_with_referencenet": True,
|
123 |
-
"referencenet_image_path": None,
|
124 |
-
"referencenet_model_cfg_path": os.path.join(
|
125 |
-
PROJECT_DIR, "./configs/model/referencenet.py"
|
126 |
-
),
|
127 |
-
"referencenet_model_name": "musev_referencenet",
|
128 |
-
"save_filetype": "mp4",
|
129 |
-
"save_images": False,
|
130 |
-
"sd_model_cfg_path": os.path.join(PROJECT_DIR, "./configs/model/T2I_all_model.py"),
|
131 |
-
"sd_model_name": "majicmixRealv6Fp16",
|
132 |
-
"seed": None,
|
133 |
-
"strength": 0.8,
|
134 |
-
"target_datas": "boy_dance2",
|
135 |
-
"test_data_path": os.path.join(
|
136 |
-
PROJECT_DIR, "./configs/infer/testcase_video_famous.yaml"
|
137 |
-
),
|
138 |
-
"time_size": 24,
|
139 |
-
"unet_model_cfg_path": os.path.join(PROJECT_DIR, "./configs/model/motion_model.py"),
|
140 |
-
"unet_model_name": "musev_referencenet",
|
141 |
-
"use_condition_image": True,
|
142 |
-
"use_video_redraw": True,
|
143 |
-
"vae_model_path": os.path.join(PROJECT_DIR, "./checkpoints/vae/sd-vae-ft-mse"),
|
144 |
-
"video_guidance_scale": 3.5,
|
145 |
-
"video_guidance_scale_end": None,
|
146 |
-
"video_guidance_scale_method": "linear",
|
147 |
-
"video_negative_prompt": "V2",
|
148 |
-
"video_num_inference_steps": 10,
|
149 |
-
"video_overlap": 1,
|
150 |
-
"vision_clip_extractor_class_name": "ImageClipVisionFeatureExtractor",
|
151 |
-
"vision_clip_model_path": os.path.join(
|
152 |
-
PROJECT_DIR, "./checkpoints/IP-Adapter/models/image_encoder"
|
153 |
-
),
|
154 |
-
"w_ind_noise": 0.5,
|
155 |
-
"width": None,
|
156 |
-
"write_info": False,
|
157 |
-
}
|
158 |
-
args = Namespace(**args_dict)
|
159 |
-
print("args")
|
160 |
-
pprint(args)
|
161 |
-
print("\n")
|
162 |
-
|
163 |
-
logger.setLevel(args.log_level)
|
164 |
-
overwrite = args.overwrite
|
165 |
-
cross_attention_dim = args.cross_attention_dim
|
166 |
-
time_size = args.time_size # 一次视频生成的帧数
|
167 |
-
n_batch = args.n_batch # 按照time_size的尺寸 生成n_batch次,总帧数 = time_size * n_batch
|
168 |
-
fps = args.fps
|
169 |
-
# need_redraw = args.need_redraw # 视频重绘视频使用视频网络
|
170 |
-
# use_video_redraw = args.use_video_redraw # 视频重绘视频使用视频网络
|
171 |
-
fix_condition_images = args.fix_condition_images
|
172 |
-
use_condition_image = args.use_condition_image # 当 test_data 中有图像时,作为初始图像
|
173 |
-
redraw_condition_image = args.redraw_condition_image # 用于视频生成的首帧是否使用重绘后的
|
174 |
-
need_img_based_video_noise = (
|
175 |
-
args.need_img_based_video_noise
|
176 |
-
) # 视频加噪过程中是否使用首帧 condition_images
|
177 |
-
img_weight = args.img_weight
|
178 |
-
height = args.height # 如果测试数据中没有单独指定宽高,则默认这里
|
179 |
-
width = args.width # 如果测试数据中没有单独指定宽高,则默认这里
|
180 |
-
img_length_ratio = args.img_length_ratio # 如果测试数据中没有单独指定图像宽高比resize比例,则默认这里
|
181 |
-
n_cols = args.n_cols
|
182 |
-
noise_type = args.noise_type
|
183 |
-
strength = args.strength # 首帧重绘程度参数
|
184 |
-
video_guidance_scale = args.video_guidance_scale # 视频 condition与 uncond的权重参数
|
185 |
-
guidance_scale = args.guidance_scale # 时序条件帧 condition与uncond的权重参数
|
186 |
-
video_num_inference_steps = args.video_num_inference_steps # 视频迭代次数
|
187 |
-
num_inference_steps = args.num_inference_steps # 时序条件帧 重绘参数
|
188 |
-
seed = args.seed
|
189 |
-
save_filetype = args.save_filetype
|
190 |
-
save_images = args.save_images
|
191 |
-
sd_model_cfg_path = args.sd_model_cfg_path
|
192 |
-
sd_model_name = (
|
193 |
-
args.sd_model_name
|
194 |
-
if args.sd_model_name in ["all", "None"]
|
195 |
-
else args.sd_model_name.split(",")
|
196 |
-
)
|
197 |
-
unet_model_cfg_path = args.unet_model_cfg_path
|
198 |
-
unet_model_name = args.unet_model_name
|
199 |
-
test_data_path = args.test_data_path
|
200 |
-
target_datas = (
|
201 |
-
args.target_datas if args.target_datas == "all" else args.target_datas.split(",")
|
202 |
-
)
|
203 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
204 |
-
torch_dtype = torch.float16
|
205 |
-
negprompt_cfg_path = args.negprompt_cfg_path
|
206 |
-
video_negative_prompt = args.video_negative_prompt
|
207 |
-
negative_prompt = args.negative_prompt
|
208 |
-
motion_speed = args.motion_speed
|
209 |
-
need_hist_match = args.need_hist_match
|
210 |
-
video_guidance_scale_end = args.video_guidance_scale_end
|
211 |
-
video_guidance_scale_method = args.video_guidance_scale_method
|
212 |
-
add_static_video_prompt = args.add_static_video_prompt
|
213 |
-
n_vision_condition = args.n_vision_condition
|
214 |
-
lcm_model_cfg_path = args.lcm_model_cfg_path
|
215 |
-
lcm_model_name = args.lcm_model_name
|
216 |
-
referencenet_model_cfg_path = args.referencenet_model_cfg_path
|
217 |
-
referencenet_model_name = args.referencenet_model_name
|
218 |
-
ip_adapter_model_cfg_path = args.ip_adapter_model_cfg_path
|
219 |
-
ip_adapter_model_name = args.ip_adapter_model_name
|
220 |
-
vision_clip_model_path = args.vision_clip_model_path
|
221 |
-
vision_clip_extractor_class_name = args.vision_clip_extractor_class_name
|
222 |
-
facein_model_cfg_path = args.facein_model_cfg_path
|
223 |
-
facein_model_name = args.facein_model_name
|
224 |
-
ip_adapter_face_model_cfg_path = args.ip_adapter_face_model_cfg_path
|
225 |
-
ip_adapter_face_model_name = args.ip_adapter_face_model_name
|
226 |
-
|
227 |
-
fixed_refer_image = args.fixed_refer_image
|
228 |
-
fixed_ip_adapter_image = args.fixed_ip_adapter_image
|
229 |
-
fixed_refer_face_image = args.fixed_refer_face_image
|
230 |
-
redraw_condition_image_with_referencenet = args.redraw_condition_image_with_referencenet
|
231 |
-
redraw_condition_image_with_ipdapter = args.redraw_condition_image_with_ipdapter
|
232 |
-
redraw_condition_image_with_facein = args.redraw_condition_image_with_facein
|
233 |
-
redraw_condition_image_with_ip_adapter_face = (
|
234 |
-
args.redraw_condition_image_with_ip_adapter_face
|
235 |
-
)
|
236 |
-
w_ind_noise = args.w_ind_noise
|
237 |
-
ip_adapter_scale = args.ip_adapter_scale
|
238 |
-
facein_scale = args.facein_scale
|
239 |
-
ip_adapter_face_scale = args.ip_adapter_face_scale
|
240 |
-
face_image_path = args.face_image_path
|
241 |
-
ipadapter_image_path = args.ipadapter_image_path
|
242 |
-
referencenet_image_path = args.referencenet_image_path
|
243 |
-
vae_model_path = args.vae_model_path
|
244 |
-
prompt_only_use_image_prompt = args.prompt_only_use_image_prompt
|
245 |
-
# serial_denoise parameter start
|
246 |
-
record_mid_video_noises = args.record_mid_video_noises
|
247 |
-
record_mid_video_latents = args.record_mid_video_latents
|
248 |
-
video_overlap = args.video_overlap
|
249 |
-
# serial_denoise parameter end
|
250 |
-
# parallel_denoise parameter start
|
251 |
-
context_schedule = args.context_schedule
|
252 |
-
context_frames = args.context_frames
|
253 |
-
context_stride = args.context_stride
|
254 |
-
context_overlap = args.context_overlap
|
255 |
-
context_batch_size = args.context_batch_size
|
256 |
-
interpolation_factor = args.interpolation_factor
|
257 |
-
n_repeat = args.n_repeat
|
258 |
-
|
259 |
-
# parallel_denoise parameter end
|
260 |
-
|
261 |
-
b = 1
|
262 |
-
negative_embedding = [
|
263 |
-
[os.path.join(PROJECT_DIR, "./checkpoints/embedding/badhandv4.pt"), "badhandv4"],
|
264 |
-
[
|
265 |
-
os.path.join(PROJECT_DIR, "./checkpoints/embedding/ng_deepnegative_v1_75t.pt"),
|
266 |
-
"ng_deepnegative_v1_75t",
|
267 |
-
],
|
268 |
-
[
|
269 |
-
os.path.join(PROJECT_DIR, "./checkpoints/embedding/EasyNegativeV2.safetensors"),
|
270 |
-
"EasyNegativeV2",
|
271 |
-
],
|
272 |
-
[
|
273 |
-
os.path.join(PROJECT_DIR, "./checkpoints/embedding/bad_prompt_version2-neg.pt"),
|
274 |
-
"bad_prompt_version2-neg",
|
275 |
-
],
|
276 |
-
]
|
277 |
-
prefix_prompt = ""
|
278 |
-
suffix_prompt = ", beautiful, masterpiece, best quality"
|
279 |
-
suffix_prompt = ""
|
280 |
-
|
281 |
-
|
282 |
-
# sd model parameters
|
283 |
-
|
284 |
-
if sd_model_name != "None":
|
285 |
-
# 使用 cfg_path 里的sd_model_path
|
286 |
-
sd_model_params_dict_src = load_pyhon_obj(sd_model_cfg_path, "MODEL_CFG")
|
287 |
-
sd_model_params_dict = {
|
288 |
-
k: v
|
289 |
-
for k, v in sd_model_params_dict_src.items()
|
290 |
-
if sd_model_name == "all" or k in sd_model_name
|
291 |
-
}
|
292 |
-
else:
|
293 |
-
# 使用命令行给的sd_model_path, 需要单独设置 sd_model_name 为None,
|
294 |
-
sd_model_name = os.path.basename(sd_model_cfg_path).split(".")[0]
|
295 |
-
sd_model_params_dict = {sd_model_name: {"sd": sd_model_cfg_path}}
|
296 |
-
sd_model_params_dict_src = sd_model_params_dict
|
297 |
-
if len(sd_model_params_dict) == 0:
|
298 |
-
raise ValueError(
|
299 |
-
"has not target model, please set one of {}".format(
|
300 |
-
" ".join(list(sd_model_params_dict_src.keys()))
|
301 |
-
)
|
302 |
-
)
|
303 |
-
print("running model, T2I SD")
|
304 |
-
pprint(sd_model_params_dict)
|
305 |
-
|
306 |
-
# lcm
|
307 |
-
if lcm_model_name is not None:
|
308 |
-
lcm_model_params_dict_src = load_pyhon_obj(lcm_model_cfg_path, "MODEL_CFG")
|
309 |
-
print("lcm_model_params_dict_src")
|
310 |
-
lcm_lora_dct = lcm_model_params_dict_src[lcm_model_name]
|
311 |
-
else:
|
312 |
-
lcm_lora_dct = None
|
313 |
-
print("lcm: ", lcm_model_name, lcm_lora_dct)
|
314 |
-
|
315 |
-
|
316 |
-
# motion net parameters
|
317 |
-
if os.path.isdir(unet_model_cfg_path):
|
318 |
-
unet_model_path = unet_model_cfg_path
|
319 |
-
elif os.path.isfile(unet_model_cfg_path):
|
320 |
-
unet_model_params_dict_src = load_pyhon_obj(unet_model_cfg_path, "MODEL_CFG")
|
321 |
-
print("unet_model_params_dict_src", unet_model_params_dict_src.keys())
|
322 |
-
unet_model_path = unet_model_params_dict_src[unet_model_name]["unet"]
|
323 |
-
else:
|
324 |
-
raise ValueError(f"expect dir or file, but given {unet_model_cfg_path}")
|
325 |
-
print("unet: ", unet_model_name, unet_model_path)
|
326 |
-
|
327 |
-
|
328 |
-
# referencenet
|
329 |
-
if referencenet_model_name is not None:
|
330 |
-
if os.path.isdir(referencenet_model_cfg_path):
|
331 |
-
referencenet_model_path = referencenet_model_cfg_path
|
332 |
-
elif os.path.isfile(referencenet_model_cfg_path):
|
333 |
-
referencenet_model_params_dict_src = load_pyhon_obj(
|
334 |
-
referencenet_model_cfg_path, "MODEL_CFG"
|
335 |
-
)
|
336 |
-
print(
|
337 |
-
"referencenet_model_params_dict_src",
|
338 |
-
referencenet_model_params_dict_src.keys(),
|
339 |
-
)
|
340 |
-
referencenet_model_path = referencenet_model_params_dict_src[
|
341 |
-
referencenet_model_name
|
342 |
-
]["net"]
|
343 |
-
else:
|
344 |
-
raise ValueError(f"expect dir or file, but given {referencenet_model_cfg_path}")
|
345 |
-
else:
|
346 |
-
referencenet_model_path = None
|
347 |
-
print("referencenet: ", referencenet_model_name, referencenet_model_path)
|
348 |
-
|
349 |
-
|
350 |
-
# ip_adapter
|
351 |
-
if ip_adapter_model_name is not None:
|
352 |
-
ip_adapter_model_params_dict_src = load_pyhon_obj(
|
353 |
-
ip_adapter_model_cfg_path, "MODEL_CFG"
|
354 |
-
)
|
355 |
-
print("ip_adapter_model_params_dict_src", ip_adapter_model_params_dict_src.keys())
|
356 |
-
