Spaces:
Runtime error
Runtime error
space init
Browse files- .gitattributes +1 -0
- README.md +1 -1
- app_gradio_space.py +424 -0
- data/demo/cyber_girl.png +0 -0
- data/demo/video1.mp4 +3 -0
- data/images/seaside4.jpeg +0 -0
- data/images/yongen.jpeg +0 -0
- gradio_text2video.py +949 -0
- gradio_video2video.py +1039 -0
- requirements.txt +1 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
*mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -5,7 +5,7 @@ colorFrom: red
|
|
5 |
colorTo: blue
|
6 |
sdk: gradio
|
7 |
sdk_version: 4.26.0
|
8 |
-
app_file:
|
9 |
pinned: false
|
10 |
license: creativeml-openrail-m
|
11 |
---
|
|
|
5 |
colorTo: blue
|
6 |
sdk: gradio
|
7 |
sdk_version: 4.26.0
|
8 |
+
app_file: app_gradio_space.py
|
9 |
pinned: false
|
10 |
license: creativeml-openrail-m
|
11 |
---
|
app_gradio_space.py
ADDED
@@ -0,0 +1,424 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import time
|
3 |
+
import pdb
|
4 |
+
|
5 |
+
import cuid
|
6 |
+
import gradio as gr
|
7 |
+
import spaces
|
8 |
+
import numpy as np
|
9 |
+
import sys
|
10 |
+
|
11 |
+
from huggingface_hub import snapshot_download
|
12 |
+
import subprocess
|
13 |
+
|
14 |
+
|
15 |
+
ProjectDir = os.path.abspath(os.path.dirname(__file__))
|
16 |
+
CheckpointsDir = os.path.join(ProjectDir, "checkpoints")
|
17 |
+
|
18 |
+
result = subprocess.run(
|
19 |
+
["pip", "install", "--no-cache-dir", "-U", "openmim"],
|
20 |
+
capture_output=True,
|
21 |
+
text=True,
|
22 |
+
)
|
23 |
+
print(result)
|
24 |
+
|
25 |
+
result = subprocess.run(["mim", "install", "mmengine"], capture_output=True, text=True)
|
26 |
+
print(result)
|
27 |
+
|
28 |
+
result = subprocess.run(
|
29 |
+
["mim", "install", "mmcv>=2.0.1"], capture_output=True, text=True
|
30 |
+
)
|
31 |
+
print(result)
|
32 |
+
|
33 |
+
result = subprocess.run(
|
34 |
+
["mim", "install", "mmdet>=3.1.0"], capture_output=True, text=True
|
35 |
+
)
|
36 |
+
print(result)
|
37 |
+
|
38 |
+
result = subprocess.run(
|
39 |
+
["mim", "install", "mmpose>=1.1.0"], capture_output=True, text=True
|
40 |
+
)
|
41 |
+
print(result)
|
42 |
+
ignore_video2video = True
|
43 |
+
max_image_edge = 960
|
44 |
+
|
45 |
+
|
46 |
+
def download_model():
|
47 |
+
if not os.path.exists(CheckpointsDir):
|
48 |
+
print("Checkpoint Not Downloaded, start downloading...")
|
49 |
+
tic = time.time()
|
50 |
+
snapshot_download(
|
51 |
+
repo_id="TMElyralab/MuseV",
|
52 |
+
local_dir=CheckpointsDir,
|
53 |
+
max_workers=8,
|
54 |
+
local_dir_use_symlinks=True,
|
55 |
+
)
|
56 |
+
toc = time.time()
|
57 |
+
print(f"download cost {toc-tic} seconds")
|
58 |
+
else:
|
59 |
+
print("Already download the model.")
|
60 |
+
|
61 |
+
|
62 |
+
download_model() # for huggingface deployment.
|
63 |
+
if not ignore_video2video:
|
64 |
+
from gradio_video2video import online_v2v_inference
|
65 |
+
from gradio_text2video import online_t2v_inference
|
66 |
+
|
67 |
+
|
68 |
+
@spaces.GPU(duration=180)
|
69 |
+
def hf_online_t2v_inference(
|
70 |
+
prompt,
|
71 |
+
image_np,
|
72 |
+
seed,
|
73 |
+
fps,
|
74 |
+
w,
|
75 |
+
h,
|
76 |
+
video_len,
|
77 |
+
img_edge_ratio,
|
78 |
+
):
|
79 |
+
img_edge_ratio, _, _ = limit_shape(
|
80 |
+
image_np, w, h, img_edge_ratio, max_image_edge=max_image_edge
|
81 |
+
)
|
82 |
+
if not isinstance(image_np, np.ndarray): # None
|
83 |
+
raise gr.Error("Need input reference image")
|
84 |
+
return online_t2v_inference(
|
85 |
+
prompt, image_np, seed, fps, w, h, video_len, img_edge_ratio
|
86 |
+
)
|
87 |
+
|
88 |
+
|
89 |
+
@spaces.GPU(duration=180)
|
90 |
+
def hg_online_v2v_inference(
|
91 |
+
prompt,
|
92 |
+
image_np,
|
93 |
+
video,
|
94 |
+
processor,
|
95 |
+
seed,
|
96 |
+
fps,
|
97 |
+
w,
|
98 |
+
h,
|
99 |
+
video_length,
|
100 |
+
img_edge_ratio,
|
101 |
+
):
|
102 |
+
img_edge_ratio, _, _ = limit_shape(
|
103 |
+
image_np, w, h, img_edge_ratio, max_image_edge=max_image_edge
|
104 |
+
)
|
105 |
+
if not isinstance(image_np, np.ndarray): # None
|
106 |
+
raise gr.Error("Need input reference image")
|
107 |
+
return online_v2v_inference(
|
108 |
+
prompt,
|
109 |
+
image_np,
|
110 |
+
video,
|
111 |
+
processor,
|
112 |
+
seed,
|
113 |
+
fps,
|
114 |
+
w,
|
115 |
+
h,
|
116 |
+
video_length,
|
117 |
+
img_edge_ratio,
|
118 |
+
)
|
119 |
+
|
120 |
+
|
121 |
+
def limit_shape(image, input_w, input_h, img_edge_ratio, max_image_edge=max_image_edge):
|
122 |
+
"""limite generation video shape to avoid gpu memory overflow"""
|
123 |
+
if input_h == -1 and input_w == -1:
|
124 |
+
if isinstance(image, np.ndarray):
|
125 |
+
input_h, input_w, _ = image.shape
|
126 |
+
elif isinstance(image, PIL.Image.Image):
|
127 |
+
input_w, input_h = image.size
|
128 |
+
else:
|
129 |
+
raise ValueError(
|
130 |
+
f"image should be in [image, ndarray], but given {type(image)}"
|
131 |
+
)
|
132 |
+
if img_edge_ratio == 0:
|
133 |
+
img_edge_ratio = 1
|
134 |
+
img_edge_ratio_infact = min(max_image_edge / max(input_h, input_w), img_edge_ratio)
|
135 |
+
# print(
|
136 |
+
# image.shape,
|
137 |
+
# input_w,
|
138 |
+
# input_h,
|
139 |
+
# img_edge_ratio,
|
140 |
+
# max_image_edge,
|
141 |
+
# img_edge_ratio_infact,
|
142 |
+
# )
|
143 |
+
if img_edge_ratio != 1:
|
144 |
+
return (
|
145 |
+
img_edge_ratio_infact,
|
146 |
+
input_w * img_edge_ratio_infact,
|
147 |
+
input_h * img_edge_ratio_infact,
|
148 |
+
)
|
149 |
+
else:
|
150 |
+
return img_edge_ratio_infact, -1, -1
|
151 |
+
|
152 |
+
|
153 |
+
def limit_length(length):
|
154 |
+
"""limite generation video frames numer to avoid gpu memory overflow"""
|
155 |
+
|
156 |
+
if length > 24 * 6:
|
157 |
+
gr.Warning("Length need to smaller than 144, dute to gpu memory limit")
|
158 |
+
length = 24 * 6
|
159 |
+
return length
|
160 |
+
|
161 |
+
|
162 |
+
class ConcatenateBlock(gr.blocks.Block):
|
163 |
+
def __init__(self, options):
|
164 |
+
self.options = options
|
165 |
+
self.current_string = ""
|
166 |
+
|
167 |
+
def update_string(self, new_choice):
|
168 |
+
if new_choice and new_choice not in self.current_string.split(", "):
|
169 |
+
if self.current_string == "":
|
170 |
+
self.current_string = new_choice
|
171 |
+
else:
|
172 |
+
self.current_string += ", " + new_choice
|
173 |
+
return self.current_string
|
174 |
+
|
175 |
+
|
176 |
+
def process_input(new_choice):
|
177 |
+
return concatenate_block.update_string(new_choice), ""
|
178 |
+
|
179 |
+
|
180 |
+
control_options = [
|
181 |
+
"pose",
|
182 |
+
"pose_body",
|
183 |
+
"pose_hand",
|
184 |
+
"pose_face",
|
185 |
+
"pose_hand_body",
|
186 |
+
"pose_hand_face",
|
187 |
+
"dwpose",
|
188 |
+
"dwpose_face",
|
189 |
+
"dwpose_hand",
|
190 |
+
"dwpose_body",
|
191 |
+
"dwpose_body_hand",
|
192 |
+
"canny",
|
193 |
+
"tile",
|
194 |
+
"hed",
|
195 |
+
"hed_scribble",
|
196 |
+
"depth",
|
197 |
+
"pidi",
|
198 |
+
"normal_bae",
|
199 |
+
"lineart",
|
200 |
+
"lineart_anime",
|
201 |
+
"zoe",
|
202 |
+
"sam",
|
203 |
+
"mobile_sam",
|
204 |
+
"leres",
|
205 |
+
"content",
|
206 |
+
"face_detector",
|
207 |
+
]
|
208 |
+
concatenate_block = ConcatenateBlock(control_options)
|
209 |
+
|
210 |
+
|
211 |
+
css = """#input_img {max-width: 1024px !important} #output_vid {max-width: 1024px; max-height: 576px}"""
|
212 |
+
|
213 |
+
|
214 |
+
with gr.Blocks(css=css) as demo:
|
215 |
+
gr.Markdown(
|
216 |
+
"<div align='center'> <h1> MuseV: Infinite-length and High Fidelity Virtual Human Video Generation with Visual Conditioned Parallel Denoising</span> </h1> \
|
217 |
+
<h2 style='font-weight: 450; font-size: 1rem; margin: 0rem'>\
|
218 |
+
</br>\
|
219 |
+
Zhiqiang Xia <sup>*</sup>,\
|
220 |
+
Zhaokang Chen<sup>*</sup>,\
|
221 |
+
Bin Wu<sup>†</sup>,\
|
222 |
+
Chao Li,\
|
223 |
+
Kwok-Wai Hung,\
|
224 |
+
Chao Zhan,\
|
225 |
+
Yingjie He,\
|
226 |
+
Wenjiang Zhou\
|
227 |
+
(<sup>*</sup>Equal Contribution, <sup>†</sup>Corresponding Author, [email protected])\
|
228 |
+
</br>\
|
229 |
+
Lyra Lab, Tencent Music Entertainment\
|
230 |
+
</h2> \
|
231 |
+
<a style='font-size:18px;color: #000000' href='https://github.com/TMElyralab/MuseV'>[Github Repo]</a>\
|
232 |
+
<a style='font-size:18px;color: #000000'>, which is important to Open-Source projects. Thanks!</a>\
|
233 |
+
<a style='font-size:18px;color: #000000' href=''> [ArXiv(Coming Soon)] </a>\
|
234 |
+
<a style='font-size:18px;color: #000000' href=''> [Project Page(Coming Soon)] </a> \
|
235 |
+
<a style='font-size:18px;color: #000000'>If MuseV is useful, please help star the repo~ </a> </div>"
|
236 |
+
)
|
237 |
+
with gr.Tab("Text to Video"):
|
238 |
+
with gr.Row():
|
239 |
+
with gr.Column():
|
240 |
+
prompt = gr.Textbox(label="Prompt")
|
241 |
+
image = gr.Image(label="VisionCondImage")
|
242 |
+
seed = gr.Number(
|
243 |
+
label="Seed (seed=-1 means that the seeds run each time are different)",
|
244 |
+
value=-1,
|
245 |
+
)
|
246 |
+
video_length = gr.Number(
|
247 |
+
label="Video Length(need smaller than 144,If you want to be able to generate longer videos, run it locally )",
|
248 |
+
value=12,
|
249 |
+
)
|
250 |
+
fps = gr.Number(label="Generate Video FPS", value=6)
|
251 |
+
gr.Markdown(
|
252 |
+
(
|
253 |
+
"If W&H is -1, then use the Reference Image's Size. Size of target video is $(W, H)*img\_edge\_ratio$. \n"
|
254 |
+
"The shorter the image size, the larger the motion amplitude, and the lower video quality.\n"
|
255 |
+
"The longer the W&H, the smaller the motion amplitude, and the higher video quality.\n"
|
256 |
+
"Due to the GPU VRAM limits, the W&H need smaller than 960px"
|
257 |
+
)
|
258 |
+
)
|
259 |
+
with gr.Row():
|
260 |
+
w = gr.Number(label="Width", value=-1)
|
261 |
+
h = gr.Number(label="Height", value=-1)
|
262 |
+
img_edge_ratio = gr.Number(label="img_edge_ratio", value=1.0)
|
263 |
+
with gr.Row():
|
264 |
+
out_w = gr.Number(label="Output Width", value=0, interactive=False)
|
265 |
+
out_h = gr.Number(label="Output Height", value=0, interactive=False)
|
266 |
+
img_edge_ratio_infact = gr.Number(
|
267 |
+
label="img_edge_ratio in fact",
|
268 |
+
value=1.0,
|
269 |
+
interactive=False,
|
270 |
+
)
|
271 |
+
btn1 = gr.Button("Generate")
|
272 |
+
out = gr.Video()
|
273 |
+
# pdb.set_trace()
|
274 |
+
i2v_examples_256 = [
|
275 |
+
[
|
276 |
+
"(masterpiece, best quality, highres:1),(1boy, solo:1),(eye blinks:1.8),(head wave:1.3)",
|
277 |
+
"../../data/images/yongen.jpeg",
|
278 |
+
],
|
279 |
+
[
|
280 |
+
"(masterpiece, best quality, highres:1), peaceful beautiful sea scene",
|
281 |
+
"../../data/images/seaside4.jpeg",
|
282 |
+
],
|
283 |
+
]
|
284 |
+
with gr.Row():
|
285 |
+
gr.Examples(
|
286 |
+
examples=i2v_examples_256,
|
287 |
+
inputs=[prompt, image],
|
288 |
+
outputs=[out],
|
289 |
+
fn=hf_online_t2v_inference,
|
290 |
+
cache_examples=False,
|
291 |
+
)
|
292 |
+
img_edge_ratio.change(
|
293 |
+
fn=limit_shape,
|
294 |
+
inputs=[image, w, h, img_edge_ratio],
|
295 |
+
outputs=[img_edge_ratio_infact, out_w, out_h],
|
296 |
+
)
|
297 |
+
|
298 |
+
video_length.change(
|
299 |
+
fn=limit_length, inputs=[video_length], outputs=[video_length]
|
300 |
+
)
|
301 |
+
|
302 |
+
btn1.click(
|
303 |
+
fn=hf_online_t2v_inference,
|
304 |
+
inputs=[
|
305 |
+
prompt,
|
306 |
+
image,
|
307 |
+
seed,
|
308 |
+
fps,
|
309 |
+
w,
|
310 |
+
h,
|
311 |
+
video_length,
|
312 |
+
img_edge_ratio_infact,
|
313 |
+
],
|
314 |
+
outputs=out,
|
315 |
+
)
|
316 |
+
|
317 |
+
with gr.Tab("Video to Video"):
|
318 |
+
if ignore_video2video:
|
319 |
+
gr.Markdown(
|
320 |
+
(
|
321 |
+
"Due to GPU limit, MuseVDemo now only support Text2Video. If you want to try Video2Video, please run it locally. \n"
|
322 |
+
"We are trying to support video2video in the future. Thanks for your understanding."