ip_adapter_model_params_dict = ip_adapter_model_params_dict_src[
|
357 |
-
ip_adapter_model_name
|
358 |
-
]
|
359 |
-
else:
|
360 |
-
ip_adapter_model_params_dict = None
|
361 |
-
print("ip_adapter: ", ip_adapter_model_name, ip_adapter_model_params_dict)
|
362 |
-
|
363 |
-
|
364 |
-
# facein
|
365 |
-
if facein_model_name is not None:
|
366 |
-
facein_model_params_dict_src = load_pyhon_obj(facein_model_cfg_path, "MODEL_CFG")
|
367 |
-
print("facein_model_params_dict_src", facein_model_params_dict_src.keys())
|
368 |
-
facein_model_params_dict = facein_model_params_dict_src[facein_model_name]
|
369 |
-
else:
|
370 |
-
facein_model_params_dict = None
|
371 |
-
print("facein: ", facein_model_name, facein_model_params_dict)
|
372 |
-
|
373 |
-
# ip_adapter_face
|
374 |
-
if ip_adapter_face_model_name is not None:
|
375 |
-
ip_adapter_face_model_params_dict_src = load_pyhon_obj(
|
376 |
-
ip_adapter_face_model_cfg_path, "MODEL_CFG"
|
377 |
-
)
|
378 |
-
print(
|
379 |
-
"ip_adapter_face_model_params_dict_src",
|
380 |
-
ip_adapter_face_model_params_dict_src.keys(),
|
381 |
-
)
|
382 |
-
ip_adapter_face_model_params_dict = ip_adapter_face_model_params_dict_src[
|
383 |
-
ip_adapter_face_model_name
|
384 |
-
]
|
385 |
-
else:
|
386 |
-
ip_adapter_face_model_params_dict = None
|
387 |
-
print(
|
388 |
-
"ip_adapter_face: ", ip_adapter_face_model_name, ip_adapter_face_model_params_dict
|
389 |
-
)
|
390 |
-
|
391 |
-
|
392 |
-
# negative_prompt
|
393 |
-
def get_negative_prompt(negative_prompt, cfg_path=None, n: int = 10):
|
394 |
-
name = negative_prompt[:n]
|
395 |
-
if cfg_path is not None and cfg_path not in ["None", "none"]:
|
396 |
-
dct = load_pyhon_obj(cfg_path, "Negative_Prompt_CFG")
|
397 |
-
negative_prompt = dct[negative_prompt]["prompt"]
|
398 |
-
|
399 |
-
return name, negative_prompt
|
400 |
-
|
401 |
-
|
402 |
-
negtive_prompt_length = 10
|
403 |
-
video_negative_prompt_name, video_negative_prompt = get_negative_prompt(
|
404 |
-
video_negative_prompt,
|
405 |
-
cfg_path=negprompt_cfg_path,
|
406 |
-
n=negtive_prompt_length,
|
407 |
-
)
|
408 |
-
negative_prompt_name, negative_prompt = get_negative_prompt(
|
409 |
-
negative_prompt,
|
410 |
-
cfg_path=negprompt_cfg_path,
|
411 |
-
n=negtive_prompt_length,
|
412 |
-
)
|
413 |
-
|
414 |
-
print("video_negprompt", video_negative_prompt_name, video_negative_prompt)
|
415 |
-
print("negprompt", negative_prompt_name, negative_prompt)
|
416 |
-
|
417 |
-
output_dir = args.output_dir
|
418 |
-
os.makedirs(output_dir, exist_ok=True)
|
419 |
-
|
420 |
-
|
421 |
-
# test_data_parameters
|
422 |
-
def load_yaml(path):
|
423 |
-
tasks = OmegaConf.to_container(
|
424 |
-
OmegaConf.load(path), structured_config_mode=SCMode.INSTANTIATE, resolve=True
|
425 |
-
)
|
426 |
-
return tasks
|
427 |
-
|
428 |
-
|
429 |
-
# if test_data_path.endswith(".yaml"):
|
430 |
-
# test_datas_src = load_yaml(test_data_path)
|
431 |
-
# elif test_data_path.endswith(".csv"):
|
432 |
-
# test_datas_src = generate_tasks_from_table(test_data_path)
|
433 |
-
# else:
|
434 |
-
# raise ValueError("expect yaml or csv, but given {}".format(test_data_path))
|
435 |
-
|
436 |
-
# test_datas = [
|
437 |
-
# test_data
|
438 |
-
# for test_data in test_datas_src
|
439 |
-
# if target_datas == "all" or test_data.get("name", None) in target_datas
|
440 |
-
# ]
|
441 |
-
|
442 |
-
# test_datas = fiss_tasks(test_datas)
|
443 |
-
# test_datas = generate_prompts(test_datas)
|
444 |
-
|
445 |
-
# n_test_datas = len(test_datas)
|
446 |
-
# if n_test_datas == 0:
|
447 |
-
# raise ValueError(
|
448 |
-
# "n_test_datas == 0, set target_datas=None or set atleast one of {}".format(
|
449 |
-
# " ".join(list(d.get("name", "None") for d in test_datas_src))
|
450 |
-
# )
|
451 |
-
# )
|
452 |
-
# print("n_test_datas", n_test_datas)
|
453 |
-
# # pprint(test_datas)
|
454 |
-
|
455 |
-
|
456 |
-
def read_image(path):
|
457 |
-
name = os.path.basename(path).split(".")[0]
|
458 |
-
image = read_image_as_5d(path)
|
459 |
-
return image, name
|
460 |
-
|
461 |
-
|
462 |
-
def read_image_lst(path):
|
463 |
-
images_names = [read_image(x) for x in path]
|
464 |
-
images, names = zip(*images_names)
|
465 |
-
images = np.concatenate(images, axis=2)
|
466 |
-
name = "_".join(names)
|
467 |
-
return images, name
|
468 |
-
|
469 |
-
|
470 |
-
def read_image_and_name(path):
|
471 |
-
if isinstance(path, str):
|
472 |
-
path = [path]
|
473 |
-
images, name = read_image_lst(path)
|
474 |
-
return images, name
|
475 |
-
|
476 |
-
|
477 |
-
if referencenet_model_name is not None and not use_v2v_predictor:
|
478 |
-
referencenet = load_referencenet_by_name(
|
479 |
-
model_name=referencenet_model_name,
|
480 |
-
# sd_model=sd_model_path,
|
481 |
-
# sd_model=os.path.join(PROJECT_DIR, "./checkpoints//Moore-AnimateAnyone/AnimateAnyone/reference_unet.pth",
|
482 |
-
sd_referencenet_model=referencenet_model_path,
|
483 |
-
cross_attention_dim=cross_attention_dim,
|
484 |
-
)
|
485 |
-
else:
|
486 |
-
referencenet = None
|
487 |
-
referencenet_model_name = "no"
|
488 |
-
|
489 |
-
if vision_clip_extractor_class_name is not None and not use_v2v_predictor:
|
490 |
-
vision_clip_extractor = load_vision_clip_encoder_by_name(
|
491 |
-
ip_image_encoder=vision_clip_model_path,
|
492 |
-
vision_clip_extractor_class_name=vision_clip_extractor_class_name,
|
493 |
-
)
|
494 |
-
logger.info(
|
495 |
-
f"vision_clip_extractor, name={vision_clip_extractor_class_name}, path={vision_clip_model_path}"
|
496 |
-
)
|
497 |
-
else:
|
498 |
-
vision_clip_extractor = None
|
499 |
-
logger.info(f"vision_clip_extractor, None")
|
500 |
-
|
501 |
-
if ip_adapter_model_name is not None and not use_v2v_predictor:
|
502 |
-
ip_adapter_image_proj = load_ip_adapter_image_proj_by_name(
|
503 |
-
model_name=ip_adapter_model_name,
|
504 |
-
ip_image_encoder=ip_adapter_model_params_dict.get(
|
505 |
-
"ip_image_encoder", vision_clip_model_path
|
506 |
-
),
|
507 |
-
ip_ckpt=ip_adapter_model_params_dict["ip_ckpt"],
|
508 |
-
cross_attention_dim=cross_attention_dim,
|
509 |
-
clip_embeddings_dim=ip_adapter_model_params_dict["clip_embeddings_dim"],
|
510 |
-
clip_extra_context_tokens=ip_adapter_model_params_dict[
|
511 |
-
"clip_extra_context_tokens"
|
512 |
-
],
|
513 |
-
ip_scale=ip_adapter_model_params_dict["ip_scale"],
|
514 |
-
device=device,
|
515 |
-
)
|
516 |
-
else:
|
517 |
-
ip_adapter_image_proj = None
|
518 |
-
ip_adapter_model_name = "no"
|
519 |
-
|
520 |
-
for model_name, sd_model_params in sd_model_params_dict.items():
|
521 |
-
lora_dict = sd_model_params.get("lora", None)
|
522 |
-
model_sex = sd_model_params.get("sex", None)
|
523 |
-
model_style = sd_model_params.get("style", None)
|
524 |
-
sd_model_path = sd_model_params["sd"]
|
525 |
-
test_model_vae_model_path = sd_model_params.get("vae", vae_model_path)
|
526 |
-
|
527 |
-
unet = (
|
528 |
-
load_unet_by_name(
|
529 |
-
model_name=unet_model_name,
|
530 |
-
sd_unet_model=unet_model_path,
|
531 |
-
sd_model=sd_model_path,
|
532 |
-
# sd_model=os.path.join(PROJECT_DIR, "./checkpoints//Moore-AnimateAnyone/AnimateAnyone/denoising_unet.pth",
|
533 |
-
cross_attention_dim=cross_attention_dim,
|
534 |
-
need_t2i_facein=facein_model_name is not None,
|
535 |
-
# facein 目前没参与训练,但在unet中定义了,载入相关参数会报错,所以用strict控制
|
536 |
-
strict=not (facein_model_name is not None),
|
537 |
-
need_t2i_ip_adapter_face=ip_adapter_face_model_name is not None,
|
538 |
-
)
|
539 |
-
if not use_v2v_predictor
|
540 |
-
else None
|
541 |
-
)
|
542 |
-
|
543 |
-
if facein_model_name is not None and not use_v2v_predictor:
|
544 |
-
(
|
545 |
-
face_emb_extractor,
|
546 |
-
facein_image_proj,
|
547 |
-
) = load_facein_extractor_and_proj_by_name(
|
548 |
-
model_name=facein_model_name,
|
549 |
-
ip_image_encoder=facein_model_params_dict["ip_image_encoder"],
|
550 |
-
ip_ckpt=facein_model_params_dict["ip_ckpt"],
|
551 |
-
cross_attention_dim=cross_attention_dim,
|
552 |
-
clip_embeddings_dim=facein_model_params_dict["clip_embeddings_dim"],
|
553 |
-
clip_extra_context_tokens=facein_model_params_dict[
|
554 |
-
"clip_extra_context_tokens"
|
555 |
-
],
|
556 |
-
ip_scale=facein_model_params_dict["ip_scale"],
|
557 |
-
device=device,
|
558 |
-
# facein目前没有参与unet中的训练,需要单独载入参数
|
559 |
-
unet=unet,
|
560 |
-
)
|
561 |
-
else:
|
562 |
-
face_emb_extractor = None
|
563 |
-
facein_image_proj = None
|
564 |
-
|
565 |
-
if ip_adapter_face_model_name is not None and not use_v2v_predictor:
|
566 |
-
(
|
567 |
-
ip_adapter_face_emb_extractor,
|
568 |
-
ip_adapter_face_image_proj,
|
569 |
-
) = load_ip_adapter_face_extractor_and_proj_by_name(
|
570 |
-
model_name=ip_adapter_face_model_name,
|
571 |
-
ip_image_encoder=ip_adapter_face_model_params_dict["ip_image_encoder"],
|
572 |
-
ip_ckpt=ip_adapter_face_model_params_dict["ip_ckpt"],
|
573 |
-
cross_attention_dim=cross_attention_dim,
|
574 |
-
clip_embeddings_dim=ip_adapter_face_model_params_dict[
|
575 |
-
"clip_embeddings_dim"
|
576 |
-
],
|
577 |
-
clip_extra_context_tokens=ip_adapter_face_model_params_dict[
|
578 |
-
"clip_extra_context_tokens"
|
579 |
-
],
|
580 |
-
ip_scale=ip_adapter_face_model_params_dict["ip_scale"],
|
581 |
-
device=device,
|
582 |
-
unet=unet, # ip_adapter_face 目前没有参与unet中的训练,需要单独载入参数
|
583 |
-
)
|
584 |
-
else:
|
585 |
-
ip_adapter_face_emb_extractor = None
|
586 |
-
ip_adapter_face_image_proj = None
|
587 |
-
|
588 |
-
print("test_model_vae_model_path", test_model_vae_model_path)
|
589 |
-
|
590 |
-
sd_predictor = (
|
591 |
-
DiffusersPipelinePredictor(
|
592 |
-
sd_model_path=sd_model_path,
|
593 |
-
unet=unet,
|
594 |
-
lora_dict=lora_dict,
|
595 |
-
lcm_lora_dct=lcm_lora_dct,
|
596 |
-
device=device,
|
597 |
-
dtype=torch_dtype,
|
598 |
-
negative_embedding=negative_embedding,
|
599 |
-
referencenet=referencenet,
|
600 |
-
ip_adapter_image_proj=ip_adapter_image_proj,
|
601 |
-
vision_clip_extractor=vision_clip_extractor,
|
602 |
-
facein_image_proj=facein_image_proj,
|
603 |
-
face_emb_extractor=face_emb_extractor,
|
604 |
-
vae_model=test_model_vae_model_path,
|
605 |
-
ip_adapter_face_emb_extractor=ip_adapter_face_emb_extractor,
|
606 |
-
ip_adapter_face_image_proj=ip_adapter_face_image_proj,
|
607 |
-
)
|
608 |
-
if not use_v2v_predictor
|
609 |
-
else video_sd_predictor
|
610 |
-
)
|
611 |
-
if use_v2v_predictor:
|
612 |
-
print(
|
613 |
-
"text2video use video_sd_predictor, sd_predictor type is ",
|
614 |
-
type(sd_predictor),
|
615 |
-
)
|
616 |
-
logger.debug(f"load sd_predictor"),
|
617 |
-
|
618 |
-
# TODO:这里修改为gradio
|
619 |
-
import cuid
|
620 |
-
|
621 |
-
|
622 |
-
def generate_cuid():
|
623 |
-
return cuid.cuid()
|
624 |
-
|
625 |
-
|
626 |
-
def online_t2v_inference(
|
627 |
-
prompt,
|
628 |
-
image_np,
|
629 |
-
seed,
|
630 |
-
fps,
|
631 |
-
w,
|
632 |
-
h,
|
633 |
-
video_len,
|
634 |
-
img_edge_ratio: float = 1.0,
|
635 |
-
progress=gr.Progress(track_tqdm=True),
|
636 |
-
):
|
637 |
-
progress(0, desc="Starting...")
|
638 |
-
# Save the uploaded image to a specified path
|
639 |
-
if not os.path.exists(CACHE_PATH):
|
640 |
-
os.makedirs(CACHE_PATH)
|
641 |
-
image_cuid = generate_cuid()
|
642 |
-
|
643 |
-
image_path = os.path.join(CACHE_PATH, f"{image_cuid}.jpg")
|
644 |
-
image = Image.fromarray(image_np)
|
645 |
-
image.save(image_path)
|
646 |
-
|
647 |
-
time_size = int(video_len)
|
648 |
-
test_data = {
|
649 |
-
"name": image_cuid,
|
650 |
-
"prompt": prompt,
|
651 |
-
# 'video_path': None,
|
652 |
-
"condition_images": image_path,
|
653 |
-
"refer_image": image_path,
|
654 |
-
"ipadapter_image": image_path,
|
655 |
-
"height": h,
|
656 |
-
"width": w,
|
657 |
-
"img_length_ratio": img_edge_ratio,
|
658 |
-
# 'style': 'anime',
|
659 |
-
# 'sex': 'female'
|
660 |
-
}
|
661 |
-
batch = []
|
662 |
-
texts = []
|
663 |
-
print("\n test_data", test_data, model_name)
|
664 |
-
test_data_name = test_data.get("name", test_data)
|
665 |
-
prompt = test_data["prompt"]
|
666 |
-
prompt = prefix_prompt + prompt + suffix_prompt
|
667 |
-
prompt_hash = get_signature_of_string(prompt, length=5)
|
668 |
-
test_data["prompt_hash"] = prompt_hash
|
669 |
-
test_data_height = test_data.get("height", height)
|
670 |
-
test_data_width = test_data.get("width", width)
|
671 |
-
test_data_condition_images_path = test_data.get("condition_images", None)
|
672 |
-
test_data_condition_images_index = test_data.get("condition_images_index", None)
|
673 |
-
test_data_redraw_condition_image = test_data.get(
|
674 |
-
"redraw_condition_image", redraw_condition_image
|
675 |
-
)
|
676 |
-
# read condition_image
|
677 |
-
if (
|
678 |
-
test_data_condition_images_path is not None
|
679 |
-
and use_condition_image
|
680 |
-
and (
|
681 |
-
isinstance(test_data_condition_images_path, list)
|
682 |
-
or (
|
683 |
-
isinstance(test_data_condition_images_path, str)
|
684 |
-
and is_image(test_data_condition_images_path)
|
685 |
-
)
|
686 |
-
)
|
687 |
-
):
|
688 |
-
(
|
689 |
-
test_data_condition_images,
|
690 |
-
test_data_condition_images_name,
|
691 |
-
) = read_image_and_name(test_data_condition_images_path)
|
692 |
-
condition_image_height = test_data_condition_images.shape[3]
|
693 |
-
condition_image_width = test_data_condition_images.shape[4]
|
694 |
-
logger.debug(
|
695 |
-
f"test_data_condition_images use {test_data_condition_images_path}"
|
696 |
-
)
|
697 |
-
else:
|
698 |
-
test_data_condition_images = None
|
699 |
-
test_data_condition_images_name = "no"
|
700 |
-
condition_image_height = None
|
701 |
-
condition_image_width = None
|
702 |
-
logger.debug(f"test_data_condition_images is None")
|
703 |
-
|
704 |
-
# 当没有指定生成视频的宽高时,使用输入条件的宽高,优先使用 condition_image,低优使用 video
|
705 |
-
if test_data_height in [None, -1]:
|
706 |
-
test_data_height = condition_image_height
|
707 |
-
|
708 |
-
if test_data_width in [None, -1]:
|
709 |
-
test_data_width = condition_image_width
|
710 |
-
|
711 |
-
test_data_img_length_ratio = float(
|
712 |
-
test_data.get("img_length_ratio", img_length_ratio)
|
713 |
-
)
|
714 |
-
# 为了和video2video保持对齐,使用64而不是8作为宽、高最小粒度
|
715 |
-
# test_data_height = int(test_data_height * test_data_img_length_ratio // 8 * 8)
|
716 |
-
# test_data_width = int(test_data_width * test_data_img_length_ratio // 8 * 8)
|
717 |
-
test_data_height = int(test_data_height * test_data_img_length_ratio // 64 * 64)
|
718 |
-
test_data_width = int(test_data_width * test_data_img_length_ratio // 64 * 64)
|
719 |
-
pprint(test_data)
|
720 |
-
print(f"test_data_height={test_data_height}")
|
721 |
-
print(f"test_data_width={test_data_width}")
|
722 |
-
# continue
|
723 |
-
test_data_style = test_data.get("style", None)
|
724 |
-
test_data_sex = test_data.get("sex", None)
|
725 |
-
# 如果使用|进行多参数任务设置时对应的字段是字符串类型,需要显式转换浮点数。
|
726 |
-
test_data_motion_speed = float(test_data.get("motion_speed", motion_speed))
|
727 |
-
test_data_w_ind_noise = float(test_data.get("w_ind_noise", w_ind_noise))
|
728 |
-
test_data_img_weight = float(test_data.get("img_weight", img_weight))
|
729 |
-
logger.debug(f"test_data_condition_images_path {test_data_condition_images_path}")
|
730 |
-
logger.debug(f"test_data_condition_images_index {test_data_condition_images_index}")
|
731 |
-
test_data_refer_image_path = test_data.get("refer_image", referencenet_image_path)
|
732 |
-
test_data_ipadapter_image_path = test_data.get(
|
733 |
-
"ipadapter_image", ipadapter_image_path
|
734 |
-
)
|
735 |
-
test_data_refer_face_image_path = test_data.get("face_image", face_image_path)
|
736 |
-
|
737 |
-
if negprompt_cfg_path is not None:
|
738 |
-
if "video_negative_prompt" in test_data:
|
739 |
-
(
|
740 |
-
test_data_video_negative_prompt_name,
|
741 |
-
test_data_video_negative_prompt,
|
742 |
-
) = get_negative_prompt(
|
743 |
-
test_data.get(
|
744 |
-
"video_negative_prompt",
|
745 |
-
),
|
746 |
-
cfg_path=negprompt_cfg_path,
|
747 |
-
n=negtive_prompt_length,
|
748 |
-
)
|
749 |
-
else:
|
750 |
-
test_data_video_negative_prompt_name = video_negative_prompt_name
|
751 |
-
test_data_video_negative_prompt = video_negative_prompt
|
752 |
-
if "negative_prompt" in test_data:
|
753 |
-
(
|
754 |
-
test_data_negative_prompt_name,
|
755 |
-
test_data_negative_prompt,
|
756 |
-
) = get_negative_prompt(
|
757 |
-
test_data.get(
|
758 |
-
"negative_prompt",
|
759 |
-
),
|
760 |
-
cfg_path=negprompt_cfg_path,
|
761 |
-
n=negtive_prompt_length,
|
762 |
-
)
|
763 |
-
else:
|
764 |
-
test_data_negative_prompt_name = negative_prompt_name
|
765 |
-
test_data_negative_prompt = negative_prompt
|
766 |
-
else:
|
767 |
-
test_data_video_negative_prompt = test_data.get(
|
768 |
-
"video_negative_prompt", video_negative_prompt
|
769 |
-
)
|
770 |
-
test_data_video_negative_prompt_name = test_data_video_negative_prompt[
|
771 |
-
:negtive_prompt_length
|
772 |
-
]
|
773 |
-
test_data_negative_prompt = test_data.get("negative_prompt", negative_prompt)
|
774 |
-
test_data_negative_prompt_name = test_data_negative_prompt[
|
775 |
-
:negtive_prompt_length
|
776 |
-
]
|
777 |
-
|
778 |
-
# 准备 test_data_refer_image
|
779 |
-
if referencenet is not None:
|
780 |
-
if test_data_refer_image_path is None:
|
781 |
-
test_data_refer_image = test_data_condition_images
|
782 |
-
test_data_refer_image_name = test_data_condition_images_name
|
783 |
-
logger.debug(f"test_data_refer_image use test_data_condition_images")
|
784 |
-
else:
|
785 |
-
test_data_refer_image, test_data_refer_image_name = read_image_and_name(
|
786 |
-
test_data_refer_image_path
|
787 |
-
)
|
788 |
-
logger.debug(f"test_data_refer_image use {test_data_refer_image_path}")
|
789 |
-
else:
|
790 |
-
test_data_refer_image = None
|
791 |
-
test_data_refer_image_name = "no"
|
792 |
-
logger.debug(f"test_data_refer_image is None")
|
793 |
-
|
794 |
-
# 准备 test_data_ipadapter_image
|
795 |
-
if vision_clip_extractor is not None:
|
796 |
-
if test_data_ipadapter_image_path is None:
|
797 |
-
test_data_ipadapter_image = test_data_condition_images
|
798 |
-
test_data_ipadapter_image_name = test_data_condition_images_name
|
799 |
-
|
800 |
-
logger.debug(f"test_data_ipadapter_image use test_data_condition_images")
|
801 |
-
else:
|
802 |
-
(
|
803 |
-
test_data_ipadapter_image,
|
804 |
-
test_data_ipadapter_image_name,
|
805 |
-
) = read_image_and_name(test_data_ipadapter_image_path)
|
806 |
-
logger.debug(
|
807 |
-
f"test_data_ipadapter_image use f{test_data_ipadapter_image_path}"
|
808 |
-
)
|
809 |
-
else:
|
810 |
-
test_data_ipadapter_image = None
|
811 |
-
test_data_ipadapter_image_name = "no"
|
812 |
-
logger.debug(f"test_data_ipadapter_image is None")
|
813 |
-
|
814 |
-
# 准备 test_data_refer_face_image
|
815 |
-
if facein_image_proj is not None or ip_adapter_face_image_proj is not None:
|
816 |
-
if test_data_refer_face_image_path is None:
|
817 |
-
test_data_refer_face_image = test_data_condition_images
|
818 |
-
test_data_refer_face_image_name = test_data_condition_images_name
|
819 |
-
|
820 |
-
logger.debug(f"test_data_refer_face_image use test_data_condition_images")
|
821 |
-
else:
|
822 |
-
(
|
823 |
-
test_data_refer_face_image,
|
824 |
-
test_data_refer_face_image_name,
|
825 |
-
) = read_image_and_name(test_data_refer_face_image_path)
|
826 |
-
logger.debug(
|
827 |
-
f"test_data_refer_face_image use f{test_data_refer_face_image_path}"
|
828 |
-
)
|
829 |
-
else:
|
830 |
-
test_data_refer_face_image = None
|
831 |
-
test_data_refer_face_image_name = "no"
|
832 |
-
logger.debug(f"test_data_refer_face_image is None")
|
833 |
-
|
834 |
-
# # 当模型的sex、style与test_data同时存在且不相等时,就跳过这个测试用例
|
835 |
-
# if (
|
836 |
-
# model_sex is not None
|
837 |
-
# and test_data_sex is not None
|
838 |
-
# and model_sex != test_data_sex
|
839 |
-
# ) or (
|
840 |
-
# model_style is not None
|
841 |
-
# and test_data_style is not None
|
842 |
-
# and model_style != test_data_style
|
843 |
-
# ):
|
844 |
-
# print("model doesnt match test_data")
|
845 |
-
# print("model name: ", model_name)
|
846 |
-
# print("test_data: ", test_data)
|
847 |
-
# continue
|
848 |
-
if add_static_video_prompt:
|
849 |
-
test_data_video_negative_prompt = "static video, {}".format(
|
850 |
-
test_data_video_negative_prompt
|
851 |
-
)
|
852 |
-
for i_num in range(n_repeat):
|
853 |
-
test_data_seed = random.randint(0, 1e8) if seed in [None, -1] else seed
|
854 |
-
cpu_generator, gpu_generator = set_all_seed(int(test_data_seed))
|
855 |
-
save_file_name = (
|
856 |
-
f"m={model_name}_rm={referencenet_model_name}_case={test_data_name}"
|
857 |
-
f"_w={test_data_width}_h={test_data_height}_t={time_size}_nb={n_batch}"
|
858 |
-
f"_s={test_data_seed}_p={prompt_hash}"
|
859 |
-
f"_w={test_data_img_weight}"
|
860 |
-
f"_ms={test_data_motion_speed}"
|