|
323 |
+
)
|
324 |
+
)
|
325 |
+
else:
|
326 |
+
with gr.Row():
|
327 |
+
with gr.Column():
|
328 |
+
prompt = gr.Textbox(label="Prompt")
|
329 |
+
gr.Markdown(
|
330 |
+
(
|
331 |
+
"pose of VisionCondImage should be same as of the first frame of the video. "
|
332 |
+
"its better generate target first frame whose pose is same as of first frame of the video with text2image tool, sch as MJ, SDXL."
|
333 |
+
)
|
334 |
+
)
|
335 |
+
image = gr.Image(label="VisionCondImage")
|
336 |
+
video = gr.Video(label="ReferVideo")
|
337 |
+
# radio = gr.inputs.Radio(, label="Select an option")
|
338 |
+
# ctr_button = gr.inputs.Button(label="Add ControlNet List")
|
339 |
+
# output_text = gr.outputs.Textbox()
|
340 |
+
processor = gr.Textbox(
|
341 |
+
label=f"Control Condition. gradio code now only support dwpose_body_hand, use command can support multi of {control_options}",
|
342 |
+
value="dwpose_body_hand",
|
343 |
+
)
|
344 |
+
gr.Markdown("seed=-1 means that seeds are different in every run")
|
345 |
+
seed = gr.Number(
|
346 |
+
label="Seed (seed=-1 means that the seeds run each time are different)",
|
347 |
+
value=-1,
|
348 |
+
)
|
349 |
+
video_length = gr.Number(label="Video Length", value=12)
|
350 |
+
fps = gr.Number(label="Generate Video FPS", value=6)
|
351 |
+
gr.Markdown(
|
352 |
+
(
|
353 |
+
"If W&H is -1, then use the Reference Image's Size. Size of target video is $(W, H)*img\_edge\_ratio$. \n"
|
354 |
+
"The shorter the image size, the larger the motion amplitude, and the lower video quality.\n"
|
355 |
+
"The longer the W&H, the smaller the motion amplitude, and the higher video quality.\n"
|
356 |
+
"Due to the GPU VRAM limits, the W&H need smaller than 2000px"
|
357 |
+
)
|
358 |
+
)
|
359 |
+
with gr.Row():
|
360 |
+
w = gr.Number(label="Width", value=-1)
|
361 |
+
h = gr.Number(label="Height", value=-1)
|
362 |
+
img_edge_ratio = gr.Number(label="img_edge_ratio", value=1.0)
|
363 |
+
|
364 |
+
with gr.Row():
|
365 |
+
out_w = gr.Number(label="Width", value=0, interactive=False)
|
366 |
+
out_h = gr.Number(label="Height", value=0, interactive=False)
|
367 |
+
img_edge_ratio_infact = gr.Number(
|
368 |
+
label="img_edge_ratio in fact",
|
369 |
+
value=1.0,
|
370 |
+
interactive=False,
|
371 |
+
)
|
372 |
+
btn2 = gr.Button("Generate")
|
373 |
+
out1 = gr.Video()
|
374 |
+
|
375 |
+
v2v_examples_256 = [
|
376 |
+
[
|
377 |
+
"(masterpiece, best quality, highres:1), harley quinn is dancing, animation, by joshua klein",
|
378 |
+
"../../data/demo/cyber_girl.png",
|
379 |
+
"../../data/demo/video1.mp4",
|
380 |
+
],
|
381 |
+
]
|
382 |
+
with gr.Row():
|
383 |
+
gr.Examples(
|
384 |
+
examples=v2v_examples_256,
|
385 |
+
inputs=[prompt, image, video],
|
386 |
+
outputs=[out],
|
387 |
+
fn=hg_online_v2v_inference,
|
388 |
+
cache_examples=False,
|
389 |
+
)
|
390 |
+
|
391 |
+
img_edge_ratio.change(
|
392 |
+
fn=limit_shape,
|
393 |
+
inputs=[image, w, h, img_edge_ratio],
|
394 |
+
outputs=[img_edge_ratio_infact, out_w, out_h],
|
395 |
+
)
|
396 |
+
video_length.change(
|
397 |
+
fn=limit_length, inputs=[video_length], outputs=[video_length]
|
398 |
+
)
|
399 |
+
btn2.click(
|
400 |
+
fn=hg_online_v2v_inference,
|
401 |
+
inputs=[
|
402 |
+
prompt,
|
403 |
+
image,
|
404 |
+
video,
|
405 |
+
processor,
|
406 |
+
seed,
|
407 |
+
fps,
|
408 |
+
w,
|
409 |
+
h,
|
410 |
+
video_length,
|
411 |
+
img_edge_ratio_infact,
|
412 |
+
],
|
413 |
+
outputs=out1,
|
414 |
+
)
|
415 |
+
|
416 |
+
|
417 |
+
# Set the IP and port
|
418 |
+
ip_address = "0.0.0.0" # Replace with your desired IP address
|
419 |
+
port_number = 7860 # Replace with your desired port number
|
420 |
+
|
421 |
+
|
422 |
+
demo.queue().launch(
|
423 |
+
share=True, debug=True, server_name=ip_address, server_port=port_number
|
424 |
+
)
|
data/demo/cyber_girl.png
ADDED
data/demo/video1.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ad8eb17005da389731d2a04d61a39166b753270a893e04ab3801b798fe04441d
|
3 |
+
size 5411952
|
data/images/seaside4.jpeg
ADDED
data/images/yongen.jpeg
ADDED
gradio_text2video.py
ADDED
@@ -0,0 +1,949 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import copy
|
3 |
+
import os
|
4 |
+
from pathlib import Path
|
5 |
+
import logging
|
6 |
+
from collections import OrderedDict
|
7 |
+
from pprint import pprint
|
8 |
+
import random
|
9 |
+
import gradio as gr
|
10 |
+
from argparse import Namespace
|
11 |
+
|
12 |
+
import numpy as np
|
13 |
+
from omegaconf import OmegaConf, SCMode
|
14 |
+
import torch
|
15 |
+
from einops import rearrange, repeat
|
16 |
+
import cv2
|
17 |
+
from PIL import Image
|
18 |
+
from diffusers.models.autoencoder_kl import AutoencoderKL
|
19 |
+
|
20 |
+
from mmcm.utils.load_util import load_pyhon_obj
|
21 |
+
from mmcm.utils.seed_util import set_all_seed
|
22 |
+
from mmcm.utils.signature import get_signature_of_string
|
23 |
+
from mmcm.utils.task_util import fiss_tasks, generate_tasks as generate_tasks_from_table
|
24 |
+
from mmcm.vision.utils.data_type_util import is_video, is_image, read_image_as_5d
|
25 |
+
from mmcm.utils.str_util import clean_str_for_save
|
26 |
+
from mmcm.vision.data.video_dataset import DecordVideoDataset
|
27 |
+
from musev.auto_prompt.util import generate_prompts
|
28 |
+
|
29 |
+
|
30 |
+
from musev.models.facein_loader import load_facein_extractor_and_proj_by_name
|
31 |
+
from musev.models.referencenet_loader import load_referencenet_by_name
|
32 |
+
from musev.models.ip_adapter_loader import (
|
33 |
+
load_ip_adapter_vision_clip_encoder_by_name,
|
34 |
+
load_vision_clip_encoder_by_name,
|
35 |
+
load_ip_adapter_image_proj_by_name,
|
36 |
+
)
|
37 |
+
from musev.models.ip_adapter_face_loader import (
|
38 |
+
load_ip_adapter_face_extractor_and_proj_by_name,
|
39 |
+
)
|
40 |
+
from musev.pipelines.pipeline_controlnet_predictor import (
|
41 |
+
DiffusersPipelinePredictor,
|
42 |
+
)
|
43 |
+
from musev.models.referencenet import ReferenceNet2D
|
44 |
+
from musev.models.unet_loader import load_unet_by_name
|
45 |
+
from musev.utils.util import save_videos_grid_with_opencv
|
46 |
+
from musev import logger
|
47 |
+
|
48 |
+
use_v2v_predictor = False
|
49 |
+
if use_v2v_predictor:
|
50 |
+
from gradio_video2video import sd_predictor as video_sd_predictor
|
51 |
+
|
52 |
+
logger.setLevel("INFO")
|
53 |
+
|
54 |
+
file_dir = os.path.dirname(__file__)
|
55 |
+
PROJECT_DIR = os.path.join(os.path.dirname(__file__), "./")
|
56 |
+
DATA_DIR = os.path.join(PROJECT_DIR, "data")
|
57 |
+
CACHE_PATH = "./t2v_input_image"
|
58 |
+
|
59 |
+
|
60 |
+
# TODO:use group to group arguments
|
61 |
+
|
62 |
+
|
63 |
+
args_dict = {
|
64 |
+
"add_static_video_prompt": False,
|
65 |
+
"context_batch_size": 1,
|
66 |
+
"context_frames": 12,
|
67 |
+
"context_overlap": 4,
|
68 |
+
"context_schedule": "uniform_v2",
|
69 |
+
"context_stride": 1,
|
70 |
+
"cross_attention_dim": 768,
|
71 |
+
"face_image_path": None,
|
72 |
+
"facein_model_cfg_path": os.path.join(PROJECT_DIR, "./configs/model/facein.py"),
|
73 |
+
"facein_model_name": None,
|
74 |
+
"facein_scale": 1.0,
|
75 |
+
"fix_condition_images": False,
|
76 |
+
"fixed_ip_adapter_image": True,
|
77 |
+
"fixed_refer_face_image": True,
|
78 |
+
"fixed_refer_image": True,
|
79 |
+
"fps": 4,
|
80 |
+
"guidance_scale": 7.5,
|
81 |
+
"height": None,
|
82 |
+
"img_length_ratio": 1.0,
|
83 |
+
"img_weight": 0.001,
|
84 |
+
"interpolation_factor": 1,
|
85 |
+
"ip_adapter_face_model_cfg_path": os.path.join(
|
86 |
+
PROJECT_DIR, "./configs/model/ip_adapter.py"
|
87 |
+
),
|
88 |
+
"ip_adapter_face_model_name": None,
|
89 |
+
"ip_adapter_face_scale": 1.0,
|
90 |
+
"ip_adapter_model_cfg_path": os.path.join(
|
91 |
+
PROJECT_DIR, "./configs/model/ip_adapter.py"
|
92 |
+
),
|
93 |
+
"ip_adapter_model_name": "musev_referencenet",
|
94 |
+
"ip_adapter_scale": 1.0,
|
95 |
+
"ipadapter_image_path": None,
|
96 |
+
"lcm_model_cfg_path": os.path.join(PROJECT_DIR, "./configs/model/lcm_model.py"),
|
97 |
+
"lcm_model_name": None,
|
98 |
+
"log_level": "INFO",
|
99 |
+
"motion_speed": 8.0,
|
100 |
+
"n_batch": 1,
|
101 |
+
"n_cols": 3,
|
102 |
+
"n_repeat": 1,
|
103 |
+
"n_vision_condition": 1,
|
104 |
+
"need_hist_match": False,
|
105 |
+
"need_img_based_video_noise": True,
|
106 |
+
"need_redraw": False,
|
107 |
+
"negative_prompt": "V2",
|
108 |
+
"negprompt_cfg_path": os.path.join(
|
109 |
+
PROJECT_DIR, "./configs/model/negative_prompt.py"
|
110 |
+
),
|
111 |
+
"noise_type": "video_fusion",
|
112 |
+
"num_inference_steps": 30,
|
113 |
+
"output_dir": "./results/",
|
114 |
+
"overwrite": False,
|
115 |
+
"prompt_only_use_image_prompt": False,
|
116 |
+
"record_mid_video_latents": False,
|
117 |
+
"record_mid_video_noises": False,
|
118 |
+
"redraw_condition_image": False,
|
119 |
+
"redraw_condition_image_with_facein": True,
|
120 |
+
"redraw_condition_image_with_ip_adapter_face": True,
|
121 |
+
"redraw_condition_image_with_ipdapter": True,
|
122 |
+
"redraw_condition_image_with_referencenet": True,
|
123 |
+
"referencenet_image_path": None,
|
124 |
+
"referencenet_model_cfg_path": os.path.join(
|
125 |
+
PROJECT_DIR, "./configs/model/referencenet.py"
|
126 |
+
),
|
127 |
+
"referencenet_model_name": "musev_referencenet",
|
128 |
+
"save_filetype": "mp4",
|
129 |
+
"save_images": False,
|
130 |
+
"sd_model_cfg_path": os.path.join(PROJECT_DIR, "./configs/model/T2I_all_model.py"),
|
131 |
+
"sd_model_name": "majicmixRealv6Fp16",
|
132 |
+
"seed": None,
|
133 |
+
"strength": 0.8,
|
134 |
+
"target_datas": "boy_dance2",
|
135 |
+
"test_data_path": os.path.join(
|
136 |
+
PROJECT_DIR, "./configs/infer/testcase_video_famous.yaml"
|
137 |
+
),
|
138 |
+
"time_size": 24,
|
139 |
+
"unet_model_cfg_path": os.path.join(PROJECT_DIR, "./configs/model/motion_model.py"),
|
140 |
+
"unet_model_name": "musev_referencenet",
|
141 |
+
"use_condition_image": True,
|
142 |
+
"use_video_redraw": True,
|
143 |
+
"vae_model_path": os.path.join(PROJECT_DIR, "./checkpoints/vae/sd-vae-ft-mse"),
|
144 |
+
"video_guidance_scale": 3.5,
|
145 |
+
"video_guidance_scale_end": None,
|
146 |
+
"video_guidance_scale_method": "linear",
|
147 |
+
"video_negative_prompt": "V2",
|
148 |
+
"video_num_inference_steps": 10,
|
149 |
+
"video_overlap": 1,
|
150 |
+
"vision_clip_extractor_class_name": "ImageClipVisionFeatureExtractor",
|
151 |
+
"vision_clip_model_path": os.path.join(
|
152 |
+
PROJECT_DIR, "./checkpoints/IP-Adapter/models/image_encoder"
|
153 |
+
),
|
154 |
+
"w_ind_noise": 0.5,
|
155 |
+
"width": None,
|
156 |
+
"write_info": False,
|
157 |
+
}
|
158 |
+
args = Namespace(**args_dict)
|
159 |
+
print("args")
|
160 |
+
pprint(args)
|
161 |
+
print("\n")
|
162 |
+
|
163 |
+
logger.setLevel(args.log_level)
|
164 |
+
overwrite = args.overwrite
|
165 |
+
cross_attention_dim = args.cross_attention_dim
|
166 |
+
time_size = args.time_size # 一次视频生成的帧数
|
167 |
+
n_batch = args.n_batch # 按照time_size的尺寸 生成n_batch次,总帧数 = time_size * n_batch
|
168 |
+
fps = args.fps
|
169 |
+
# need_redraw = args.need_redraw # 视频重绘视频使用视频网络
|
170 |
+
# use_video_redraw = args.use_video_redraw # 视频重绘视频使用视频网络
|
171 |
+
fix_condition_images = args.fix_condition_images
|
172 |
+
use_condition_image = args.use_condition_image # 当 test_data 中有图像时,作为初始图像
|
173 |
+
redraw_condition_image = args.redraw_condition_image # 用于视频生成的首帧是否使用重绘后的
|
174 |
+
need_img_based_video_noise = (
|
175 |
+
args.need_img_based_video_noise
|
176 |
+
) # 视频加噪过程中是否使用首帧 condition_images
|
177 |
+
img_weight = args.img_weight
|
178 |
+
height = args.height # 如果测试数据中没有单独指定宽高,则默认这里
|
179 |
+
width = args.width # 如果测试数据中没有单独指定宽高,则默认这里
|
180 |
+
img_length_ratio = args.img_length_ratio # 如果测试数据中没有单独指定图像宽高比resize比例,则默认这里
|
181 |
+
n_cols = args.n_cols
|
182 |
+
noise_type = args.noise_type
|
183 |
+
strength = args.strength # 首帧重绘程度参数
|
184 |
+
video_guidance_scale = args.video_guidance_scale # 视频 condition与 uncond的权重参数
|
185 |
+
guidance_scale = args.guidance_scale # 时序条件帧 condition与uncond的权重参数
|
186 |
+
video_num_inference_steps = args.video_num_inference_steps # 视频迭代次数
|
187 |
+
num_inference_steps = args.num_inference_steps # 时序条件帧 重绘参数
|
188 |
+
seed = args.seed
|
189 |
+
save_filetype = args.save_filetype
|
190 |
+
save_images = args.save_images
|
191 |
+
sd_model_cfg_path = args.sd_model_cfg_path
|
192 |
+
sd_model_name = (
|
193 |
+
args.sd_model_name
|
194 |
+
if args.sd_model_name in ["all", "None"]
|
195 |
+
else args.sd_model_name.split(",")
|
196 |
+
)
|
197 |
+
unet_model_cfg_path = args.unet_model_cfg_path
|
198 |
+
unet_model_name = args.unet_model_name
|
199 |
+
test_data_path = args.test_data_path
|
200 |
+
target_datas = (
|
201 |
+
args.target_datas if args.target_datas == "all" else args.target_datas.split(",")
|
202 |
+
)
|
203 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
204 |
+
torch_dtype = torch.float16
|
205 |
+
negprompt_cfg_path = args.negprompt_cfg_path
|
206 |
+
video_negative_prompt = args.video_negative_prompt
|
207 |
+
negative_prompt = args.negative_prompt
|
208 |
+
motion_speed = args.motion_speed
|
209 |
+
need_hist_match = args.need_hist_match
|
210 |
+
video_guidance_scale_end = args.video_guidance_scale_end
|
211 |
+
video_guidance_scale_method = args.video_guidance_scale_method
|
212 |
+
add_static_video_prompt = args.add_static_video_prompt
|
213 |
+
n_vision_condition = args.n_vision_condition
|
214 |
+
lcm_model_cfg_path = args.lcm_model_cfg_path
|
215 |
+
lcm_model_name = args.lcm_model_name
|
216 |
+
referencenet_model_cfg_path = args.referencenet_model_cfg_path
|
217 |
+
referencenet_model_name = args.referencenet_model_name
|
218 |
+
ip_adapter_model_cfg_path = args.ip_adapter_model_cfg_path
|
219 |
+
ip_adapter_model_name = args.ip_adapter_model_name
|
220 |
+
vision_clip_model_path = args.vision_clip_model_path
|
221 |
+
vision_clip_extractor_class_name = args.vision_clip_extractor_class_name
|
222 |
+
facein_model_cfg_path = args.facein_model_cfg_path
|
223 |
+
facein_model_name = args.facein_model_name
|
224 |
+
ip_adapter_face_model_cfg_path = args.ip_adapter_face_model_cfg_path
|
225 |
+
ip_adapter_face_model_name = args.ip_adapter_face_model_name
|
226 |
+
|
227 |
+
fixed_refer_image = args.fixed_refer_image
|
228 |
+
fixed_ip_adapter_image = args.fixed_ip_adapter_image
|
229 |
+
fixed_refer_face_image = args.fixed_refer_face_image
|
230 |
+
redraw_condition_image_with_referencenet = args.redraw_condition_image_with_referencenet
|
231 |
+
redraw_condition_image_with_ipdapter = args.redraw_condition_image_with_ipdapter
|
232 |
+
redraw_condition_image_with_facein = args.redraw_condition_image_with_facein
|
233 |
+
redraw_condition_image_with_ip_adapter_face = (
|
234 |
+
args.redraw_condition_image_with_ip_adapter_face
|
235 |
+
)
|
236 |
+
w_ind_noise = args.w_ind_noise
|
237 |
+
ip_adapter_scale = args.ip_adapter_scale
|
238 |
+
facein_scale = args.facein_scale
|
239 |
+
ip_adapter_face_scale = args.ip_adapter_face_scale
|
240 |
+
face_image_path = args.face_image_path
|
241 |
+
ipadapter_image_path = args.ipadapter_image_path
|
242 |
+
referencenet_image_path = args.referencenet_image_path
|
243 |
+
vae_model_path = args.vae_model_path
|
244 |
+
prompt_only_use_image_prompt = args.prompt_only_use_image_prompt
|
245 |
+
# serial_denoise parameter start
|
246 |
+
record_mid_video_noises = args.record_mid_video_noises
|
247 |
+
record_mid_video_latents = args.record_mid_video_latents
|
248 |
+
video_overlap = args.video_overlap
|
249 |
+
# serial_denoise parameter end
|
250 |
+
# parallel_denoise parameter start
|
251 |
+
context_schedule = args.context_schedule
|
252 |
+
context_frames = args.context_frames
|
253 |
+
context_stride = args.context_stride
|
254 |
+
context_overlap = args.context_overlap
|
255 |
+
context_batch_size = args.context_batch_size
|
256 |
+
interpolation_factor = args.interpolation_factor
|
257 |
+
n_repeat = args.n_repeat
|
258 |
+
|
259 |
+
# parallel_denoise parameter end
|
260 |
+
|
261 |
+
b = 1
|
262 |
+
negative_embedding = [
|
263 |
+
[os.path.join(PROJECT_DIR, "./checkpoints/embedding/badhandv4.pt"), "badhandv4"],
|
264 |
+
[
|
265 |
+
os.path.join(PROJECT_DIR, "./checkpoints/embedding/ng_deepnegative_v1_75t.pt"),
|
266 |
+
"ng_deepnegative_v1_75t",
|
267 |
+
],
|
268 |
+
[
|
269 |
+
os.path.join(PROJECT_DIR, "./checkpoints/embedding/EasyNegativeV2.safetensors"),
|
270 |
+
"EasyNegativeV2",
|
271 |
+
],
|
272 |
+
[
|
273 |
+
os.path.join(PROJECT_DIR, "./checkpoints/embedding/bad_prompt_version2-neg.pt"),
|
274 |
+
"bad_prompt_version2-neg",
|
275 |
+
],
|
276 |
+
]
|
277 |
+
prefix_prompt = ""
|
278 |
+
suffix_prompt = ", beautiful, masterpiece, best quality"
|
279 |
+
suffix_prompt = ""
|
280 |
+
|
281 |
+
|
282 |
+
# sd model parameters
|
283 |
+
|
284 |
+
if sd_model_name != "None":
|
285 |
+
# 使用 cfg_path 里的sd_model_path
|
286 |
+
sd_model_params_dict_src = load_pyhon_obj(sd_model_cfg_path, "MODEL_CFG")
|
287 |
+
sd_model_params_dict = {
|
288 |
+
k: v
|
289 |
+
for k, v in sd_model_params_dict_src.items()
|
290 |
+
if sd_model_name == "all" or k in sd_model_name
|
291 |
+
}
|
292 |
+
else:
|
293 |
+
# 使用命令行给的sd_model_path, 需要单独设置 sd_model_name 为None,
|
294 |
+
sd_model_name = os.path.basename(sd_model_cfg_path).split(".")[0]
|
295 |
+
sd_model_params_dict = {sd_model_name: {"sd": sd_model_cfg_path}}
|
296 |
+
sd_model_params_dict_src = sd_model_params_dict
|
297 |
+
if len(sd_model_params_dict) == 0:
|
298 |
+
raise ValueError(
|
299 |
+
"has not target model, please set one of {}".format(
|
300 |
+
" ".join(list(sd_model_params_dict_src.keys()))
|
301 |
+
)
|
302 |
+
)
|
303 |
+
print("running model, T2I SD")
|
304 |
+
pprint(sd_model_params_dict)
|
305 |
+
|
306 |
+
# lcm
|
307 |
+
if lcm_model_name is not None:
|
308 |
+
lcm_model_params_dict_src = load_pyhon_obj(lcm_model_cfg_path, "MODEL_CFG")
|
309 |
+
print("lcm_model_params_dict_src")
|
310 |
+
lcm_lora_dct = lcm_model_params_dict_src[lcm_model_name]
|
311 |
+
else:
|
312 |
+
lcm_lora_dct = None
|
313 |
+
print("lcm: ", lcm_model_name, lcm_lora_dct)
|
314 |
+
|
315 |
+
|
316 |
+
# motion net parameters
|
317 |
+
if os.path.isdir(unet_model_cfg_path):
|
318 |
+
unet_model_path = unet_model_cfg_path
|
319 |
+
elif os.path.isfile(unet_model_cfg_path):
|
320 |
+
unet_model_params_dict_src = load_pyhon_obj(unet_model_cfg_path, "MODEL_CFG")
|
321 |
+
print("unet_model_params_dict_src", unet_model_params_dict_src.keys())
|
322 |
+
unet_model_path = unet_model_params_dict_src[unet_model_name]["unet"]
|
323 |
+
else:
|
324 |
+
raise ValueError(f"expect dir or file, but given {unet_model_cfg_path}")
|
325 |
+
print("unet: ", unet_model_name, unet_model_path)
|
326 |
+
|
327 |
+
|
328 |
+
# referencenet
|
329 |
+
if referencenet_model_name is not None:
|
330 |
+
if os.path.isdir(referencenet_model_cfg_path):
|
331 |
+
referencenet_model_path = referencenet_model_cfg_path
|
332 |
+
elif os.path.isfile(referencenet_model_cfg_path):
|
333 |
+
referencenet_model_params_dict_src = load_pyhon_obj(
|
334 |
+
referencenet_model_cfg_path, "MODEL_CFG"
|
335 |
+
)
|
336 |
+
print(
|
337 |
+
"referencenet_model_params_dict_src",
|
338 |
+
referencenet_model_params_dict_src.keys(),
|
339 |
+
)
|
340 |
+
referencenet_model_path = referencenet_model_params_dict_src[
|
341 |
+
referencenet_model_name
|
342 |
+
]["net"]
|
343 |
+
else:
|
344 |
+
raise ValueError(f"expect dir or file, but given {referencenet_model_cfg_path}")
|
345 |
+
else:
|
346 |
+
referencenet_model_path = None
|
347 |
+
print("referencenet: ", referencenet_model_name, referencenet_model_path)
|
348 |
+
|
349 |
+
|
350 |
+
# ip_adapter
|
351 |
+
if ip_adapter_model_name is not None:
|
352 |
+
ip_adapter_model_params_dict_src = load_pyhon_obj(
|
353 |
+
ip_adapter_model_cfg_path, "MODEL_CFG"
|
354 |
+
)
|
355 |
+
print("ip_adapter_model_params_dict_src", ip_adapter_model_params_dict_src.keys())
|
356 |
+
ip_adapter_model_params_dict = ip_adapter_model_params_dict_src[
|
357 |
+
ip_adapter_model_name
|
358 |
+
]
|
359 |
+
else:
|
360 |
+
ip_adapter_model_params_dict = None
|
361 |
+
print("ip_adapter: ", ip_adapter_model_name, ip_adapter_model_params_dict)
|
362 |
+
|
363 |
+
|
364 |
+
# facein
|
365 |
+
if facein_model_name is not None:
|
366 |
+
facein_model_params_dict_src = load_pyhon_obj(facein_model_cfg_path, "MODEL_CFG")
|
367 |
+
print("facein_model_params_dict_src", facein_model_params_dict_src.keys())
|
368 |
+
facein_model_params_dict = facein_model_params_dict_src[facein_model_name]
|
369 |
+
else:
|
370 |
+
facein_model_params_dict = None
|
371 |