861 |
-
f"_s={strength}_g={video_guidance_scale}"
|
862 |
-
f"_c-i={test_data_condition_images_name[:5]}_r-c={test_data_redraw_condition_image}"
|
863 |
-
f"_w={test_data_w_ind_noise}_{test_data_video_negative_prompt_name}"
|
864 |
-
f"_r={test_data_refer_image_name[:3]}_ip={test_data_refer_image_name[:3]}_f={test_data_refer_face_image_name[:3]}"
|
865 |
-
)
|
866 |
-
|
867 |
-
save_file_name = clean_str_for_save(save_file_name)
|
868 |
-
output_path = os.path.join(
|
869 |
-
output_dir,
|
870 |
-
f"{save_file_name}.{save_filetype}",
|
871 |
-
)
|
872 |
-
if os.path.exists(output_path) and not overwrite:
|
873 |
-
print("existed", output_path)
|
874 |
-
continue
|
875 |
-
|
876 |
-
print("output_path", output_path)
|
877 |
-
out_videos = sd_predictor.run_pipe_text2video(
|
878 |
-
video_length=time_size,
|
879 |
-
prompt=prompt,
|
880 |
-
width=test_data_width,
|
881 |
-
height=test_data_height,
|
882 |
-
generator=gpu_generator,
|
883 |
-
noise_type=noise_type,
|
884 |
-
negative_prompt=test_data_negative_prompt,
|
885 |
-
video_negative_prompt=test_data_video_negative_prompt,
|
886 |
-
max_batch_num=n_batch,
|
887 |
-
strength=strength,
|
888 |
-
need_img_based_video_noise=need_img_based_video_noise,
|
889 |
-
video_num_inference_steps=video_num_inference_steps,
|
890 |
-
condition_images=test_data_condition_images,
|
891 |
-
fix_condition_images=fix_condition_images,
|
892 |
-
video_guidance_scale=video_guidance_scale,
|
893 |
-
guidance_scale=guidance_scale,
|
894 |
-
num_inference_steps=num_inference_steps,
|
895 |
-
redraw_condition_image=test_data_redraw_condition_image,
|
896 |
-
img_weight=test_data_img_weight,
|
897 |
-
w_ind_noise=test_data_w_ind_noise,
|
898 |
-
n_vision_condition=n_vision_condition,
|
899 |
-
motion_speed=test_data_motion_speed,
|
900 |
-
need_hist_match=need_hist_match,
|
901 |
-
video_guidance_scale_end=video_guidance_scale_end,
|
902 |
-
video_guidance_scale_method=video_guidance_scale_method,
|
903 |
-
vision_condition_latent_index=test_data_condition_images_index,
|
904 |
-
refer_image=test_data_refer_image,
|
905 |
-
fixed_refer_image=fixed_refer_image,
|
906 |
-
redraw_condition_image_with_referencenet=redraw_condition_image_with_referencenet,
|
907 |
-
ip_adapter_image=test_data_ipadapter_image,
|
908 |
-
refer_face_image=test_data_refer_face_image,
|
909 |
-
fixed_refer_face_image=fixed_refer_face_image,
|
910 |
-
facein_scale=facein_scale,
|
911 |
-
redraw_condition_image_with_facein=redraw_condition_image_with_facein,
|
912 |
-
ip_adapter_face_scale=ip_adapter_face_scale,
|
913 |
-
redraw_condition_image_with_ip_adapter_face=redraw_condition_image_with_ip_adapter_face,
|
914 |
-
fixed_ip_adapter_image=fixed_ip_adapter_image,
|
915 |
-
ip_adapter_scale=ip_adapter_scale,
|
916 |
-
redraw_condition_image_with_ipdapter=redraw_condition_image_with_ipdapter,
|
917 |
-
prompt_only_use_image_prompt=prompt_only_use_image_prompt,
|
918 |
-
# need_redraw=need_redraw,
|
919 |
-
# use_video_redraw=use_video_redraw,
|
920 |
-
# serial_denoise parameter start
|
921 |
-
record_mid_video_noises=record_mid_video_noises,
|
922 |
-
record_mid_video_latents=record_mid_video_latents,
|
923 |
-
video_overlap=video_overlap,
|
924 |
-
# serial_denoise parameter end
|
925 |
-
# parallel_denoise parameter start
|
926 |
-
context_schedule=context_schedule,
|
927 |
-
context_frames=context_frames,
|
928 |
-
context_stride=context_stride,
|
929 |
-
context_overlap=context_overlap,
|
930 |
-
context_batch_size=context_batch_size,
|
931 |
-
interpolation_factor=interpolation_factor,
|
932 |
-
# parallel_denoise parameter end
|
933 |
-
)
|
934 |
-
out = np.concatenate([out_videos], axis=0)
|
935 |
-
texts = ["out"]
|
936 |
-
save_videos_grid_with_opencv(
|
937 |
-
out,
|
938 |
-
output_path,
|
939 |
-
texts=texts,
|
940 |
-
fps=fps,
|
941 |
-
tensor_order="b c t h w",
|
942 |
-
n_cols=n_cols,
|
943 |
-
write_info=args.write_info,
|
944 |
-
save_filetype=save_filetype,
|
945 |
-
save_images=save_images,
|
946 |
-
)
|
947 |
-
print("Save to", output_path)
|
948 |
-
print("\n" * 2)
|
949 |
-
return output_path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
gradio_video2video.py
DELETED
@@ -1,1039 +0,0 @@
|
|
1 |
-
import argparse
|
2 |
-
import copy
|
3 |
-
import os
|
4 |
-
from pathlib import Path
|
5 |
-
import logging
|
6 |
-
from collections import OrderedDict
|
7 |
-
from pprint import pprint
|
8 |
-
import random
|
9 |
-
import gradio as gr
|
10 |
-
|
11 |
-
import numpy as np
|
12 |
-
from omegaconf import OmegaConf, SCMode
|
13 |
-
import torch
|
14 |
-
from einops import rearrange, repeat
|
15 |
-
import cv2
|
16 |
-
from PIL import Image
|
17 |
-
from diffusers.models.autoencoder_kl import AutoencoderKL
|
18 |
-
|
19 |
-
from mmcm.utils.load_util import load_pyhon_obj
|
20 |
-
from mmcm.utils.seed_util import set_all_seed
|
21 |
-
from mmcm.utils.signature import get_signature_of_string
|
22 |
-
from mmcm.utils.task_util import fiss_tasks, generate_tasks as generate_tasks_from_table
|
23 |
-
from mmcm.vision.utils.data_type_util import is_video, is_image, read_image_as_5d
|
24 |
-
from mmcm.utils.str_util import clean_str_for_save
|
25 |
-
from mmcm.vision.data.video_dataset import DecordVideoDataset
|
26 |
-
from musev.auto_prompt.util import generate_prompts
|
27 |
-
|
28 |
-
from musev.models.controlnet import PoseGuider
|
29 |
-
from musev.models.facein_loader import load_facein_extractor_and_proj_by_name
|
30 |
-
from musev.models.referencenet_loader import load_referencenet_by_name
|
31 |
-
from musev.models.ip_adapter_loader import (
|
32 |
-
load_ip_adapter_vision_clip_encoder_by_name,
|
33 |
-
load_vision_clip_encoder_by_name,
|
34 |
-
load_ip_adapter_image_proj_by_name,
|
35 |
-
)
|
36 |
-
from musev.models.ip_adapter_face_loader import (
|
37 |
-
load_ip_adapter_face_extractor_and_proj_by_name,
|
38 |
-
)
|
39 |
-
from musev.pipelines.pipeline_controlnet_predictor import (
|
40 |
-
DiffusersPipelinePredictor,
|
41 |
-
)
|
42 |
-
from musev.models.referencenet import ReferenceNet2D
|
43 |
-
from musev.models.unet_loader import load_unet_by_name
|
44 |
-
from musev.utils.util import save_videos_grid_with_opencv
|
45 |
-
from musev import logger
|
46 |
-
|
47 |
-
logger.setLevel("INFO")
|
48 |
-
|
49 |
-
file_dir = os.path.dirname(__file__)
|
50 |
-
PROJECT_DIR = os.path.join(os.path.dirname(__file__), "./")
|
51 |
-
DATA_DIR = os.path.join(PROJECT_DIR, "data")
|
52 |
-
CACHE_PATH = "./t2v_input_image"
|
53 |
-
|
54 |
-
|
55 |
-
# TODO:use group to group arguments
|
56 |
-
args_dict = {
|
57 |
-
"add_static_video_prompt": False,
|
58 |
-
"context_batch_size": 1,
|
59 |
-
"context_frames": 12,
|
60 |
-
"context_overlap": 4,
|
61 |
-
"context_schedule": "uniform_v2",
|
62 |
-
"context_stride": 1,
|
63 |
-
"controlnet_conditioning_scale": 1.0,
|
64 |
-
"controlnet_name": "dwpose_body_hand",
|
65 |
-
"cross_attention_dim": 768,
|
66 |
-
"enable_zero_snr": False,
|
67 |
-
"end_to_end": True,
|
68 |
-
"face_image_path": None,
|
69 |
-
"facein_model_cfg_path": os.path.join(PROJECT_DIR, "./configs/model/facein.py"),
|
70 |
-
"facein_model_name": None,
|
71 |
-
"facein_scale": 1.0,
|
72 |
-
"fix_condition_images": False,
|
73 |
-
"fixed_ip_adapter_image": True,
|
74 |
-
"fixed_refer_face_image": True,
|
75 |
-
"fixed_refer_image": True,
|
76 |
-
"fps": 4,
|
77 |
-
"guidance_scale": 7.5,
|
78 |
-
"height": None,
|
79 |
-
"img_length_ratio": 1.0,
|
80 |
-
"img_weight": 0.001,
|
81 |
-
"interpolation_factor": 1,
|
82 |
-
"ip_adapter_face_model_cfg_path": os.path.join(
|
83 |
-
PROJECT_DIR, "./configs/model/ip_adapter.py"
|
84 |
-
),
|
85 |
-
"ip_adapter_face_model_name": None,
|
86 |
-
"ip_adapter_face_scale": 1.0,
|
87 |
-
"ip_adapter_model_cfg_path": os.path.join(
|
88 |
-
PROJECT_DIR, "./configs/model/ip_adapter.py"
|
89 |
-
),
|
90 |
-
"ip_adapter_model_name": "musev_referencenet",
|
91 |
-
"ip_adapter_scale": 1.0,
|
92 |
-
"ipadapter_image_path": None,
|
93 |
-
"lcm_model_cfg_path": os.path.join(PROJECT_DIR, "./configs/model/lcm_model.py"),
|
94 |
-
"lcm_model_name": None,
|
95 |
-
"log_level": "INFO",
|
96 |
-
"motion_speed": 8.0,
|
97 |
-
"n_batch": 1,
|
98 |
-
"n_cols": 3,
|
99 |
-
"n_repeat": 1,
|
100 |
-
"n_vision_condition": 1,
|
101 |
-
"need_hist_match": False,
|
102 |
-
"need_img_based_video_noise": True,
|
103 |
-
"need_return_condition": False,
|
104 |
-
"need_return_videos": False,
|
105 |
-
"need_video2video": False,
|
106 |
-
"negative_prompt": "V2",
|
107 |
-
"negprompt_cfg_path": os.path.join(
|
108 |
-
PROJECT_DIR, "./configs/model/negative_prompt.py"
|
109 |
-
),
|
110 |
-
"noise_type": "video_fusion",
|
111 |
-
"num_inference_steps": 30,
|
112 |
-
"output_dir": "./results/",
|
113 |
-
"overwrite": False,
|
114 |
-
"pose_guider_model_path": None,
|
115 |
-
"prompt_only_use_image_prompt": False,
|
116 |
-
"record_mid_video_latents": False,
|
117 |
-
"record_mid_video_noises": False,
|
118 |
-
"redraw_condition_image": False,
|
119 |
-
"redraw_condition_image_with_facein": True,
|
120 |
-
"redraw_condition_image_with_ip_adapter_face": True,
|
121 |
-
"redraw_condition_image_with_ipdapter": True,
|
122 |
-
"redraw_condition_image_with_referencenet": True,
|
123 |
-
"referencenet_image_path": None,
|
124 |
-
"referencenet_model_cfg_path": os.path.join(
|
125 |
-
PROJECT_DIR, "./configs/model/referencenet.py"
|
126 |
-
),
|
127 |
-
"referencenet_model_name": "musev_referencenet",
|
128 |
-
"sample_rate": 1,
|
129 |
-
"save_filetype": "mp4",
|
130 |
-
"save_images": False,
|
131 |
-
"sd_model_cfg_path": os.path.join(PROJECT_DIR, "./configs/model/T2I_all_model.py"),
|
132 |
-
"sd_model_name": "majicmixRealv6Fp16",
|
133 |
-
"seed": None,