+
print("facein: ", facein_model_name, facein_model_params_dict)
|
372 |
+
|
373 |
+
# ip_adapter_face
|
374 |
+
if ip_adapter_face_model_name is not None:
|
375 |
+
ip_adapter_face_model_params_dict_src = load_pyhon_obj(
|
376 |
+
ip_adapter_face_model_cfg_path, "MODEL_CFG"
|
377 |
+
)
|
378 |
+
print(
|
379 |
+
"ip_adapter_face_model_params_dict_src",
|
380 |
+
ip_adapter_face_model_params_dict_src.keys(),
|
381 |
+
)
|
382 |
+
ip_adapter_face_model_params_dict = ip_adapter_face_model_params_dict_src[
|
383 |
+
ip_adapter_face_model_name
|
384 |
+
]
|
385 |
+
else:
|
386 |
+
ip_adapter_face_model_params_dict = None
|
387 |
+
print(
|
388 |
+
"ip_adapter_face: ", ip_adapter_face_model_name, ip_adapter_face_model_params_dict
|
389 |
+
)
|
390 |
+
|
391 |
+
|
392 |
+
# negative_prompt
|
393 |
+
def get_negative_prompt(negative_prompt, cfg_path=None, n: int = 10):
|
394 |
+
name = negative_prompt[:n]
|
395 |
+
if cfg_path is not None and cfg_path not in ["None", "none"]:
|
396 |
+
dct = load_pyhon_obj(cfg_path, "Negative_Prompt_CFG")
|
397 |
+
negative_prompt = dct[negative_prompt]["prompt"]
|
398 |
+
|
399 |
+
return name, negative_prompt
|
400 |
+
|
401 |
+
|
402 |
+
negtive_prompt_length = 10
|
403 |
+
video_negative_prompt_name, video_negative_prompt = get_negative_prompt(
|
404 |
+
video_negative_prompt,
|
405 |
+
cfg_path=negprompt_cfg_path,
|
406 |
+
n=negtive_prompt_length,
|
407 |
+
)
|
408 |
+
negative_prompt_name, negative_prompt = get_negative_prompt(
|
409 |
+
negative_prompt,
|
410 |
+
cfg_path=negprompt_cfg_path,
|
411 |
+
n=negtive_prompt_length,
|
412 |
+
)
|
413 |
+
|
414 |
+
print("video_negprompt", video_negative_prompt_name, video_negative_prompt)
|
415 |
+
print("negprompt", negative_prompt_name, negative_prompt)
|
416 |
+
|
417 |
+
output_dir = args.output_dir
|
418 |
+
os.makedirs(output_dir, exist_ok=True)
|
419 |
+
|
420 |
+
|
421 |
+
# test_data_parameters
|
422 |
+
def load_yaml(path):
|
423 |
+
tasks = OmegaConf.to_container(
|
424 |
+
OmegaConf.load(path), structured_config_mode=SCMode.INSTANTIATE, resolve=True
|
425 |
+
)
|
426 |
+
return tasks
|
427 |
+
|
428 |
+
|
429 |
+
# if test_data_path.endswith(".yaml"):
|
430 |
+
# test_datas_src = load_yaml(test_data_path)
|
431 |
+
# elif test_data_path.endswith(".csv"):
|
432 |
+
# test_datas_src = generate_tasks_from_table(test_data_path)
|
433 |
+
# else:
|
434 |
+
# raise ValueError("expect yaml or csv, but given {}".format(test_data_path))
|
435 |
+
|
436 |
+
# test_datas = [
|
437 |
+
# test_data
|
438 |
+
# for test_data in test_datas_src
|
439 |
+
# if target_datas == "all" or test_data.get("name", None) in target_datas
|
440 |
+
# ]
|
441 |
+
|
442 |
+
# test_datas = fiss_tasks(test_datas)
|
443 |
+
# test_datas = generate_prompts(test_datas)
|
444 |
+
|
445 |
+
# n_test_datas = len(test_datas)
|
446 |
+
# if n_test_datas == 0:
|
447 |
+
# raise ValueError(
|
448 |
+
# "n_test_datas == 0, set target_datas=None or set atleast one of {}".format(
|
449 |
+
# " ".join(list(d.get("name", "None") for d in test_datas_src))
|
450 |
+
# )
|
451 |
+
# )
|
452 |
+
# print("n_test_datas", n_test_datas)
|
453 |
+
# # pprint(test_datas)
|
454 |
+
|
455 |
+
|
456 |
+
def read_image(path):
|
457 |
+
name = os.path.basename(path).split(".")[0]
|
458 |
+
image = read_image_as_5d(path)
|
459 |
+
return image, name
|
460 |
+
|
461 |
+
|
462 |
+
def read_image_lst(path):
|
463 |
+
images_names = [read_image(x) for x in path]
|
464 |
+
images, names = zip(*images_names)
|
465 |
+
images = np.concatenate(images, axis=2)
|
466 |
+
name = "_".join(names)
|
467 |
+
return images, name
|
468 |
+
|
469 |
+
|
470 |
+
def read_image_and_name(path):
|
471 |
+
if isinstance(path, str):
|
472 |
+
path = [path]
|
473 |
+
images, name = read_image_lst(path)
|
474 |
+
return images, name
|
475 |
+
|
476 |
+
|
477 |
+
if referencenet_model_name is not None and not use_v2v_predictor:
|
478 |
+
referencenet = load_referencenet_by_name(
|
479 |
+
model_name=referencenet_model_name,
|
480 |
+
# sd_model=sd_model_path,
|
481 |
+
# sd_model=os.path.join(PROJECT_DIR, "./checkpoints//Moore-AnimateAnyone/AnimateAnyone/reference_unet.pth",
|
482 |
+
sd_referencenet_model=referencenet_model_path,
|
483 |
+
cross_attention_dim=cross_attention_dim,
|
484 |
+
)
|
485 |
+
else:
|
486 |
+
referencenet = None
|
487 |
+
referencenet_model_name = "no"
|
488 |
+
|
489 |
+
if vision_clip_extractor_class_name is not None and not use_v2v_predictor:
|
490 |
+
vision_clip_extractor = load_vision_clip_encoder_by_name(
|
491 |
+
ip_image_encoder=vision_clip_model_path,
|
492 |
+
vision_clip_extractor_class_name=vision_clip_extractor_class_name,
|
493 |
+
)
|
494 |
+
logger.info(
|
495 |
+
f"vision_clip_extractor, name={vision_clip_extractor_class_name}, path={vision_clip_model_path}"
|
496 |
+
)
|
497 |
+
else:
|
498 |
+
vision_clip_extractor = None
|
499 |
+
logger.info(f"vision_clip_extractor, None")
|
500 |
+
|
501 |
+
if ip_adapter_model_name is not None and not use_v2v_predictor:
|
502 |
+
ip_adapter_image_proj = load_ip_adapter_image_proj_by_name(
|
503 |
+
model_name=ip_adapter_model_name,
|
504 |
+
ip_image_encoder=ip_adapter_model_params_dict.get(
|
505 |
+
"ip_image_encoder", vision_clip_model_path
|
506 |
+
),
|
507 |
+
ip_ckpt=ip_adapter_model_params_dict["ip_ckpt"],
|
508 |
+
cross_attention_dim=cross_attention_dim,
|
509 |
+
clip_embeddings_dim=ip_adapter_model_params_dict["clip_embeddings_dim"],
|
510 |
+
clip_extra_context_tokens=ip_adapter_model_params_dict[
|
511 |
+
"clip_extra_context_tokens"
|
512 |
+
],
|
513 |
+
ip_scale=ip_adapter_model_params_dict["ip_scale"],
|
514 |
+
device=device,
|
515 |
+
)
|
516 |
+
else:
|
517 |
+
ip_adapter_image_proj = None
|
518 |
+
ip_adapter_model_name = "no"
|
519 |
+
|
520 |
+
for model_name, sd_model_params in sd_model_params_dict.items():
|
521 |
+
lora_dict = sd_model_params.get("lora", None)
|
522 |
+
model_sex = sd_model_params.get("sex", None)
|
523 |
+
model_style = sd_model_params.get("style", None)
|
524 |
+
sd_model_path = sd_model_params["sd"]
|
525 |
+
test_model_vae_model_path = sd_model_params.get("vae", vae_model_path)
|
526 |
+
|
527 |
+
unet = (
|
528 |
+
load_unet_by_name(
|
529 |
+
model_name=unet_model_name,
|
530 |
+
sd_unet_model=unet_model_path,
|
531 |
+
sd_model=sd_model_path,
|
532 |
+
# sd_model=os.path.join(PROJECT_DIR, "./checkpoints//Moore-AnimateAnyone/AnimateAnyone/denoising_unet.pth",
|
533 |
+
cross_attention_dim=cross_attention_dim,
|
534 |
+
need_t2i_facein=facein_model_name is not None,
|
535 |
+
# facein 目前没参与训练,但在unet中定义了,载入相关参数会报错,所以用strict控制
|
536 |
+
strict=not (facein_model_name is not None),
|
537 |
+
need_t2i_ip_adapter_face=ip_adapter_face_model_name is not None,
|
538 |
+
)
|
539 |
+
if not use_v2v_predictor
|
540 |
+
else None
|
541 |
+
)
|
542 |
+
|
543 |
+
if facein_model_name is not None and not use_v2v_predictor:
|
544 |
+
(
|
545 |
+
face_emb_extractor,
|
546 |
+
facein_image_proj,
|
547 |
+
) = load_facein_extractor_and_proj_by_name(
|
548 |
+
model_name=facein_model_name,
|
549 |
+
ip_image_encoder=facein_model_params_dict["ip_image_encoder"],
|
550 |
+
ip_ckpt=facein_model_params_dict["ip_ckpt"],
|
551 |
+
cross_attention_dim=cross_attention_dim,
|
552 |
+
clip_embeddings_dim=facein_model_params_dict["clip_embeddings_dim"],
|
553 |
+
clip_extra_context_tokens=facein_model_params_dict[
|
554 |
+
"clip_extra_context_tokens"
|
555 |
+
],
|
556 |
+
ip_scale=facein_model_params_dict["ip_scale"],
|
557 |
+
device=device,
|
558 |
+
# facein目前没有参与unet中的训练,需要单独载入参数
|
559 |
+
unet=unet,
|
560 |
+
)
|
561 |
+
else:
|
562 |
+
face_emb_extractor = None
|
563 |
+
facein_image_proj = None
|
564 |
+
|
565 |
+
if ip_adapter_face_model_name is not None and not use_v2v_predictor:
|
566 |
+
(
|
567 |
+
ip_adapter_face_emb_extractor,
|
568 |
+
ip_adapter_face_image_proj,
|
569 |
+
) = load_ip_adapter_face_extractor_and_proj_by_name(
|
570 |
+
model_name=ip_adapter_face_model_name,
|
571 |
+
ip_image_encoder=ip_adapter_face_model_params_dict["ip_image_encoder"],
|
572 |
+
ip_ckpt=ip_adapter_face_model_params_dict["ip_ckpt"],
|
573 |
+
cross_attention_dim=cross_attention_dim,
|
574 |
+
clip_embeddings_dim=ip_adapter_face_model_params_dict[
|
575 |
+
"clip_embeddings_dim"
|
576 |
+
],
|
577 |
+
clip_extra_context_tokens=ip_adapter_face_model_params_dict[
|
578 |
+
"clip_extra_context_tokens"
|
579 |
+
],
|
580 |
+
ip_scale=ip_adapter_face_model_params_dict["ip_scale"],
|
581 |
+
device=device,
|
582 |
+
unet=unet, # ip_adapter_face 目前没有参与unet中的训练,需要单独载入参数
|
583 |
+
)
|
584 |
+
else:
|
585 |
+
ip_adapter_face_emb_extractor = None
|
586 |
+
ip_adapter_face_image_proj = None
|
587 |
+
|
588 |
+
print("test_model_vae_model_path", test_model_vae_model_path)
|
589 |
+
|
590 |
+
sd_predictor = (
|
591 |
+
DiffusersPipelinePredictor(
|
592 |
+
sd_model_path=sd_model_path,
|
593 |
+
unet=unet,
|
594 |
+
lora_dict=lora_dict,
|
595 |
+
lcm_lora_dct=lcm_lora_dct,
|
596 |
+
device=device,
|
597 |
+
dtype=torch_dtype,
|
598 |
+
negative_embedding=negative_embedding,
|
599 |
+
referencenet=referencenet,
|
600 |
+
ip_adapter_image_proj=ip_adapter_image_proj,
|
601 |
+
vision_clip_extractor=vision_clip_extractor,
|
602 |
+
facein_image_proj=facein_image_proj,
|
603 |
+
face_emb_extractor=face_emb_extractor,
|
604 |
+
vae_model=test_model_vae_model_path,
|
605 |
+
ip_adapter_face_emb_extractor=ip_adapter_face_emb_extractor,
|
606 |
+
ip_adapter_face_image_proj=ip_adapter_face_image_proj,
|
607 |
+
)
|
608 |
+
if not use_v2v_predictor
|
609 |
+
else video_sd_predictor
|
610 |
+
)
|
611 |
+
if use_v2v_predictor:
|
612 |
+
print(
|
613 |
+
"text2video use video_sd_predictor, sd_predictor type is ",
|
614 |
+
type(sd_predictor),
|
615 |
+
)
|
616 |
+
logger.debug(f"load sd_predictor"),
|
617 |
+
|
618 |
+
# TODO:这里修改为gradio
|
619 |
+
import cuid
|
620 |
+
|
621 |
+
|
622 |
+
def generate_cuid():
|
623 |
+
return cuid.cuid()
|
624 |
+
|
625 |
+
|
626 |
+
def online_t2v_inference(
|
627 |
+
prompt,
|
628 |
+
image_np,
|
629 |
+
seed,
|
630 |
+
fps,
|
631 |
+
w,
|
632 |
+
h,
|
633 |
+
video_len,
|
634 |
+
img_edge_ratio: float = 1.0,
|
635 |
+
progress=gr.Progress(track_tqdm=True),
|
636 |
+
):
|
637 |
+
progress(0, desc="Starting...")
|
638 |
+
# Save the uploaded image to a specified path
|
639 |
+
if not os.path.exists(CACHE_PATH):
|
640 |
+
os.makedirs(CACHE_PATH)
|
641 |
+
image_cuid = generate_cuid()
|
642 |
+
|
643 |
+
image_path = os.path.join(CACHE_PATH, f"{image_cuid}.jpg")
|
644 |
+
image = Image.fromarray(image_np)
|
645 |
+
image.save(image_path)
|
646 |
+
|
647 |
+
time_size = int(video_len)
|
648 |
+
test_data = {
|
649 |
+
"name": image_cuid,
|
650 |
+
"prompt": prompt,
|
651 |
+
# 'video_path': None,
|
652 |
+
"condition_images": image_path,
|
653 |
+
"refer_image": image_path,
|
654 |
+
"ipadapter_image": image_path,
|
655 |
+
"height": h,
|
656 |
+
"width": w,
|
657 |
+
"img_length_ratio": img_edge_ratio,
|
658 |
+
# 'style': 'anime',
|
659 |
+
# 'sex': 'female'
|
660 |
+
}
|
661 |
+
batch = []
|
662 |
+
texts = []
|
663 |
+
print("\n test_data", test_data, model_name)
|
664 |
+
test_data_name = test_data.get("name", test_data)
|
665 |
+
prompt = test_data["prompt"]
|
666 |
+
prompt = prefix_prompt + prompt + suffix_prompt
|
667 |
+
prompt_hash = get_signature_of_string(prompt, length=5)
|
668 |
+
test_data["prompt_hash"] = prompt_hash
|
669 |
+
test_data_height = test_data.get("height", height)
|
670 |
+
test_data_width = test_data.get("width", width)
|
671 |
+
test_data_condition_images_path = test_data.get("condition_images", None)
|
672 |
+
test_data_condition_images_index = test_data.get("condition_images_index", None)
|
673 |
+
test_data_redraw_condition_image = test_data.get(
|
674 |
+
"redraw_condition_image", redraw_condition_image
|
675 |
+
)
|
676 |
+
# read condition_image
|
677 |
+
if (
|
678 |
+
test_data_condition_images_path is not None
|
679 |
+
and use_condition_image
|
680 |
+
and (
|
681 |
+
isinstance(test_data_condition_images_path, list)
|
682 |
+
or (
|
683 |
+
isinstance(test_data_condition_images_path, str)
|
684 |
+
and is_image(test_data_condition_images_path)
|
685 |
+
)
|
686 |
+
)
|
687 |
+
):
|
688 |
+
(
|
689 |
+
test_data_condition_images,
|
690 |
+
test_data_condition_images_name,
|
691 |
+
) = read_image_and_name(test_data_condition_images_path)
|
692 |
+
condition_image_height = test_data_condition_images.shape[3]
|
693 |
+
condition_image_width = test_data_condition_images.shape[4]
|
694 |
+
logger.debug(
|
695 |
+
f"test_data_condition_images use {test_data_condition_images_path}"
|
696 |
+
)
|
697 |
+
else:
|
698 |
+
test_data_condition_images = None
|
699 |
+
test_data_condition_images_name = "no"
|
700 |
+
condition_image_height = None
|
701 |
+
condition_image_width = None
|
702 |
+
logger.debug(f"test_data_condition_images is None")
|
703 |
+
|
704 |
+
# 当没有指定生成视频的宽高时,使用输入条件的宽高,优先使用 condition_image,低优使用 video
|
705 |
+
if test_data_height in [None, -1]:
|
706 |
+
test_data_height = condition_image_height
|
707 |
+
|
708 |
+
if test_data_width in [None, -1]:
|
709 |
+
test_data_width = condition_image_width
|
710 |
+
|
711 |
+
test_data_img_length_ratio = float(
|
712 |
+
test_data.get("img_length_ratio", img_length_ratio)
|
713 |
+
)
|
714 |
+
# 为了和video2video保持对齐,使用64而不是8作为宽、高最小粒度
|
715 |
+
# test_data_height = int(test_data_height * test_data_img_length_ratio // 8 * 8)
|
716 |
+
# test_data_width = int(test_data_width * test_data_img_length_ratio // 8 * 8)
|
717 |
+
test_data_height = int(test_data_height * test_data_img_length_ratio // 64 * 64)
|
718 |
+
test_data_width = int(test_data_width * test_data_img_length_ratio // 64 * 64)
|
719 |
+
pprint(test_data)
|
720 |
+
print(f"test_data_height={test_data_height}")
|
721 |
+
print(f"test_data_width={test_data_width}")
|
722 |
+
# continue
|
723 |
+
test_data_style = test_data.get("style", None)
|
724 |
+
test_data_sex = test_data.get("sex", None)
|
725 |
+
# 如果使用|进行多参数任务设置时对应的字段是字符串类型,需要显式转换浮点数。
|
726 |
+
test_data_motion_speed = float(test_data.get("motion_speed", motion_speed))
|
727 |
+
test_data_w_ind_noise = float(test_data.get("w_ind_noise", w_ind_noise))
|
728 |
+
test_data_img_weight = float(test_data.get("img_weight", img_weight))
|
729 |
+
logger.debug(f"test_data_condition_images_path {test_data_condition_images_path}")
|
730 |
+
logger.debug(f"test_data_condition_images_index {test_data_condition_images_index}")
|
731 |
+
test_data_refer_image_path = test_data.get("refer_image", referencenet_image_path)
|
732 |
+
test_data_ipadapter_image_path = test_data.get(
|
733 |
+
"ipadapter_image", ipadapter_image_path
|
734 |
+
)
|
735 |
+
test_data_refer_face_image_path = test_data.get("face_image", face_image_path)
|
736 |
+
|
737 |
+
if negprompt_cfg_path is not None:
|
738 |
+
if "video_negative_prompt" in test_data:
|
739 |
+
(
|
740 |
+
test_data_video_negative_prompt_name,
|
741 |
+
test_data_video_negative_prompt,
|
742 |
+
) = get_negative_prompt(
|
743 |
+
test_data.get(
|
744 |
+
"video_negative_prompt",
|
745 |
+
),
|
746 |
+
cfg_path=negprompt_cfg_path,
|
747 |
+
n=negtive_prompt_length,
|
748 |
+
)
|
749 |
+
else:
|
750 |
+
test_data_video_negative_prompt_name = video_negative_prompt_name
|
751 |
+
test_data_video_negative_prompt = video_negative_prompt
|
752 |
+
if "negative_prompt" in test_data:
|
753 |
+
(
|
754 |
+
test_data_negative_prompt_name,
|
755 |
+
test_data_negative_prompt,
|
756 |
+
) = get_negative_prompt(
|
757 |
+
test_data.get(
|
758 |
+
"negative_prompt",
|
759 |
+
),
|
760 |
+
cfg_path=negprompt_cfg_path,
|
761 |
+
n=negtive_prompt_length,
|
762 |
+
)
|
763 |
+
else:
|
764 |
+
test_data_negative_prompt_name = negative_prompt_name
|
765 |
+
test_data_negative_prompt = negative_prompt
|
766 |
+
else:
|
767 |
+
test_data_video_negative_prompt = test_data.get(
|
768 |
+
"video_negative_prompt", video_negative_prompt
|
769 |
+
)
|
770 |
+
test_data_video_negative_prompt_name = test_data_video_negative_prompt[
|
771 |
+
:negtive_prompt_length
|
772 |
+
]
|
773 |
+
test_data_negative_prompt = test_data.get("negative_prompt", negative_prompt)
|
774 |
+
test_data_negative_prompt_name = test_data_negative_prompt[
|
775 |
+
:negtive_prompt_length
|
776 |
+
]
|
777 |
+
|
778 |
+
# 准备 test_data_refer_image
|
779 |
+
if referencenet is not None:
|
780 |
+
if test_data_refer_image_path is None:
|
781 |
+
test_data_refer_image = test_data_condition_images
|
782 |
+
test_data_refer_image_name = test_data_condition_images_name
|
783 |
+
logger.debug(f"test_data_refer_image use test_data_condition_images")
|
784 |
+
else:
|
785 |
+
test_data_refer_image, test_data_refer_image_name = read_image_and_name(
|
786 |
+
test_data_refer_image_path
|
787 |
+
)
|
788 |
+
logger.debug(f"test_data_refer_image use {test_data_refer_image_path}")
|
789 |
+
else:
|
790 |
+
test_data_refer_image = None
|
791 |
+
test_data_refer_image_name = "no"
|
792 |
+
logger.debug(f"test_data_refer_image is None")
|
793 |
+
|
794 |
+
# 准备 test_data_ipadapter_image
|
795 |
+
if vision_clip_extractor is not None:
|
796 |
+
if test_data_ipadapter_image_path is None:
|
797 |
+
test_data_ipadapter_image = test_data_condition_images
|
798 |
+
test_data_ipadapter_image_name = test_data_condition_images_name
|
799 |
+
|
800 |
+
logger.debug(f"test_data_ipadapter_image use test_data_condition_images")
|
801 |
+
else:
|
802 |
+
(
|
803 |
+
test_data_ipadapter_image,
|
804 |
+
test_data_ipadapter_image_name,
|
805 |
+
) = read_image_and_name(test_data_ipadapter_image_path)
|
806 |
+
logger.debug(
|
807 |
+
f"test_data_ipadapter_image use f{test_data_ipadapter_image_path}"
|
808 |
+
)
|
809 |
+
else:
|
810 |
+
test_data_ipadapter_image = None
|
811 |
+
test_data_ipadapter_image_name = "no"
|
812 |
+
logger.debug(f"test_data_ipadapter_image is None")
|
813 |
+
|
814 |
+
# 准备 test_data_refer_face_image
|
815 |
+
if facein_image_proj is not None or ip_adapter_face_image_proj is not None:
|
816 |
+
if test_data_refer_face_image_path is None:
|
817 |
+
test_data_refer_face_image = test_data_condition_images
|
818 |
+
test_data_refer_face_image_name = test_data_condition_images_name
|
819 |
+
|
820 |
+
logger.debug(f"test_data_refer_face_image use test_data_condition_images")
|
821 |
+
else:
|
822 |
+
(
|
823 |
+
test_data_refer_face_image,
|
824 |
+
test_data_refer_face_image_name,
|
825 |
+
) = read_image_and_name(test_data_refer_face_image_path)
|
826 |
+
logger.debug(
|
827 |
+
f"test_data_refer_face_image use f{test_data_refer_face_image_path}"
|
828 |
+
)
|
829 |
+
else:
|
830 |
+
test_data_refer_face_image = None
|
831 |
+
test_data_refer_face_image_name = "no"
|
832 |
+
logger.debug(f"test_data_refer_face_image is None")
|
833 |
+
|
834 |
+
# # 当模型的sex、style与test_data同时存在且不相等时,就跳过这个测试用例
|
835 |
+
# if (
|
836 |
+
# model_sex is not None
|
837 |
+
# and test_data_sex is not None
|
838 |
+
# and model_sex != test_data_sex
|
839 |
+
# ) or (
|
840 |
+
# model_style is not None
|
841 |
+
# and test_data_style is not None
|
842 |
+
# and model_style != test_data_style
|
843 |
+
# ):
|
844 |
+
# print("model doesnt match test_data")
|
845 |
+
# print("model name: ", model_name)
|
846 |
+
# print("test_data: ", test_data)
|
847 |
+
# continue
|
848 |
+
if add_static_video_prompt:
|
849 |
+
test_data_video_negative_prompt = "static video, {}".format(
|
850 |
+
test_data_video_negative_prompt
|
851 |
+
)
|
852 |
+
for i_num in range(n_repeat):
|
853 |
+
test_data_seed = random.randint(0, 1e8) if seed in [None, -1] else seed
|
854 |
+
cpu_generator, gpu_generator = set_all_seed(int(test_data_seed))
|
855 |
+
save_file_name = (
|
856 |
+
f"m={model_name}_rm={referencenet_model_name}_case={test_data_name}"
|
857 |
+
f"_w={test_data_width}_h={test_data_height}_t={time_size}_nb={n_batch}"
|
858 |
+
f"_s={test_data_seed}_p={prompt_hash}"
|
859 |
+
f"_w={test_data_img_weight}"
|
860 |
+
f"_ms={test_data_motion_speed}"
|
861 |
+
f"_s={strength}_g={video_guidance_scale}"
|
862 |
+
f"_c-i={test_data_condition_images_name[:5]}_r-c={test_data_redraw_condition_image}"
|
863 |
+
f"_w={test_data_w_ind_noise}_{test_data_video_negative_prompt_name}"
|
864 |
+