|
134 |
-
"strength": 0.8,
|
135 |
-
"target_datas": "boy_dance2",
|
136 |
-
"test_data_path": os.path.join(
|
137 |
-
PROJECT_DIR, "./configs/infer/testcase_video_famous.yaml"
|
138 |
-
),
|
139 |
-
"time_size": 24,
|
140 |
-
"unet_model_cfg_path": os.path.join(PROJECT_DIR, "./configs/model/motion_model.py"),
|
141 |
-
"unet_model_name": "musev_referencenet",
|
142 |
-
"use_condition_image": True,
|
143 |
-
"use_video_redraw": True,
|
144 |
-
"vae_model_path": os.path.join(PROJECT_DIR, "./checkpoints/vae/sd-vae-ft-mse"),
|
145 |
-
"video_guidance_scale": 3.5,
|
146 |
-
"video_guidance_scale_end": None,
|
147 |
-
"video_guidance_scale_method": "linear",
|
148 |
-
"video_has_condition": True,
|
149 |
-
"video_is_middle": False,
|
150 |
-
"video_negative_prompt": "V2",
|
151 |
-
"video_num_inference_steps": 10,
|
152 |
-
"video_overlap": 1,
|
153 |
-
"video_strength": 1.0,
|
154 |
-
"vision_clip_extractor_class_name": "ImageClipVisionFeatureExtractor",
|
155 |
-
"vision_clip_model_path": os.path.join(
|
156 |
-
PROJECT_DIR, "./checkpoints/IP-Adapter/models/image_encoder"
|
157 |
-
),
|
158 |
-
"w_ind_noise": 0.5,
|
159 |
-
"which2video": "video_middle",
|
160 |
-
"width": None,
|
161 |
-
"write_info": False,
|
162 |
-
}
|
163 |
-
args = argparse.Namespace(**args_dict)
|
164 |
-
print("args")
|
165 |
-
pprint(args.__dict__)
|
166 |
-
print("\n")
|
167 |
-
|
168 |
-
logger.setLevel(args.log_level)
|
169 |
-
overwrite = args.overwrite
|
170 |
-
cross_attention_dim = args.cross_attention_dim
|
171 |
-
time_size = args.time_size # 一次视频生成的帧数
|
172 |
-
n_batch = args.n_batch # 按照time_size的尺寸 生成n_batch次,总帧数 = time_size * n_batch
|
173 |
-
fps = args.fps
|
174 |
-
fix_condition_images = args.fix_condition_images
|
175 |
-
use_condition_image = args.use_condition_image # 当 test_data 中有图像时,作为初始图像
|
176 |
-
redraw_condition_image = args.redraw_condition_image # 用于视频生成的首帧是否使用重绘后的
|
177 |
-
need_img_based_video_noise = (
|
178 |
-
args.need_img_based_video_noise
|
179 |
-
) # 视频加噪过程中是否使用首帧 condition_images
|
180 |
-
img_weight = args.img_weight
|
181 |
-
height = args.height # 如果测试数据中没有单独指定宽高,则默认这里
|
182 |
-
width = args.width # 如果测试数据中没有单独指定宽高,则默认这里
|
183 |
-
img_length_ratio = args.img_length_ratio # 如果测试数据中没有单独指定图像宽高比resize比例,则默认这里
|
184 |
-
n_cols = args.n_cols
|
185 |
-
noise_type = args.noise_type
|
186 |
-
strength = args.strength # 首帧重绘程度参数
|
187 |
-
video_guidance_scale = args.video_guidance_scale # 视频 condition与 uncond的权重参数
|
188 |
-
guidance_scale = args.guidance_scale # 时序条件帧 condition与uncond的权重参数
|
189 |
-
video_num_inference_steps = args.video_num_inference_steps # 视频迭代次数
|
190 |
-
num_inference_steps = args.num_inference_steps # 时序条件帧 重绘参数
|
191 |
-
seed = args.seed
|
192 |
-
save_filetype = args.save_filetype
|
193 |
-
save_images = args.save_images
|
194 |
-
sd_model_cfg_path = args.sd_model_cfg_path
|
195 |
-
sd_model_name = (
|
196 |
-
args.sd_model_name if args.sd_model_name == "all" else args.sd_model_name.split(",")
|
197 |
-
)
|
198 |
-
unet_model_cfg_path = args.unet_model_cfg_path
|
199 |
-
unet_model_name = args.unet_model_name
|
200 |
-
test_data_path = args.test_data_path
|
201 |
-
target_datas = (
|
202 |
-
args.target_datas if args.target_datas == "all" else args.target_datas.split(",")
|
203 |
-
)
|
204 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
205 |
-
torch_dtype = torch.float16
|
206 |
-
controlnet_name = args.controlnet_name
|
207 |
-
controlnet_name_str = controlnet_name
|
208 |
-
if controlnet_name is not None:
|
209 |
-
controlnet_name = controlnet_name.split(",")
|
210 |
-
if len(controlnet_name) == 1:
|
211 |
-
controlnet_name = controlnet_name[0]
|
212 |
-
|
213 |
-
video_strength = args.video_strength # 视频重绘程度参数
|
214 |
-
sample_rate = args.sample_rate
|
215 |
-
controlnet_conditioning_scale = args.controlnet_conditioning_scale
|
216 |
-
|
217 |
-
end_to_end = args.end_to_end # 是否首尾相连生成长视频
|
218 |
-
control_guidance_start = 0.0
|
219 |
-
control_guidance_end = 0.5
|
220 |
-
control_guidance_end = 1.0
|
221 |
-
negprompt_cfg_path = args.negprompt_cfg_path
|
222 |
-
video_negative_prompt = args.video_negative_prompt
|
223 |
-
negative_prompt = args.negative_prompt
|
224 |
-
motion_speed = args.motion_speed
|
225 |
-
need_hist_match = args.need_hist_match
|
226 |
-
video_guidance_scale_end = args.video_guidance_scale_end
|
227 |
-
video_guidance_scale_method = args.video_guidance_scale_method
|
228 |
-
add_static_video_prompt = args.add_static_video_prompt
|
229 |
-
n_vision_condition = args.n_vision_condition
|
230 |
-
lcm_model_cfg_path = args.lcm_model_cfg_path
|
231 |
-
lcm_model_name = args.lcm_model_name
|
232 |
-
referencenet_model_cfg_path = args.referencenet_model_cfg_path
|
233 |
-
referencenet_model_name = args.referencenet_model_name
|
234 |
-
ip_adapter_model_cfg_path = args.ip_adapter_model_cfg_path
|
235 |
-
ip_adapter_model_name = args.ip_adapter_model_name
|
236 |
-
vision_clip_model_path = args.vision_clip_model_path
|
237 |
-
vision_clip_extractor_class_name = args.vision_clip_extractor_class_name
|
238 |
-
facein_model_cfg_path = args.facein_model_cfg_path
|
239 |
-
facein_model_name = args.facein_model_name
|
240 |
-
ip_adapter_face_model_cfg_path = args.ip_adapter_face_model_cfg_path
|
241 |
-
ip_adapter_face_model_name = args.ip_adapter_face_model_name
|
242 |
-
|
243 |
-
fixed_refer_image = args.fixed_refer_image
|
244 |
-
fixed_ip_adapter_image = args.fixed_ip_adapter_image
|
245 |
-
fixed_refer_face_image = args.fixed_refer_face_image
|
246 |
-
redraw_condition_image_with_referencenet = args.redraw_condition_image_with_referencenet
|
247 |
-
redraw_condition_image_with_ipdapter = args.redraw_condition_image_with_ipdapter
|
248 |
-
redraw_condition_image_with_facein = args.redraw_condition_image_with_facein
|
249 |
-
redraw_condition_image_with_ip_adapter_face = (
|
250 |
-
args.redraw_condition_image_with_ip_adapter_face
|
251 |
-
)
|
252 |
-
w_ind_noise = args.w_ind_noise
|
253 |
-
ip_adapter_scale = args.ip_adapter_scale
|
254 |
-
facein_scale = args.facein_scale
|
255 |
-
ip_adapter_face_scale = args.ip_adapter_face_scale
|
256 |
-
face_image_path = args.face_image_path
|
257 |
-
ipadapter_image_path = args.ipadapter_image_path
|
258 |
-
referencenet_image_path = args.referencenet_image_path
|
259 |
-
vae_model_path = args.vae_model_path
|
260 |
-
prompt_only_use_image_prompt = args.prompt_only_use_image_prompt
|
261 |
-
pose_guider_model_path = args.pose_guider_model_path
|
262 |
-
need_video2video = args.need_video2video
|
263 |
-
# serial_denoise parameter start
|
264 |
-
record_mid_video_noises = args.record_mid_video_noises
|
265 |
-
record_mid_video_latents = args.record_mid_video_latents
|
266 |
-
video_overlap = args.video_overlap
|
267 |
-
# serial_denoise parameter end
|
268 |
-
# parallel_denoise parameter start
|
269 |
-
context_schedule = args.context_schedule
|
270 |
-
context_frames = args.context_frames
|
271 |
-
context_stride = args.context_stride
|
272 |
-
context_overlap = args.context_overlap
|
273 |
-
context_batch_size = args.context_batch_size
|
274 |
-
interpolation_factor = args.interpolation_factor
|
275 |
-
n_repeat = args.n_repeat
|
276 |
-
|
277 |
-
video_is_middle = args.video_is_middle
|
278 |
-
video_has_condition = args.video_has_condition
|
279 |
-
need_return_videos = args.need_return_videos
|
280 |
-
need_return_condition = args.need_return_condition
|
281 |
-
# parallel_denoise parameter end
|
282 |
-
need_controlnet = controlnet_name is not None
|
283 |
-
|
284 |
-
which2video = args.which2video
|
285 |
-
if which2video == "video":
|
286 |
-
which2video_name = "v2v"
|
287 |
-
elif which2video == "video_middle":
|
288 |
-
which2video_name = "vm2v"
|
289 |
-
else:
|
290 |
-
raise ValueError(
|
291 |
-
"which2video only support video, video_middle, but given {which2video}"
|
292 |
-
)
|
293 |
-
b = 1
|
294 |
-
negative_embedding = [
|
295 |
-
[os.path.join(PROJECT_DIR, "./checkpoints/embedding/badhandv4.pt"), "badhandv4"],
|
296 |
-
[
|
297 |
-
os.path.join(PROJECT_DIR, "./checkpoints/embedding/ng_deepnegative_v1_75t.pt"),
|
298 |
-
"ng_deepnegative_v1_75t",
|
299 |
-
],
|
300 |
-
[
|
301 |
-
os.path.join(PROJECT_DIR, "./checkpoints/embedding/EasyNegativeV2.safetensors"),
|
302 |
-
"EasyNegativeV2",
|
303 |
-
],
|
304 |
-
[
|
305 |
-
os.path.join(PROJECT_DIR, "./checkpoints/embedding/bad_prompt_version2-neg.pt"),
|
306 |
-
"bad_prompt_version2-neg",
|
307 |
-
],
|
308 |
-
]
|
309 |
-
prefix_prompt = ""
|
310 |
-
suffix_prompt = ", beautiful, masterpiece, best quality"
|
311 |
-
suffix_prompt = ""
|
312 |
-
|
313 |
-
if sd_model_name != "None":
|
314 |
-
# 使用 cfg_path 里的sd_model_path
|
315 |
-
sd_model_params_dict_src = load_pyhon_obj(sd_model_cfg_path, "MODEL_CFG")
|
316 |
-
sd_model_params_dict = {
|
317 |
-
k: v
|
318 |
-
for k, v in sd_model_params_dict_src.items()
|
319 |
-
if sd_model_name == "all" or k in sd_model_name
|
320 |
-
}
|
321 |
-
else:
|
322 |
-
# 使用命令行给的sd_model_path, 需要单独设置 sd_model_name 为None,
|
323 |
-
sd_model_name = os.path.basename(sd_model_cfg_path).split(".")[0]
|
324 |
-
sd_model_params_dict = {sd_model_name: {"sd": sd_model_cfg_path}}
|
325 |
-
sd_model_params_dict_src = sd_model_params_dict
|
326 |
-
if len(sd_model_params_dict) == 0:
|
327 |
-
raise ValueError(
|
328 |
-
"has not target model, please set one of {}".format(
|
329 |
-
" ".join(list(sd_model_params_dict_src.keys()))
|
330 |
-
)
|
331 |
-
)
|
332 |
-
print("running model, T2I SD")
|
333 |
-
pprint(sd_model_params_dict)
|
334 |
-
|
335 |
-
# lcm
|
336 |
-
if lcm_model_name is not None:
|
337 |
-
lcm_model_params_dict_src = load_pyhon_obj(lcm_model_cfg_path, "MODEL_CFG")
|
338 |
-
print("lcm_model_params_dict_src")
|
339 |
-
lcm_lora_dct = lcm_model_params_dict_src[lcm_model_name]
|
340 |
-
else:
|
341 |
-
lcm_lora_dct = None
|
342 |
-
print("lcm: ", lcm_model_name, lcm_lora_dct)
|
343 |
-
|
344 |
-
|
345 |
-
# motion net parameters
|
346 |
-
if os.path.isdir(unet_model_cfg_path):
|
347 |
-
unet_model_path = unet_model_cfg_path
|
348 |
-
elif os.path.isfile(unet_model_cfg_path):
|
349 |
-
unet_model_params_dict_src = load_pyhon_obj(unet_model_cfg_path, "MODEL_CFG")
|
350 |
-
print("unet_model_params_dict_src", unet_model_params_dict_src.keys())
|
351 |
-
unet_model_path = unet_model_params_dict_src[unet_model_name]["unet"]
|
352 |
-
else:
|
353 |
-
raise ValueError(f"expect dir or file, but given {unet_model_cfg_path}")
|
354 |
-
print("unet: ", unet_model_name, unet_model_path)
|
355 |
-
|
356 |
-
|
357 |
-
# referencenet
|
358 |
-
if referencenet_model_name is not None:
|
359 |
-
if os.path.isdir(referencenet_model_cfg_path):
|
360 |
-
referencenet_model_path = referencenet_model_cfg_path
|
361 |
-
elif os.path.isfile(referencenet_model_cfg_path):
|
362 |
-
referencenet_model_params_dict_src = load_pyhon_obj(
|
363 |
-
referencenet_model_cfg_path, "MODEL_CFG"
|
364 |
-
)
|
365 |
-
print(
|
366 |
-
"referencenet_model_params_dict_src",
|
367 |
-
referencenet_model_params_dict_src.keys(),
|
368 |
-
)
|
369 |
-
referencenet_model_path = referencenet_model_params_dict_src[
|
370 |
-
referencenet_model_name
|
371 |
-
]["net"]
|
372 |
-
else:
|
373 |
-
raise ValueError(f"expect dir or file, but given {referencenet_model_cfg_path}")
|
374 |
-
else:
|
375 |
-
referencenet_model_path = None
|
376 |
-
print("referencenet: ", referencenet_model_name, referencenet_model_path)
|
377 |
-
|
378 |
-
|
379 |
-
# ip_adapter
|
380 |
-
if ip_adapter_model_name is not None:
|
381 |
-
ip_adapter_model_params_dict_src = load_pyhon_obj(
|
382 |
-
ip_adapter_model_cfg_path, "MODEL_CFG"
|
383 |
-
)
|
384 |
-
print("ip_adapter_model_params_dict_src", ip_adapter_model_params_dict_src.keys())
|
385 |
-
ip_adapter_model_params_dict = ip_adapter_model_params_dict_src[
|
386 |
-
ip_adapter_model_name
|
387 |
-
]
|
388 |
-
else:
|
389 |
-
ip_adapter_model_params_dict = None
|
390 |
-
print("ip_adapter: ", ip_adapter_model_name, ip_adapter_model_params_dict)
|
391 |
-
|
392 |
-
|
393 |
-
# facein
|
394 |
-
if facein_model_name is not None:
|
395 |
-
facein_model_params_dict_src = load_pyhon_obj(facein_model_cfg_path, "MODEL_CFG")
|
396 |
-
print("facein_model_params_dict_src", facein_model_params_dict_src.keys())
|
397 |
-
facein_model_params_dict = facein_model_params_dict_src[facein_model_name]
|
398 |
-
else:
|
399 |
-
facein_model_params_dict = None
|
400 |
-
print("facein: ", facein_model_name, facein_model_params_dict)
|
401 |
-
|
402 |
-
# ip_adapter_face
|
403 |
-
if ip_adapter_face_model_name is not None:
|
404 |
-
ip_adapter_face_model_params_dict_src = load_pyhon_obj(
|
405 |
-
ip_adapter_face_model_cfg_path, "MODEL_CFG"
|
406 |
-
)
|
407 |
-
print(
|
408 |
-
"ip_adapter_face_model_params_dict_src",
|
409 |
-
ip_adapter_face_model_params_dict_src.keys(),
|
410 |
-
)
|
411 |
-
ip_adapter_face_model_params_dict = ip_adapter_face_model_params_dict_src[
|
412 |
-
ip_adapter_face_model_name
|
413 |
-
]
|
414 |
-
else:
|
415 |
-
ip_adapter_face_model_params_dict = None
|
416 |
-
print(
|
417 |
-
"ip_adapter_face: ", ip_adapter_face_model_name, ip_adapter_face_model_params_dict
|
418 |
-
)
|
419 |
-
|
420 |
-
|
421 |
-
# negative_prompt
|
422 |
-
def get_negative_prompt(negative_prompt, cfg_path=None, n: int = 10):
|
423 |
-
name = negative_prompt[:n]
|
424 |
-
if cfg_path is not None and cfg_path not in ["None", "none"]:
|
425 |
-
dct = load_pyhon_obj(cfg_path, "Negative_Prompt_CFG")
|
426 |
-
negative_prompt = dct[negative_prompt]["prompt"]
|
427 |
-
|
428 |
-
return name, negative_prompt
|
429 |
-
|
430 |
-
|
431 |
-
negtive_prompt_length = 10
|
432 |
-
video_negative_prompt_name, video_negative_prompt = get_negative_prompt(
|
433 |
-
video_negative_prompt,
|
434 |
-
cfg_path=negprompt_cfg_path,
|
435 |
-
n=negtive_prompt_length,
|
436 |
-
)
|
437 |
-
negative_prompt_name, negative_prompt = get_negative_prompt(
|
438 |
-
negative_prompt,
|
439 |
-
cfg_path=negprompt_cfg_path,
|
440 |
-
n=negtive_prompt_length,
|
441 |
-
)
|
442 |
-
|
443 |
-
print("video_negprompt", video_negative_prompt_name, video_negative_prompt)
|
444 |
-
print("negprompt", negative_prompt_name, negative_prompt)
|
445 |
-
|
446 |
-
output_dir = args.output_dir
|
447 |
-
os.makedirs(output_dir, exist_ok=True)
|
448 |
-
|
449 |
-
|
450 |
-
# test_data_parameters
|
451 |
-
def load_yaml(path):
|
452 |
-
tasks = OmegaConf.to_container(
|
453 |
-
OmegaConf.load(path), structured_config_mode=SCMode.INSTANTIATE, resolve=True
|
454 |
-
)
|
455 |
-
return tasks
|
456 |
-
|
457 |
-
|
458 |
-
# if test_data_path.endswith(".yaml"):
|
459 |
-
# test_datas_src = load_yaml(test_data_path)
|
460 |
-
# elif test_data_path.endswith(".csv"):
|
461 |
-
# test_datas_src = generate_tasks_from_table(test_data_path)
|
462 |
-
# else:
|
463 |
-
# raise ValueError("expect yaml or csv, but given {}".format(test_data_path))
|
464 |
-
|
465 |
-
# test_datas = [
|
466 |
-
# test_data
|
467 |
-
# for test_data in test_datas_src
|
468 |
-
# if target_datas == "all" or test_data.get("name", None) in target_datas
|
469 |
-
# ]
|
470 |
-
|
471 |
-
# test_datas = fiss_tasks(test_datas)
|
472 |
-
# test_datas = generate_prompts(test_datas)
|
473 |
-
|
474 |
-
# n_test_datas = len(test_datas)
|
475 |
-
# if n_test_datas == 0:
|
476 |
-
# raise ValueError(
|
477 |
-
# "n_test_datas == 0, set target_datas=None or set atleast one of {}".format(
|
478 |
-
# " ".join(list(d.get("name", "None") for d in test_datas_src))
|
479 |
-
# )
|
480 |
-
# )
|
481 |
-
# print("n_test_datas", n_test_datas)
|
482 |
-
# # pprint(test_datas)
|
483 |
-
|
484 |
-
|
485 |
-
def read_image(path):
|
486 |
-
name = os.path.basename(path).split(".")[0]
|
487 |
-
image = read_image_as_5d(path)
|
488 |
-
return image, name
|
489 |
-
|
490 |
-
|
491 |
-
def read_image_lst(path):
|
492 |
-
images_names = [read_image(x) for x in path]
|
493 |
-
images, names = zip(*images_names)
|
494 |
-
images = np.concatenate(images, axis=2)
|
495 |
-
name = "_".join(names)
|
496 |
-
return images, name
|
497 |
-
|
498 |
-
|
499 |
-
def read_image_and_name(path):
|
500 |
-
if isinstance(path, str):
|
501 |
-
path = [path]
|
502 |
-
images, name = read_image_lst(path)
|
503 |
-
return images, name
|
504 |
-
|
505 |
-
|
506 |
-
if referencenet_model_name is not None:
|
507 |
-
referencenet = load_referencenet_by_name(
|
508 |
-
model_name=referencenet_model_name,
|
509 |
-
# sd_model=sd_model_path,
|
510 |
-
# sd_model="../../checkpoints/Moore-AnimateAnyone/AnimateAnyone/reference_unet.pth",
|
511 |
-
sd_referencenet_model=referencenet_model_path,
|
512 |
-
cross_attention_dim=cross_attention_dim,
|
513 |
-
)
|
514 |
-
else:
|
515 |
-
referencenet = None
|
516 |
-
referencenet_model_name = "no"
|
517 |
-
|
518 |
-
if vision_clip_extractor_class_name is not None:
|
519 |
-
vision_clip_extractor = load_vision_clip_encoder_by_name(
|
520 |
-
ip_image_encoder=vision_clip_model_path,
|
521 |
-
vision_clip_extractor_class_name=vision_clip_extractor_class_name,
|
522 |
-
)
|
523 |
-
logger.info(
|
524 |
-
f"vision_clip_extractor, name={vision_clip_extractor_class_name}, path={vision_clip_model_path}"
|
525 |
-
)
|
526 |
-
else:
|
527 |
-
vision_clip_extractor = None
|
528 |
-
logger.info(f"vision_clip_extractor, None")
|
529 |
-
|
530 |
-
if ip_adapter_model_name is not None:
|
531 |
-
ip_adapter_image_proj = load_ip_adapter_image_proj_by_name(
|
532 |
-
model_name=ip_adapter_model_name,
|
533 |
-
ip_image_encoder=ip_adapter_model_params_dict.get(
|
534 |
-
"ip_image_encoder", vision_clip_model_path
|
535 |
-
),
|
536 |
-
ip_ckpt=ip_adapter_model_params_dict["ip_ckpt"],
|
537 |
-
cross_attention_dim=cross_attention_dim,
|
538 |
-
clip_embeddings_dim=ip_adapter_model_params_dict["clip_embeddings_dim"],
|
539 |
-
clip_extra_context_tokens=ip_adapter_model_params_dict[
|
540 |
-
"clip_extra_context_tokens"
|
541 |
-
],
|
542 |
-
ip_scale=ip_adapter_model_params_dict["ip_scale"],
|
543 |
-
device=device,
|
544 |
-
)
|
545 |
-
else:
|
546 |
-
ip_adapter_image_proj = None
|
547 |
-
ip_adapter_model_name = "no"
|
548 |
-
|
549 |
-
if pose_guider_model_path is not None:
|
550 |
-
logger.info(f"PoseGuider ={pose_guider_model_path}")
|
551 |
-
pose_guider = PoseGuider.from_pretrained(
|
552 |
-
pose_guider_model_path,
|
553 |
-
conditioning_embedding_channels=320,
|
554 |
-
block_out_channels=(16, 32, 96, 256),
|
555 |
-
)
|
556 |
-
else:
|
557 |
-
pose_guider = None
|
558 |
-
|
559 |
-
for model_name, sd_model_params in sd_model_params_dict.items():
|
560 |
-
lora_dict = sd_model_params.get("lora", None)
|
561 |
-
model_sex = sd_model_params.get("sex", None)
|
562 |
-
model_style = sd_model_params.get("style", None)
|
563 |
-
sd_model_path = sd_model_params["sd"]
|
564 |
-
test_model_vae_model_path = sd_model_params.get("vae", vae_model_path)
|
565 |
-
|
566 |
-
unet = load_unet_by_name(
|
567 |
-
model_name=unet_model_name,
|
568 |
-
sd_unet_model=unet_model_path,
|
569 |
-
sd_model=sd_model_path,
|
570 |
-
# sd_model="../../checkpoints/Moore-AnimateAnyone/AnimateAnyone/denoising_unet.pth",
|
571 |
-
cross_attention_dim=cross_attention_dim,
|
572 |
-
need_t2i_facein=facein_model_name is not None,
|
573 |
-
# facein 目前没参与训练,但在unet中定义了,载入相关参数会报错,所以用strict控制
|
574 |
-
strict=not (facein_model_name is not None),
|
575 |
-
need_t2i_ip_adapter_face=ip_adapter_face_model_name is not None,
|
576 |
-