f"_r={test_data_refer_image_name[:3]}_ip={test_data_refer_image_name[:3]}_f={test_data_refer_face_image_name[:3]}"
|
865 |
+
)
|
866 |
+
|
867 |
+
save_file_name = clean_str_for_save(save_file_name)
|
868 |
+
output_path = os.path.join(
|
869 |
+
output_dir,
|
870 |
+
f"{save_file_name}.{save_filetype}",
|
871 |
+
)
|
872 |
+
if os.path.exists(output_path) and not overwrite:
|
873 |
+
print("existed", output_path)
|
874 |
+
continue
|
875 |
+
|
876 |
+
print("output_path", output_path)
|
877 |
+
out_videos = sd_predictor.run_pipe_text2video(
|
878 |
+
video_length=time_size,
|
879 |
+
prompt=prompt,
|
880 |
+
width=test_data_width,
|
881 |
+
height=test_data_height,
|
882 |
+
generator=gpu_generator,
|
883 |
+
noise_type=noise_type,
|
884 |
+
negative_prompt=test_data_negative_prompt,
|
885 |
+
video_negative_prompt=test_data_video_negative_prompt,
|
886 |
+
max_batch_num=n_batch,
|
887 |
+
strength=strength,
|
888 |
+
need_img_based_video_noise=need_img_based_video_noise,
|
889 |
+
video_num_inference_steps=video_num_inference_steps,
|
890 |
+
condition_images=test_data_condition_images,
|
891 |
+
fix_condition_images=fix_condition_images,
|
892 |
+
video_guidance_scale=video_guidance_scale,
|
893 |
+
guidance_scale=guidance_scale,
|
894 |
+
num_inference_steps=num_inference_steps,
|
895 |
+
redraw_condition_image=test_data_redraw_condition_image,
|
896 |
+
img_weight=test_data_img_weight,
|
897 |
+
w_ind_noise=test_data_w_ind_noise,
|
898 |
+
n_vision_condition=n_vision_condition,
|
899 |
+
motion_speed=test_data_motion_speed,
|
900 |
+
need_hist_match=need_hist_match,
|
901 |
+
video_guidance_scale_end=video_guidance_scale_end,
|
902 |
+
video_guidance_scale_method=video_guidance_scale_method,
|
903 |
+
vision_condition_latent_index=test_data_condition_images_index,
|
904 |
+
refer_image=test_data_refer_image,
|
905 |
+
fixed_refer_image=fixed_refer_image,
|
906 |
+
redraw_condition_image_with_referencenet=redraw_condition_image_with_referencenet,
|
907 |
+
ip_adapter_image=test_data_ipadapter_image,
|
908 |
+
refer_face_image=test_data_refer_face_image,
|
909 |
+
fixed_refer_face_image=fixed_refer_face_image,
|
910 |
+
facein_scale=facein_scale,
|
911 |
+
redraw_condition_image_with_facein=redraw_condition_image_with_facein,
|
912 |
+
ip_adapter_face_scale=ip_adapter_face_scale,
|
913 |
+
redraw_condition_image_with_ip_adapter_face=redraw_condition_image_with_ip_adapter_face,
|
914 |
+
fixed_ip_adapter_image=fixed_ip_adapter_image,
|
915 |
+
ip_adapter_scale=ip_adapter_scale,
|
916 |
+
redraw_condition_image_with_ipdapter=redraw_condition_image_with_ipdapter,
|
917 |
+
prompt_only_use_image_prompt=prompt_only_use_image_prompt,
|
918 |
+
# need_redraw=need_redraw,
|
919 |
+
# use_video_redraw=use_video_redraw,
|
920 |
+
# serial_denoise parameter start
|
921 |
+
record_mid_video_noises=record_mid_video_noises,
|
922 |
+
record_mid_video_latents=record_mid_video_latents,
|
923 |
+
video_overlap=video_overlap,
|
924 |
+
# serial_denoise parameter end
|
925 |
+
# parallel_denoise parameter start
|
926 |
+
context_schedule=context_schedule,
|
927 |
+
context_frames=context_frames,
|
928 |
+
context_stride=context_stride,
|
929 |
+
context_overlap=context_overlap,
|
930 |
+
context_batch_size=context_batch_size,
|
931 |
+
interpolation_factor=interpolation_factor,
|
932 |
+
# parallel_denoise parameter end
|
933 |
+
)
|
934 |
+
out = np.concatenate([out_videos], axis=0)
|
935 |
+
texts = ["out"]
|
936 |
+
save_videos_grid_with_opencv(
|
937 |
+
out,
|
938 |
+
output_path,
|
939 |
+
texts=texts,
|
940 |
+
fps=fps,
|
941 |
+
tensor_order="b c t h w",
|
942 |
+
n_cols=n_cols,
|
943 |
+
write_info=args.write_info,
|
944 |
+
save_filetype=save_filetype,
|
945 |
+
save_images=save_images,
|
946 |
+
)
|
947 |
+
print("Save to", output_path)
|
948 |
+
print("\n" * 2)
|
949 |
+
return output_path
|
gradio_video2video.py
ADDED
@@ -0,0 +1,1039 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import copy
|
3 |
+
import os
|
4 |
+
from pathlib import Path
|
5 |
+
import logging
|
6 |
+
from collections import OrderedDict
|
7 |
+
from pprint import pprint
|
8 |
+
import random
|
9 |
+
import gradio as gr
|
10 |
+
|
11 |
+
import numpy as np
|
12 |
+
from omegaconf import OmegaConf, SCMode
|
13 |
+
import torch
|
14 |
+
from einops import rearrange, repeat
|
15 |
+
import cv2
|
16 |
+
from PIL import Image
|
17 |
+
from diffusers.models.autoencoder_kl import AutoencoderKL
|
18 |
+
|
19 |
+
from mmcm.utils.load_util import load_pyhon_obj
|
20 |
+
from mmcm.utils.seed_util import set_all_seed
|
21 |
+
from mmcm.utils.signature import get_signature_of_string
|
22 |
+
from mmcm.utils.task_util import fiss_tasks, generate_tasks as generate_tasks_from_table
|
23 |
+
from mmcm.vision.utils.data_type_util import is_video, is_image, read_image_as_5d
|
24 |
+
from mmcm.utils.str_util import clean_str_for_save
|
25 |
+
from mmcm.vision.data.video_dataset import DecordVideoDataset
|
26 |
+
from musev.auto_prompt.util import generate_prompts
|
27 |
+
|
28 |
+
from musev.models.controlnet import PoseGuider
|
29 |
+
from musev.models.facein_loader import load_facein_extractor_and_proj_by_name
|
30 |
+
from musev.models.referencenet_loader import load_referencenet_by_name
|
31 |
+
from musev.models.ip_adapter_loader import (
|
32 |
+
load_ip_adapter_vision_clip_encoder_by_name,
|
33 |
+
load_vision_clip_encoder_by_name,
|
34 |
+
load_ip_adapter_image_proj_by_name,
|
35 |
+
)
|
36 |
+
from musev.models.ip_adapter_face_loader import (
|
37 |
+
load_ip_adapter_face_extractor_and_proj_by_name,
|
38 |
+
)
|
39 |
+
from musev.pipelines.pipeline_controlnet_predictor import (
|
40 |
+
DiffusersPipelinePredictor,
|
41 |
+
)
|
42 |
+
from musev.models.referencenet import ReferenceNet2D
|
43 |
+
from musev.models.unet_loader import load_unet_by_name
|
44 |
+
from musev.utils.util import save_videos_grid_with_opencv
|
45 |
+
from musev import logger
|
46 |
+
|
47 |
+
logger.setLevel("INFO")
|
48 |
+
|
49 |
+
file_dir = os.path.dirname(__file__)
|
50 |
+
PROJECT_DIR = os.path.join(os.path.dirname(__file__), "./")
|
51 |
+
DATA_DIR = os.path.join(PROJECT_DIR, "data")
|
52 |
+
CACHE_PATH = "./t2v_input_image"
|
53 |
+
|
54 |
+
|
55 |
+
# TODO:use group to group arguments
|
56 |
+
args_dict = {
|
57 |
+
"add_static_video_prompt": False,
|
58 |
+
"context_batch_size": 1,
|
59 |
+
"context_frames": 12,
|
60 |
+
"context_overlap": 4,
|
61 |
+
"context_schedule": "uniform_v2",
|
62 |
+
"context_stride": 1,
|
63 |
+
"controlnet_conditioning_scale": 1.0,
|
64 |
+
"controlnet_name": "dwpose_body_hand",
|
65 |
+
"cross_attention_dim": 768,
|
66 |
+
"enable_zero_snr": False,
|
67 |
+
"end_to_end": True,
|
68 |
+
"face_image_path": None,
|
69 |
+
"facein_model_cfg_path": os.path.join(PROJECT_DIR, "./configs/model/facein.py"),
|
70 |
+
"facein_model_name": None,
|
71 |
+
"facein_scale": 1.0,
|
72 |
+
"fix_condition_images": False,
|
73 |
+
"fixed_ip_adapter_image": True,
|
74 |
+
"fixed_refer_face_image": True,
|
75 |
+
"fixed_refer_image": True,
|
76 |
+
"fps": 4,
|
77 |
+
"guidance_scale": 7.5,
|
78 |
+
"height": None,
|
79 |
+
"img_length_ratio": 1.0,
|
80 |
+
"img_weight": 0.001,
|
81 |
+
"interpolation_factor": 1,
|
82 |
+
"ip_adapter_face_model_cfg_path": os.path.join(
|
83 |
+
PROJECT_DIR, "./configs/model/ip_adapter.py"
|
84 |
+
),
|
85 |
+
"ip_adapter_face_model_name": None,
|
86 |
+
"ip_adapter_face_scale": 1.0,
|
87 |
+
"ip_adapter_model_cfg_path": os.path.join(
|
88 |
+
PROJECT_DIR, "./configs/model/ip_adapter.py"
|
89 |
+
),
|
90 |
+
"ip_adapter_model_name": "musev_referencenet",
|
91 |
+
"ip_adapter_scale": 1.0,
|
92 |
+
"ipadapter_image_path": None,
|
93 |
+
"lcm_model_cfg_path": os.path.join(PROJECT_DIR, "./configs/model/lcm_model.py"),
|
94 |
+
"lcm_model_name": None,
|
95 |
+
"log_level": "INFO",
|
96 |
+
"motion_speed": 8.0,
|
97 |
+
"n_batch": 1,
|
98 |
+
"n_cols": 3,
|
99 |
+
"n_repeat": 1,
|
100 |
+
"n_vision_condition": 1,
|
101 |
+
"need_hist_match": False,
|
102 |
+
"need_img_based_video_noise": True,
|
103 |
+
"need_return_condition": False,
|
104 |
+
"need_return_videos": False,
|
105 |
+
"need_video2video": False,
|
106 |
+
"negative_prompt": "V2",
|
107 |
+
"negprompt_cfg_path": os.path.join(
|
108 |
+
PROJECT_DIR, "./configs/model/negative_prompt.py"
|
109 |
+
),
|
110 |
+
"noise_type": "video_fusion",
|
111 |
+
"num_inference_steps": 30,
|
112 |
+
"output_dir": "./results/",
|
113 |
+
"overwrite": False,
|
114 |
+
"pose_guider_model_path": None,
|
115 |
+
"prompt_only_use_image_prompt": False,
|
116 |
+
"record_mid_video_latents": False,
|
117 |
+
"record_mid_video_noises": False,
|
118 |
+
"redraw_condition_image": False,
|
119 |
+
"redraw_condition_image_with_facein": True,
|
120 |
+
"redraw_condition_image_with_ip_adapter_face": True,
|
121 |
+
"redraw_condition_image_with_ipdapter": True,
|
122 |
+
"redraw_condition_image_with_referencenet": True,
|
123 |
+
"referencenet_image_path": None,
|
124 |
+
"referencenet_model_cfg_path": os.path.join(
|
125 |
+
PROJECT_DIR, "./configs/model/referencenet.py"
|
126 |
+
),
|
127 |
+
"referencenet_model_name": "musev_referencenet",
|
128 |
+
"sample_rate": 1,
|
129 |
+
"save_filetype": "mp4",
|
130 |
+
"save_images": False,
|
131 |
+
"sd_model_cfg_path": os.path.join(PROJECT_DIR, "./configs/model/T2I_all_model.py"),
|
132 |
+
"sd_model_name": "majicmixRealv6Fp16",
|
133 |
+
"seed": None,
|
134 |
+
"strength": 0.8,
|
135 |
+
"target_datas": "boy_dance2",
|
136 |
+
"test_data_path": os.path.join(
|
137 |
+
PROJECT_DIR, "./configs/infer/testcase_video_famous.yaml"
|
138 |
+
),
|
139 |
+
"time_size": 24,
|
140 |
+
"unet_model_cfg_path": os.path.join(PROJECT_DIR, "./configs/model/motion_model.py"),
|
141 |
+
"unet_model_name": "musev_referencenet",
|
142 |
+
"use_condition_image": True,
|
143 |
+
"use_video_redraw": True,
|
144 |
+
"vae_model_path": os.path.join(PROJECT_DIR, "./checkpoints/vae/sd-vae-ft-mse"),
|
145 |
+
"video_guidance_scale": 3.5,
|
146 |
+
"video_guidance_scale_end": None,
|
147 |
+
"video_guidance_scale_method": "linear",
|
148 |
+
"video_has_condition": True,
|
149 |
+
"video_is_middle": False,
|
150 |
+
"video_negative_prompt": "V2",
|
151 |
+
"video_num_inference_steps": 10,
|
152 |
+
"video_overlap": 1,
|
153 |
+
"video_strength": 1.0,
|
154 |
+
"vision_clip_extractor_class_name": "ImageClipVisionFeatureExtractor",
|
155 |
+
"vision_clip_model_path": os.path.join(
|
156 |
+
PROJECT_DIR, "./checkpoints/IP-Adapter/models/image_encoder"
|
157 |
+
),
|
158 |
+
"w_ind_noise": 0.5,
|
159 |
+
"which2video": "video_middle",
|
160 |
+
"width": None,
|
161 |
+
"write_info": False,
|
162 |
+
}
|
163 |
+
args = argparse.Namespace(**args_dict)
|
164 |
+
print("args")
|
165 |
+
pprint(args.__dict__)
|
166 |
+
print("\n")
|
167 |
+
|
168 |
+
logger.setLevel(args.log_level)
|
169 |
+
overwrite = args.overwrite
|
170 |
+
cross_attention_dim = args.cross_attention_dim
|
171 |
+
time_size = args.time_size # 一次视频生成的帧数
|
172 |
+
n_batch = args.n_batch # 按照time_size的尺寸 生成n_batch次,总帧数 = time_size * n_batch
|
173 |
+
fps = args.fps
|
174 |
+
fix_condition_images = args.fix_condition_images
|
175 |
+
use_condition_image = args.use_condition_image # 当 test_data 中有图像时,作为初始图像
|
176 |
+
redraw_condition_image = args.redraw_condition_image # 用于视频生成的首帧是否使用重绘后的
|
177 |
+
need_img_based_video_noise = (
|
178 |
+
args.need_img_based_video_noise
|
179 |
+
) # 视频加噪过程中是否使用首帧 condition_images
|
180 |
+
img_weight = args.img_weight
|
181 |
+
height = args.height # 如果测试数据中没有单独指定宽高,则默认这里
|
182 |
+
width = args.width # 如果测试数据中没有单独指定宽高,则默认这里
|
183 |
+
img_length_ratio = args.img_length_ratio # 如果测试数据中没有单独指定图像宽高比resize比例,则默认这里
|
184 |
+
n_cols = args.n_cols
|
185 |
+
noise_type = args.noise_type
|
186 |
+
strength = args.strength # 首帧重绘程度参数
|
187 |
+
video_guidance_scale = args.video_guidance_scale # 视频 condition与 uncond的权重参数
|
188 |
+
guidance_scale = args.guidance_scale # 时序条件帧 condition与uncond的权重参数
|
189 |
+
video_num_inference_steps = args.video_num_inference_steps # 视频迭代次数
|
190 |
+
num_inference_steps = args.num_inference_steps # 时序条件帧 重绘参数
|
191 |
+
seed = args.seed
|
192 |
+
save_filetype = args.save_filetype
|
193 |
+
save_images = args.save_images
|
194 |
+
sd_model_cfg_path = args.sd_model_cfg_path
|
195 |
+
sd_model_name = (
|
196 |
+
args.sd_model_name if args.sd_model_name == "all" else args.sd_model_name.split(",")
|
197 |
+
)
|
198 |
+
unet_model_cfg_path = args.unet_model_cfg_path
|
199 |
+
unet_model_name = args.unet_model_name
|
200 |
+
test_data_path = args.test_data_path
|
201 |
+
target_datas = (
|
202 |
+
args.target_datas if args.target_datas == "all" else args.target_datas.split(",")
|
203 |
+
)
|
204 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
205 |
+
torch_dtype = torch.float16
|
206 |
+
controlnet_name = args.controlnet_name
|
207 |
+
controlnet_name_str = controlnet_name
|
208 |
+
if controlnet_name is not None:
|
209 |
+
controlnet_name = controlnet_name.split(",")
|
210 |
+
if len(controlnet_name) == 1:
|
211 |
+
controlnet_name = controlnet_name[0]
|
212 |
+
|
213 |
+
video_strength = args.video_strength # 视频重绘程度参数
|
214 |
+
sample_rate = args.sample_rate
|
215 |
+
controlnet_conditioning_scale = args.controlnet_conditioning_scale
|
216 |
+
|
217 |
+
end_to_end = args.end_to_end # 是否首尾相连生成长视频
|
218 |
+
control_guidance_start = 0.0
|
219 |
+
control_guidance_end = 0.5
|
220 |
+
control_guidance_end = 1.0
|
221 |
+
negprompt_cfg_path = args.negprompt_cfg_path
|
222 |
+
video_negative_prompt = args.video_negative_prompt
|
223 |
+
negative_prompt = args.negative_prompt
|
224 |
+
motion_speed = args.motion_speed
|
225 |
+
need_hist_match = args.need_hist_match
|
226 |
+
video_guidance_scale_end = args.video_guidance_scale_end
|
227 |
+
video_guidance_scale_method = args.video_guidance_scale_method
|
228 |
+
add_static_video_prompt = args.add_static_video_prompt
|
229 |
+
n_vision_condition = args.n_vision_condition
|
230 |
+
lcm_model_cfg_path = args.lcm_model_cfg_path
|
231 |
+
lcm_model_name = args.lcm_model_name
|
232 |
+
referencenet_model_cfg_path = args.referencenet_model_cfg_path
|
233 |
+
referencenet_model_name = args.referencenet_model_name
|
234 |
+
ip_adapter_model_cfg_path = args.ip_adapter_model_cfg_path
|
235 |
+
ip_adapter_model_name = args.ip_adapter_model_name
|
236 |
+
vision_clip_model_path = args.vision_clip_model_path
|
237 |
+
vision_clip_extractor_class_name = args.vision_clip_extractor_class_name
|
238 |
+
facein_model_cfg_path = args.facein_model_cfg_path
|
239 |
+
facein_model_name = args.facein_model_name
|
240 |
+
ip_adapter_face_model_cfg_path = args.ip_adapter_face_model_cfg_path
|
241 |
+
ip_adapter_face_model_name = args.ip_adapter_face_model_name
|
242 |
+
|
243 |
+
fixed_refer_image = args.fixed_refer_image
|
244 |
+
fixed_ip_adapter_image = args.fixed_ip_adapter_image
|
245 |
+
fixed_refer_face_image = args.fixed_refer_face_image
|
246 |
+
redraw_condition_image_with_referencenet = args.redraw_condition_image_with_referencenet
|
247 |
+
redraw_condition_image_with_ipdapter = args.redraw_condition_image_with_ipdapter
|
248 |
+
redraw_condition_image_with_facein = args.redraw_condition_image_with_facein
|
249 |
+
redraw_condition_image_with_ip_adapter_face = (
|
250 |
+
args.redraw_condition_image_with_ip_adapter_face
|
251 |
+
)
|
252 |
+
w_ind_noise = args.w_ind_noise
|
253 |
+
ip_adapter_scale = args.ip_adapter_scale
|
254 |
+
facein_scale = args.facein_scale
|
255 |
+
ip_adapter_face_scale = args.ip_adapter_face_scale
|
256 |
+
face_image_path = args.face_image_path
|
257 |
+
ipadapter_image_path = args.ipadapter_image_path
|
258 |
+
referencenet_image_path = args.referencenet_image_path
|
259 |
+
vae_model_path = args.vae_model_path
|
260 |
+
prompt_only_use_image_prompt = args.prompt_only_use_image_prompt
|
261 |
+
pose_guider_model_path = args.pose_guider_model_path
|
262 |
+
need_video2video = args.need_video2video
|
263 |
+
# serial_denoise parameter start
|
264 |
+
record_mid_video_noises = args.record_mid_video_noises
|
265 |
+
record_mid_video_latents = args.record_mid_video_latents
|
266 |
+
video_overlap = args.video_overlap
|
267 |
+
# serial_denoise parameter end
|
268 |
+
# parallel_denoise parameter start
|
269 |
+
context_schedule = args.context_schedule
|
270 |
+
context_frames = args.context_frames
|
271 |
+
context_stride = args.context_stride
|
272 |
+
context_overlap = args.context_overlap
|
273 |
+
context_batch_size = args.context_batch_size
|
274 |
+
interpolation_factor = args.interpolation_factor
|
275 |
+
n_repeat = args.n_repeat
|
276 |
+
|
277 |
+
video_is_middle = args.video_is_middle
|
278 |
+
video_has_condition = args.video_has_condition
|
279 |
+
need_return_videos = args.need_return_videos
|
280 |
+
need_return_condition = args.need_return_condition
|
281 |
+
# parallel_denoise parameter end
|
282 |
+
need_controlnet = controlnet_name is not None
|
283 |
+
|
284 |
+
which2video = args.which2video
|
285 |
+
if which2video == "video":
|
286 |
+
which2video_name = "v2v"
|
287 |
+
elif which2video == "video_middle":
|
288 |
+
which2video_name = "vm2v"
|
289 |
+
else:
|
290 |
+
raise ValueError(
|
291 |
+
"which2video only support video, video_middle, but given {which2video}"
|
292 |
+
)
|
293 |
+
b = 1
|
294 |
+
negative_embedding = [
|
295 |
+
[os.path.join(PROJECT_DIR, "./checkpoints/embedding/badhandv4.pt"), "badhandv4"],
|
296 |
+
[
|
297 |
+
os.path.join(PROJECT_DIR, "./checkpoints/embedding/ng_deepnegative_v1_75t.pt"),
|
298 |
+
"ng_deepnegative_v1_75t",
|
299 |
+
],
|
300 |
+
[
|
301 |
+
os.path.join(PROJECT_DIR, "./checkpoints/embedding/EasyNegativeV2.safetensors"),
|
302 |
+
"EasyNegativeV2",
|
303 |
+
],
|
304 |
+
[
|
305 |
+
os.path.join(PROJECT_DIR, "./checkpoints/embedding/bad_prompt_version2-neg.pt"),
|
306 |
+
"bad_prompt_version2-neg",
|
307 |
+
],
|
308 |
+
]
|
309 |
+
prefix_prompt = ""
|
310 |
+
suffix_prompt = ", beautiful, masterpiece, best quality"
|
311 |
+
suffix_prompt = ""
|
312 |
+
|
313 |
+
if sd_model_name != "None":
|
314 |
+
# 使用 cfg_path 里的sd_model_path
|
315 |
+
sd_model_params_dict_src = load_pyhon_obj(sd_model_cfg_path, "MODEL_CFG")
|
316 |
+
sd_model_params_dict = {
|
317 |
+
k: v
|
318 |
+
for k, v in sd_model_params_dict_src.items()
|
319 |
+
if sd_model_name == "all" or k in sd_model_name
|
320 |
+
}
|
321 |
+
else:
|
322 |
+
# 使用命令行给的sd_model_path, 需要单独设置 sd_model_name 为None,
|
323 |
+
sd_model_name = os.path.basename(sd_model_cfg_path).split(".")[0]
|
324 |
+
sd_model_params_dict = {sd_model_name: {"sd": sd_model_cfg_path}}
|
325 |
+
sd_model_params_dict_src = sd_model_params_dict
|
326 |
+
if len(sd_model_params_dict) == 0:
|
327 |
+
raise ValueError(
|
328 |
+
"has not target model, please set one of {}".format(
|
329 |
+
" ".join(list(sd_model_params_dict_src.keys()))
|
330 |
+
)
|
331 |
+
)
|
332 |
+
print("running model, T2I SD")
|
333 |
+
pprint(sd_model_params_dict)
|
334 |
+
|
335 |
+
# lcm
|
336 |
+
if lcm_model_name is not None:
|
337 |
+
lcm_model_params_dict_src = load_pyhon_obj(lcm_model_cfg_path, "MODEL_CFG")
|
338 |
+
print("lcm_model_params_dict_src")
|
339 |
+
lcm_lora_dct = lcm_model_params_dict_src[lcm_model_name]
|
340 |
+
else:
|
341 |
+
lcm_lora_dct = None
|
342 |
+
print("lcm: ", lcm_model_name, lcm_lora_dct)
|
343 |
+
|
344 |
+
|
345 |
+
# motion net parameters
|
346 |
+
if os.path.isdir(unet_model_cfg_path):
|
347 |
+
unet_model_path = unet_model_cfg_path
|
348 |
+
elif os.path.isfile(unet_model_cfg_path):
|
349 |
+
unet_model_params_dict_src = load_pyhon_obj(unet_model_cfg_path, "MODEL_CFG")
|
350 |
+
print("unet_model_params_dict_src", unet_model_params_dict_src.keys())
|
351 |
+
unet_model_path = unet_model_params_dict_src[unet_model_name]["unet"]
|
352 |
+
else:
|
353 |
+
raise ValueError(f"expect dir or file, but given {unet_model_cfg_path}")
|
354 |
+
print("unet: ", unet_model_name, unet_model_path)
|
355 |
+
|
356 |
+
|
357 |
+
# referencenet
|
358 |