)
|
577 |
-
|
578 |
-
if facein_model_name is not None:
|
579 |
-
(
|
580 |
-
face_emb_extractor,
|
581 |
-
facein_image_proj,
|
582 |
-
) = load_facein_extractor_and_proj_by_name(
|
583 |
-
model_name=facein_model_name,
|
584 |
-
ip_image_encoder=facein_model_params_dict["ip_image_encoder"],
|
585 |
-
ip_ckpt=facein_model_params_dict["ip_ckpt"],
|
586 |
-
cross_attention_dim=cross_attention_dim,
|
587 |
-
clip_embeddings_dim=facein_model_params_dict["clip_embeddings_dim"],
|
588 |
-
clip_extra_context_tokens=facein_model_params_dict[
|
589 |
-
"clip_extra_context_tokens"
|
590 |
-
],
|
591 |
-
ip_scale=facein_model_params_dict["ip_scale"],
|
592 |
-
device=device,
|
593 |
-
# facein目前没有参与unet中的训练,需要单独载入参数
|
594 |
-
unet=unet,
|
595 |
-
)
|
596 |
-
else:
|
597 |
-
face_emb_extractor = None
|
598 |
-
facein_image_proj = None
|
599 |
-
|
600 |
-
if ip_adapter_face_model_name is not None:
|
601 |
-
(
|
602 |
-
ip_adapter_face_emb_extractor,
|
603 |
-
ip_adapter_face_image_proj,
|
604 |
-
) = load_ip_adapter_face_extractor_and_proj_by_name(
|
605 |
-
model_name=ip_adapter_face_model_name,
|
606 |
-
ip_image_encoder=ip_adapter_face_model_params_dict["ip_image_encoder"],
|
607 |
-
ip_ckpt=ip_adapter_face_model_params_dict["ip_ckpt"],
|
608 |
-
cross_attention_dim=cross_attention_dim,
|
609 |
-
clip_embeddings_dim=ip_adapter_face_model_params_dict[
|
610 |
-
"clip_embeddings_dim"
|
611 |
-
],
|
612 |
-
clip_extra_context_tokens=ip_adapter_face_model_params_dict[
|
613 |
-
"clip_extra_context_tokens"
|
614 |
-
],
|
615 |
-
ip_scale=ip_adapter_face_model_params_dict["ip_scale"],
|
616 |
-
device=device,
|
617 |
-
unet=unet, # ip_adapter_face 目前没有参与unet中的训练,需要单独载入参数
|
618 |
-
)
|
619 |
-
else:
|
620 |
-
ip_adapter_face_emb_extractor = None
|
621 |
-
ip_adapter_face_image_proj = None
|
622 |
-
|
623 |
-
print("test_model_vae_model_path", test_model_vae_model_path)
|
624 |
-
|
625 |
-
sd_predictor = DiffusersPipelinePredictor(
|
626 |
-
sd_model_path=sd_model_path,
|
627 |
-
unet=unet,
|
628 |
-
lora_dict=lora_dict,
|
629 |
-
lcm_lora_dct=lcm_lora_dct,
|
630 |
-
device=device,
|
631 |
-
dtype=torch_dtype,
|
632 |
-
negative_embedding=negative_embedding,
|
633 |
-
referencenet=referencenet,
|
634 |
-
ip_adapter_image_proj=ip_adapter_image_proj,
|
635 |
-
vision_clip_extractor=vision_clip_extractor,
|
636 |
-
facein_image_proj=facein_image_proj,
|
637 |
-
face_emb_extractor=face_emb_extractor,
|
638 |
-
vae_model=test_model_vae_model_path,
|
639 |
-
ip_adapter_face_emb_extractor=ip_adapter_face_emb_extractor,
|
640 |
-
ip_adapter_face_image_proj=ip_adapter_face_image_proj,
|
641 |
-
pose_guider=pose_guider,
|
642 |
-
controlnet_name=controlnet_name,
|
643 |
-
# TODO: 一些过期参数,待去掉
|
644 |
-
include_body=True,
|
645 |
-
include_face=False,
|
646 |
-
include_hand=True,
|
647 |
-
enable_zero_snr=args.enable_zero_snr,
|
648 |
-
)
|
649 |
-
logger.debug(f"load referencenet"),
|
650 |
-
|
651 |
-
# TODO:这里修改为gradio
|
652 |
-
import cuid
|
653 |
-
|
654 |
-
|
655 |
-
def generate_cuid():
|
656 |
-
return cuid.cuid()
|
657 |
-
|
658 |
-
|
659 |
-
def online_v2v_inference(
|
660 |
-
prompt,
|
661 |
-
image_np,
|
662 |
-
video,
|
663 |
-
processor,
|
664 |
-
seed,
|
665 |
-
fps,
|
666 |
-
w,
|
667 |
-
h,
|
668 |
-
video_length,
|
669 |
-
img_edge_ratio: float = 1.0,
|
670 |
-
progress=gr.Progress(track_tqdm=True),
|
671 |
-
):
|
672 |
-
progress(0, desc="Starting...")
|
673 |
-
# Save the uploaded image to a specified path
|
674 |
-
if not os.path.exists(CACHE_PATH):
|
675 |
-
os.makedirs(CACHE_PATH)
|
676 |
-
image_cuid = generate_cuid()
|
677 |
-
import pdb
|
678 |
-
|
679 |
-
image_path = os.path.join(CACHE_PATH, f"{image_cuid}.jpg")
|
680 |
-
image = Image.fromarray(image_np)
|
681 |
-
image.save(image_path)
|
682 |
-
time_size = int(video_length)
|
683 |
-
test_data = {
|
684 |
-
"name": image_cuid,
|
685 |
-
"prompt": prompt,
|
686 |
-
"video_path": video,
|
687 |
-
"condition_images": image_path,
|
688 |
-
"refer_image": image_path,
|
689 |
-
"ipadapter_image": image_path,
|
690 |
-
"height": h,
|
691 |
-
"width": w,
|
692 |
-
"img_length_ratio": img_edge_ratio,
|
693 |
-
# 'style': 'anime',
|
694 |
-
# 'sex': 'female'
|
695 |
-
}
|
696 |
-
batch = []
|
697 |
-
texts = []
|
698 |
-
video_path = test_data.get("video_path")
|
699 |
-
video_reader = DecordVideoDataset(
|
700 |
-
video_path,
|
701 |
-
time_size=int(video_length),
|
702 |
-
step=time_size,
|
703 |
-
sample_rate=sample_rate,
|
704 |
-
device="cpu",
|
705 |
-
data_type="rgb",
|
706 |
-
channels_order="c t h w",
|
707 |
-
drop_last=True,
|
708 |
-
)
|
709 |
-
video_height = video_reader.height
|
710 |
-
video_width = video_reader.width
|
711 |
-
|
712 |
-
print("\n i_test_data", test_data, model_name)
|
713 |
-
test_data_name = test_data.get("name", test_data)
|
714 |
-
prompt = test_data["prompt"]
|
715 |
-
prompt = prefix_prompt + prompt + suffix_prompt
|
716 |
-
prompt_hash = get_signature_of_string(prompt, length=5)
|
717 |
-
test_data["prompt_hash"] = prompt_hash
|
718 |
-
test_data_height = test_data.get("height", height)
|
719 |
-
test_data_width = test_data.get("width", width)
|
720 |
-
test_data_condition_images_path = test_data.get("condition_images", None)
|
721 |
-
test_data_condition_images_index = test_data.get("condition_images_index", None)
|
722 |
-
test_data_redraw_condition_image = test_data.get(
|
723 |
-
"redraw_condition_image", redraw_condition_image
|
724 |
-
)
|
725 |
-
# read condition_image
|
726 |
-
if (
|
727 |
-
test_data_condition_images_path is not None
|
728 |
-
and use_condition_image
|
729 |
-
and (
|
730 |
-
isinstance(test_data_condition_images_path, list)
|
731 |
-
or (
|
732 |
-
isinstance(test_data_condition_images_path, str)
|
733 |
-
and is_image(test_data_condition_images_path)
|
734 |
-
)
|
735 |
-
)
|
736 |
-
):
|
737 |
-
(
|
738 |
-
test_data_condition_images,
|
739 |
-
test_data_condition_images_name,
|
740 |
-
) = read_image_and_name(test_data_condition_images_path)
|
741 |
-
condition_image_height = test_data_condition_images.shape[3]
|
742 |
-
condition_image_width = test_data_condition_images.shape[4]
|
743 |
-
logger.debug(
|
744 |
-
f"test_data_condition_images use {test_data_condition_images_path}"
|
745 |
-
)
|
746 |
-
else:
|
747 |
-
test_data_condition_images = None
|
748 |
-
test_data_condition_images_name = "no"
|
749 |
-
condition_image_height = None
|
750 |
-
condition_image_width = None
|
751 |
-
logger.debug(f"test_data_condition_images is None")
|
752 |
-
|
753 |
-
# 当没有指定生成视频的宽高时,使用输入条件的宽高,优先使用 condition_image,低优使用 video
|
754 |
-
if test_data_height in [None, -1]:
|
755 |
-
test_data_height = condition_image_height
|
756 |
-
|
757 |
-
if test_data_width in [None, -1]:
|
758 |
-
test_data_width = condition_image_width
|
759 |
-
|
760 |
-
test_data_img_length_ratio = float(
|
761 |
-
test_data.get("img_length_ratio", img_length_ratio)
|
762 |
-
)
|
763 |
-
|
764 |
-
test_data_height = int(test_data_height * test_data_img_length_ratio // 64 * 64)
|
765 |
-
test_data_width = int(test_data_width * test_data_img_length_ratio // 64 * 64)
|
766 |
-
pprint(test_data)
|
767 |
-
print(f"test_data_height={test_data_height}")
|
768 |
-
print(f"test_data_width={test_data_width}")
|
769 |
-
# continue
|
770 |
-
test_data_style = test_data.get("style", None)
|
771 |
-
test_data_sex = test_data.get("sex", None)
|
772 |
-
# 如果使用|进行多参数任务设置时对应的字段是字符串类型,需要显式转换浮点数。
|
773 |
-
test_data_motion_speed = float(test_data.get("motion_speed", motion_speed))
|
774 |
-
test_data_w_ind_noise = float(test_data.get("w_ind_noise", w_ind_noise))
|
775 |
-
test_data_img_weight = float(test_data.get("img_weight", img_weight))
|
776 |
-
logger.debug(f"test_data_condition_images_path {test_data_condition_images_path}")
|
777 |
-
logger.debug(f"test_data_condition_images_index {test_data_condition_images_index}")
|
778 |
-
test_data_refer_image_path = test_data.get("refer_image", referencenet_image_path)
|
779 |
-
test_data_ipadapter_image_path = test_data.get(
|
780 |
-
"ipadapter_image", ipadapter_image_path
|
781 |
-
)
|
782 |
-
test_data_refer_face_image_path = test_data.get("face_image", face_image_path)
|
783 |
-
test_data_video_is_middle = test_data.get("video_is_middle", video_is_middle)
|
784 |
-
test_data_video_has_condition = test_data.get(
|
785 |
-
"video_has_condition", video_has_condition
|
786 |
-
)
|
787 |
-
|
788 |
-
controlnet_processor_params = {
|
789 |
-
"detect_resolution": min(test_data_height, test_data_width),
|
790 |
-
"image_resolution": min(test_data_height, test_data_width),
|
791 |
-
}
|
792 |
-
if negprompt_cfg_path is not None:
|
793 |
-
if "video_negative_prompt" in test_data:
|
794 |
-
(
|
795 |
-
test_data_video_negative_prompt_name,
|
796 |
-
test_data_video_negative_prompt,
|
797 |
-
) = get_negative_prompt(
|
798 |
-
test_data.get(
|
799 |
-
"video_negative_prompt",
|
800 |
-
),
|
801 |
-
cfg_path=negprompt_cfg_path,
|
802 |
-
n=negtive_prompt_length,
|
803 |
-
)
|
804 |
-
else:
|
805 |
-
test_data_video_negative_prompt_name = video_negative_prompt_name
|
806 |
-
test_data_video_negative_prompt = video_negative_prompt
|
807 |
-
if "negative_prompt" in test_data:
|
808 |
-
(
|
809 |
-
test_data_negative_prompt_name,
|
810 |
-
test_data_negative_prompt,
|
811 |
-
) = get_negative_prompt(
|
812 |
-
test_data.get(
|
813 |
-
"negative_prompt",
|
814 |
-
),
|
815 |
-
cfg_path=negprompt_cfg_path,
|
816 |
-
n=negtive_prompt_length,
|
817 |
-
)
|
818 |
-
else:
|
819 |
-
test_data_negative_prompt_name = negative_prompt_name
|
820 |
-
test_data_negative_prompt = negative_prompt
|
821 |
-
else:
|
822 |
-
test_data_video_negative_prompt = test_data.get(
|
823 |
-
"video_negative_prompt", video_negative_prompt
|
824 |
-
)
|
825 |
-
test_data_video_negative_prompt_name = test_data_video_negative_prompt[
|
826 |
-
:negtive_prompt_length
|
827 |
-
]
|
828 |
-
test_data_negative_prompt = test_data.get("negative_prompt", negative_prompt)
|
829 |
-
test_data_negative_prompt_name = test_data_negative_prompt[
|
830 |
-
:negtive_prompt_length
|
831 |
-
]
|
832 |
-
|
833 |
-
# 准备 test_data_refer_image
|
834 |
-
if referencenet is not None:
|
835 |
-
if test_data_refer_image_path is None:
|
836 |
-
test_data_refer_image = test_data_condition_images
|
837 |
-
test_data_refer_image_name = test_data_condition_images_name
|
838 |
-
logger.debug(f"test_data_refer_image use test_data_condition_images")
|
839 |
-
else:
|
840 |
-
test_data_refer_image, test_data_refer_image_name = read_image_and_name(
|
841 |
-
test_data_refer_image_path
|
842 |
-
)
|
843 |
-
logger.debug(f"test_data_refer_image use {test_data_refer_image_path}")
|
844 |
-
else:
|
845 |
-
test_data_refer_image = None
|
846 |
-
test_data_refer_image_name = "no"
|
847 |
-
logger.debug(f"test_data_refer_image is None")
|
848 |
-
|
849 |
-
# 准备 test_data_ipadapter_image
|
850 |
-
if vision_clip_extractor is not None:
|
851 |
-
if test_data_ipadapter_image_path is None:
|
852 |
-
test_data_ipadapter_image = test_data_condition_images
|
853 |
-
test_data_ipadapter_image_name = test_data_condition_images_name
|
854 |
-
|
855 |
-
logger.debug(f"test_data_ipadapter_image use test_data_condition_images")
|
856 |
-
else:
|
857 |
-
(
|
858 |
-
test_data_ipadapter_image,
|
859 |
-
test_data_ipadapter_image_name,
|
860 |
-
) = read_image_and_name(test_data_ipadapter_image_path)
|
861 |
-
logger.debug(
|
862 |
-
f"test_data_ipadapter_image use f{test_data_ipadapter_image_path}"
|
863 |
-
)
|
864 |
-
else:
|
865 |
-
test_data_ipadapter_image = None
|
866 |
-
test_data_ipadapter_image_name = "no"
|
867 |
-
logger.debug(f"test_data_ipadapter_image is None")
|
868 |
-
|
869 |
-
# 准备 test_data_refer_face_image
|
870 |
-
if facein_image_proj is not None or ip_adapter_face_image_proj is not None:
|
871 |
-
if test_data_refer_face_image_path is None:
|
872 |
-
test_data_refer_face_image = test_data_condition_images
|
873 |
-
test_data_refer_face_image_name = test_data_condition_images_name
|
874 |
-
|
875 |
-
logger.debug(f"test_data_refer_face_image use test_data_condition_images")
|
876 |
-
else:
|
877 |
-
(
|
878 |
-
test_data_refer_face_image,
|
879 |
-
test_data_refer_face_image_name,
|
880 |
-
) = read_image_and_name(test_data_refer_face_image_path)
|
881 |
-
logger.debug(
|
882 |
-
f"test_data_refer_face_image use f{test_data_refer_face_image_path}"
|
883 |
-
)
|
884 |
-
else:
|
885 |
-
test_data_refer_face_image = None
|
886 |
-
test_data_refer_face_image_name = "no"
|
887 |
-
logger.debug(f"test_data_refer_face_image is None")
|
888 |
-
|
889 |
-
# # 当模型的sex、style与test_data同时存在且不相等时,就跳过这个测试用例
|
890 |
-
# if (
|
891 |
-
# model_sex is not None
|
892 |
-
# and test_data_sex is not None
|
893 |
-
# and model_sex != test_data_sex
|
894 |
-
# ) or (
|
895 |
-
# model_style is not None
|
896 |
-
# and test_data_style is not None
|
897 |
-
# and model_style != test_data_style
|
898 |
-
# ):
|
899 |
-
# print("model doesnt match test_data")
|
900 |
-
# print("model name: ", model_name)
|
901 |
-
# print("test_data: ", test_data)
|
902 |
-
# continue
|
903 |
-
# video
|
904 |
-
filename = os.path.basename(video_path).split(".")[0]
|
905 |
-
for i_num in range(n_repeat):
|
906 |
-
test_data_seed = random.randint(0, 1e8) if seed in [None, -1] else seed
|
907 |
-
cpu_generator, gpu_generator = set_all_seed(int(test_data_seed))
|
908 |
-
|
909 |
-
save_file_name = (
|
910 |
-
f"{which2video_name}_m={model_name}_rm={referencenet_model_name}_c={test_data_name}"
|
911 |
-
f"_w={test_data_width}_h={test_data_height}_t={time_size}_n={n_batch}"
|
912 |
-
f"_vn={video_num_inference_steps}"
|
913 |
-
f"_w={test_data_img_weight}_w={test_data_w_ind_noise}"
|
914 |
-
f"_s={test_data_seed}_n={controlnet_name_str}"
|
915 |
-
f"_s={strength}_g={guidance_scale}_vs={video_strength}_vg={video_guidance_scale}"
|
916 |
-
f"_p={prompt_hash}_{test_data_video_negative_prompt_name[:10]}"
|
917 |
-
f"_r={test_data_refer_image_name[:3]}_ip={test_data_refer_image_name[:3]}_f={test_data_refer_face_image_name[:3]}"
|
918 |
-
)
|
919 |
-
save_file_name = clean_str_for_save(save_file_name)
|
920 |
-
output_path = os.path.join(
|
921 |
-
output_dir,
|
922 |
-
f"{save_file_name}.{save_filetype}",
|
923 |
-
)
|
924 |
-
if os.path.exists(output_path) and not overwrite:
|
925 |
-
print("existed", output_path)
|
926 |
-
continue
|
927 |
-
|
928 |
-
if which2video in ["video", "video_middle"]:
|
929 |
-
need_video2video = False
|
930 |
-
if which2video == "video":
|
931 |
-
need_video2video = True
|
932 |
-
|
933 |
-
(
|
934 |
-
out_videos,
|
935 |
-
out_condition,
|
936 |
-
videos,
|
937 |
-
) = sd_predictor.run_pipe_video2video(
|
938 |
-
video=video_path,
|
939 |
-
time_size=time_size,
|
940 |
-
step=time_size,
|
941 |
-
sample_rate=sample_rate,
|
942 |
-
need_return_videos=need_return_videos,
|
943 |
-
need_return_condition=need_return_condition,
|
944 |
-
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
945 |
-
control_guidance_start=control_guidance_start,
|
946 |
-
control_guidance_end=control_guidance_end,
|
947 |
-
end_to_end=end_to_end,
|
948 |
-
need_video2video=need_video2video,
|
949 |
-
video_strength=video_strength,
|
950 |
-
prompt=prompt,
|
951 |
-
width=test_data_width,
|
952 |
-
height=test_data_height,
|
953 |
-
generator=gpu_generator,
|
954 |
-
noise_type=noise_type,
|
955 |
-
negative_prompt=test_data_negative_prompt,
|
956 |
-
video_negative_prompt=test_data_video_negative_prompt,
|
957 |
-
max_batch_num=n_batch,
|
958 |
-
strength=strength,
|
959 |
-
need_img_based_video_noise=need_img_based_video_noise,
|
960 |
-
video_num_inference_steps=video_num_inference_steps,
|
961 |
-
condition_images=test_data_condition_images,
|
962 |
-
fix_condition_images=fix_condition_images,
|
963 |
-
video_guidance_scale=video_guidance_scale,
|
964 |
-
guidance_scale=guidance_scale,
|
965 |
-
num_inference_steps=num_inference_steps,
|
966 |
-
redraw_condition_image=test_data_redraw_condition_image,
|
967 |
-
img_weight=test_data_img_weight,
|
968 |
-
w_ind_noise=test_data_w_ind_noise,
|
969 |
-
n_vision_condition=n_vision_condition,
|
970 |
-
motion_speed=test_data_motion_speed,
|
971 |
-
need_hist_match=need_hist_match,
|
972 |
-
video_guidance_scale_end=video_guidance_scale_end,
|
973 |
-
video_guidance_scale_method=video_guidance_scale_method,
|
974 |
-
vision_condition_latent_index=test_data_condition_images_index,
|
975 |
-
refer_image=test_data_refer_image,
|
976 |
-
fixed_refer_image=fixed_refer_image,
|
977 |
-
redraw_condition_image_with_referencenet=redraw_condition_image_with_referencenet,
|
978 |
-
ip_adapter_image=test_data_ipadapter_image,
|
979 |
-
refer_face_image=test_data_refer_face_image,
|
980 |
-
fixed_refer_face_image=fixed_refer_face_image,
|
981 |
-
facein_scale=facein_scale,
|
982 |
-
redraw_condition_image_with_facein=redraw_condition_image_with_facein,
|
983 |
-
ip_adapter_face_scale=ip_adapter_face_scale,
|
984 |
-
redraw_condition_image_with_ip_adapter_face=redraw_condition_image_with_ip_adapter_face,
|
985 |
-
fixed_ip_adapter_image=fixed_ip_adapter_image,
|
986 |
-
ip_adapter_scale=ip_adapter_scale,
|
987 |
-
redraw_condition_image_with_ipdapter=redraw_condition_image_with_ipdapter,
|
988 |
-
prompt_only_use_image_prompt=prompt_only_use_image_prompt,
|
989 |
-
controlnet_processor_params=controlnet_processor_params,
|
990 |
-
# serial_denoise parameter start
|
991 |
-
record_mid_video_noises=record_mid_video_noises,
|
992 |
-
record_mid_video_latents=record_mid_video_latents,
|
993 |
-
video_overlap=video_overlap,
|
994 |
-
# serial_denoise parameter end
|
995 |
-
# parallel_denoise parameter start
|
996 |
-
context_schedule=context_schedule,
|
997 |
-
context_frames=context_frames,
|
998 |
-
context_stride=context_stride,
|
999 |
-
context_overlap=context_overlap,
|
1000 |
-
context_batch_size=context_batch_size,
|
1001 |
-
interpolation_factor=interpolation_factor,
|
1002 |
-
# parallel_denoise parameter end
|
1003 |
-
video_is_middle=test_data_video_is_middle,
|
1004 |
-
video_has_condition=test_data_video_has_condition,
|
1005 |
-
)
|
1006 |
-
else:
|
1007 |
-
raise ValueError(
|
1008 |
-
f"only support video, videomiddle2video, but given {which2video_name}"
|
1009 |
-
)
|
1010 |
-
print("out_videos.shape", out_videos.shape)
|
1011 |
-
batch = [out_videos]
|
1012 |
-
texts = ["out"]
|
1013 |
-
if videos is not None:
|
1014 |
-
print("videos.shape", videos.shape)
|
1015 |
-
batch.insert(0, videos / 255.0)
|
1016 |
-
texts.insert(0, "videos")
|
1017 |
-
if need_controlnet and out_condition is not None:
|
1018 |
-
if not isinstance(out_condition, list):
|
1019 |
-
print("out_condition", out_condition.shape)
|
1020 |
-
batch.append(out_condition / 255.0)
|
1021 |
-
texts.append(controlnet_name)
|
1022 |
-
else:
|
1023 |
-
batch.extend([x / 255.0 for x in out_condition])
|
1024 |
-
texts.extend(controlnet_name)
|
1025 |
-
out = np.concatenate(batch, axis=0)
|
1026 |
-
save_videos_grid_with_opencv(
|
1027 |
-
out,
|
1028 |
-
output_path,
|
1029 |
-
texts=texts,
|
1030 |
-
fps=fps,
|
1031 |
-
tensor_order="b c t h w",
|
1032 |
-
n_cols=n_cols,
|
1033 |
-
write_info=args.write_info,
|
1034 |
-
save_filetype=save_filetype,
|
1035 |
-
save_images=save_images,
|
1036 |
-
)
|
1037 |
-
print("Save to", output_path)
|
1038 |
-
print("\n" * 2)
|
1039 |
-
return output_path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|