+
if referencenet_model_name is not None:
|
359 |
+
if os.path.isdir(referencenet_model_cfg_path):
|
360 |
+
referencenet_model_path = referencenet_model_cfg_path
|
361 |
+
elif os.path.isfile(referencenet_model_cfg_path):
|
362 |
+
referencenet_model_params_dict_src = load_pyhon_obj(
|
363 |
+
referencenet_model_cfg_path, "MODEL_CFG"
|
364 |
+
)
|
365 |
+
print(
|
366 |
+
"referencenet_model_params_dict_src",
|
367 |
+
referencenet_model_params_dict_src.keys(),
|
368 |
+
)
|
369 |
+
referencenet_model_path = referencenet_model_params_dict_src[
|
370 |
+
referencenet_model_name
|
371 |
+
]["net"]
|
372 |
+
else:
|
373 |
+
raise ValueError(f"expect dir or file, but given {referencenet_model_cfg_path}")
|
374 |
+
else:
|
375 |
+
referencenet_model_path = None
|
376 |
+
print("referencenet: ", referencenet_model_name, referencenet_model_path)
|
377 |
+
|
378 |
+
|
379 |
+
# ip_adapter
|
380 |
+
if ip_adapter_model_name is not None:
|
381 |
+
ip_adapter_model_params_dict_src = load_pyhon_obj(
|
382 |
+
ip_adapter_model_cfg_path, "MODEL_CFG"
|
383 |
+
)
|
384 |
+
print("ip_adapter_model_params_dict_src", ip_adapter_model_params_dict_src.keys())
|
385 |
+
ip_adapter_model_params_dict = ip_adapter_model_params_dict_src[
|
386 |
+
ip_adapter_model_name
|
387 |
+
]
|
388 |
+
else:
|
389 |
+
ip_adapter_model_params_dict = None
|
390 |
+
print("ip_adapter: ", ip_adapter_model_name, ip_adapter_model_params_dict)
|
391 |
+
|
392 |
+
|
393 |
+
# facein
|
394 |
+
if facein_model_name is not None:
|
395 |
+
facein_model_params_dict_src = load_pyhon_obj(facein_model_cfg_path, "MODEL_CFG")
|
396 |
+
print("facein_model_params_dict_src", facein_model_params_dict_src.keys())
|
397 |
+
facein_model_params_dict = facein_model_params_dict_src[facein_model_name]
|
398 |
+
else:
|
399 |
+
facein_model_params_dict = None
|
400 |
+
print("facein: ", facein_model_name, facein_model_params_dict)
|
401 |
+
|
402 |
+
# ip_adapter_face
|
403 |
+
if ip_adapter_face_model_name is not None:
|
404 |
+
ip_adapter_face_model_params_dict_src = load_pyhon_obj(
|
405 |
+
ip_adapter_face_model_cfg_path, "MODEL_CFG"
|
406 |
+
)
|
407 |
+
print(
|
408 |
+
"ip_adapter_face_model_params_dict_src",
|
409 |
+
ip_adapter_face_model_params_dict_src.keys(),
|
410 |
+
)
|
411 |
+
ip_adapter_face_model_params_dict = ip_adapter_face_model_params_dict_src[
|
412 |
+
ip_adapter_face_model_name
|
413 |
+
]
|
414 |
+
else:
|
415 |
+
ip_adapter_face_model_params_dict = None
|
416 |
+
print(
|
417 |
+
"ip_adapter_face: ", ip_adapter_face_model_name, ip_adapter_face_model_params_dict
|
418 |
+
)
|
419 |
+
|
420 |
+
|
421 |
+
# negative_prompt
|
422 |
+
def get_negative_prompt(negative_prompt, cfg_path=None, n: int = 10):
|
423 |
+
name = negative_prompt[:n]
|
424 |
+
if cfg_path is not None and cfg_path not in ["None", "none"]:
|
425 |
+
dct = load_pyhon_obj(cfg_path, "Negative_Prompt_CFG")
|
426 |
+
negative_prompt = dct[negative_prompt]["prompt"]
|
427 |
+
|
428 |
+
return name, negative_prompt
|
429 |
+
|
430 |
+
|
431 |
+
negtive_prompt_length = 10
|
432 |
+
video_negative_prompt_name, video_negative_prompt = get_negative_prompt(
|
433 |
+
video_negative_prompt,
|
434 |
+
cfg_path=negprompt_cfg_path,
|
435 |
+
n=negtive_prompt_length,
|
436 |
+
)
|
437 |
+
negative_prompt_name, negative_prompt = get_negative_prompt(
|
438 |
+
negative_prompt,
|
439 |
+
cfg_path=negprompt_cfg_path,
|
440 |
+
n=negtive_prompt_length,
|
441 |
+
)
|
442 |
+
|
443 |
+
print("video_negprompt", video_negative_prompt_name, video_negative_prompt)
|
444 |
+
print("negprompt", negative_prompt_name, negative_prompt)
|
445 |
+
|
446 |
+
output_dir = args.output_dir
|
447 |
+
os.makedirs(output_dir, exist_ok=True)
|
448 |
+
|
449 |
+
|
450 |
+
# test_data_parameters
|
451 |
+
def load_yaml(path):
|
452 |
+
tasks = OmegaConf.to_container(
|
453 |
+
OmegaConf.load(path), structured_config_mode=SCMode.INSTANTIATE, resolve=True
|
454 |
+
)
|
455 |
+
return tasks
|
456 |
+
|
457 |
+
|
458 |
+
# if test_data_path.endswith(".yaml"):
|
459 |
+
# test_datas_src = load_yaml(test_data_path)
|
460 |
+
# elif test_data_path.endswith(".csv"):
|
461 |
+
# test_datas_src = generate_tasks_from_table(test_data_path)
|
462 |
+
# else:
|
463 |
+
# raise ValueError("expect yaml or csv, but given {}".format(test_data_path))
|
464 |
+
|
465 |
+
# test_datas = [
|
466 |
+
# test_data
|
467 |
+
# for test_data in test_datas_src
|
468 |
+
# if target_datas == "all" or test_data.get("name", None) in target_datas
|
469 |
+
# ]
|
470 |
+
|
471 |
+
# test_datas = fiss_tasks(test_datas)
|
472 |
+
# test_datas = generate_prompts(test_datas)
|
473 |
+
|
474 |
+
# n_test_datas = len(test_datas)
|
475 |
+
# if n_test_datas == 0:
|
476 |
+
# raise ValueError(
|
477 |
+
# "n_test_datas == 0, set target_datas=None or set atleast one of {}".format(
|
478 |
+
# " ".join(list(d.get("name", "None") for d in test_datas_src))
|
479 |
+
# )
|
480 |
+
# )
|
481 |
+
# print("n_test_datas", n_test_datas)
|
482 |
+
# # pprint(test_datas)
|
483 |
+
|
484 |
+
|
485 |
+
def read_image(path):
|
486 |
+
name = os.path.basename(path).split(".")[0]
|
487 |
+
image = read_image_as_5d(path)
|
488 |
+
return image, name
|
489 |
+
|
490 |
+
|
491 |
+
def read_image_lst(path):
|
492 |
+
images_names = [read_image(x) for x in path]
|
493 |
+
images, names = zip(*images_names)
|
494 |
+
images = np.concatenate(images, axis=2)
|
495 |
+
name = "_".join(names)
|
496 |
+
return images, name
|
497 |
+
|
498 |
+
|
499 |
+
def read_image_and_name(path):
|
500 |
+
if isinstance(path, str):
|
501 |
+
path = [path]
|
502 |
+
images, name = read_image_lst(path)
|
503 |
+
return images, name
|
504 |
+
|
505 |
+
|
506 |
+
if referencenet_model_name is not None:
|
507 |
+
referencenet = load_referencenet_by_name(
|
508 |
+
model_name=referencenet_model_name,
|
509 |
+
# sd_model=sd_model_path,
|
510 |
+
# sd_model="../../checkpoints/Moore-AnimateAnyone/AnimateAnyone/reference_unet.pth",
|
511 |
+
sd_referencenet_model=referencenet_model_path,
|
512 |
+
cross_attention_dim=cross_attention_dim,
|
513 |
+
)
|
514 |
+
else:
|
515 |
+
referencenet = None
|
516 |
+
referencenet_model_name = "no"
|
517 |
+
|
518 |
+
if vision_clip_extractor_class_name is not None:
|
519 |
+
vision_clip_extractor = load_vision_clip_encoder_by_name(
|
520 |
+
ip_image_encoder=vision_clip_model_path,
|
521 |
+
vision_clip_extractor_class_name=vision_clip_extractor_class_name,
|
522 |
+
)
|
523 |
+
logger.info(
|
524 |
+
f"vision_clip_extractor, name={vision_clip_extractor_class_name}, path={vision_clip_model_path}"
|
525 |
+
)
|
526 |
+
else:
|
527 |
+
vision_clip_extractor = None
|
528 |
+
logger.info(f"vision_clip_extractor, None")
|
529 |
+
|
530 |
+
if ip_adapter_model_name is not None:
|
531 |
+
ip_adapter_image_proj = load_ip_adapter_image_proj_by_name(
|
532 |
+
model_name=ip_adapter_model_name,
|
533 |
+
ip_image_encoder=ip_adapter_model_params_dict.get(
|
534 |
+
"ip_image_encoder", vision_clip_model_path
|
535 |
+
),
|
536 |
+
ip_ckpt=ip_adapter_model_params_dict["ip_ckpt"],
|
537 |
+
cross_attention_dim=cross_attention_dim,
|
538 |
+
clip_embeddings_dim=ip_adapter_model_params_dict["clip_embeddings_dim"],
|
539 |
+
clip_extra_context_tokens=ip_adapter_model_params_dict[
|
540 |
+
"clip_extra_context_tokens"
|
541 |
+
],
|
542 |
+
ip_scale=ip_adapter_model_params_dict["ip_scale"],
|
543 |
+
device=device,
|
544 |
+
)
|
545 |
+
else:
|
546 |
+
ip_adapter_image_proj = None
|
547 |
+
ip_adapter_model_name = "no"
|
548 |
+
|
549 |
+
if pose_guider_model_path is not None:
|
550 |
+
logger.info(f"PoseGuider ={pose_guider_model_path}")
|
551 |
+
pose_guider = PoseGuider.from_pretrained(
|
552 |
+
pose_guider_model_path,
|
553 |
+
conditioning_embedding_channels=320,
|
554 |
+
block_out_channels=(16, 32, 96, 256),
|
555 |
+
)
|
556 |
+
else:
|
557 |
+
pose_guider = None
|
558 |
+
|
559 |
+
for model_name, sd_model_params in sd_model_params_dict.items():
|
560 |
+
lora_dict = sd_model_params.get("lora", None)
|
561 |
+
model_sex = sd_model_params.get("sex", None)
|
562 |
+
model_style = sd_model_params.get("style", None)
|
563 |
+
sd_model_path = sd_model_params["sd"]
|
564 |
+
test_model_vae_model_path = sd_model_params.get("vae", vae_model_path)
|
565 |
+
|
566 |
+
unet = load_unet_by_name(
|
567 |
+
model_name=unet_model_name,
|
568 |
+
sd_unet_model=unet_model_path,
|
569 |
+
sd_model=sd_model_path,
|
570 |
+
# sd_model="../../checkpoints/Moore-AnimateAnyone/AnimateAnyone/denoising_unet.pth",
|
571 |
+
cross_attention_dim=cross_attention_dim,
|
572 |
+
need_t2i_facein=facein_model_name is not None,
|
573 |
+
# facein 目前没参与训练,但在unet中定义了,载入相关参数会报错,所以用strict控制
|
574 |
+
strict=not (facein_model_name is not None),
|
575 |
+
need_t2i_ip_adapter_face=ip_adapter_face_model_name is not None,
|
576 |
+
)
|
577 |
+
|
578 |
+
if facein_model_name is not None:
|
579 |
+
(
|
580 |
+
face_emb_extractor,
|
581 |
+
facein_image_proj,
|
582 |
+
) = load_facein_extractor_and_proj_by_name(
|
583 |
+
model_name=facein_model_name,
|
584 |
+
ip_image_encoder=facein_model_params_dict["ip_image_encoder"],
|
585 |
+
ip_ckpt=facein_model_params_dict["ip_ckpt"],
|
586 |
+
cross_attention_dim=cross_attention_dim,
|
587 |
+
clip_embeddings_dim=facein_model_params_dict["clip_embeddings_dim"],
|
588 |
+
clip_extra_context_tokens=facein_model_params_dict[
|
589 |
+
"clip_extra_context_tokens"
|
590 |
+
],
|
591 |
+
ip_scale=facein_model_params_dict["ip_scale"],
|
592 |
+
device=device,
|
593 |
+
# facein目前没有参与unet中的训练,需要单独载入参数
|
594 |
+
unet=unet,
|
595 |
+
)
|
596 |
+
else:
|
597 |
+
face_emb_extractor = None
|
598 |
+
facein_image_proj = None
|
599 |
+
|
600 |
+
if ip_adapter_face_model_name is not None:
|
601 |
+
(
|
602 |
+
ip_adapter_face_emb_extractor,
|
603 |
+
ip_adapter_face_image_proj,
|
604 |
+
) = load_ip_adapter_face_extractor_and_proj_by_name(
|
605 |
+
model_name=ip_adapter_face_model_name,
|
606 |
+
ip_image_encoder=ip_adapter_face_model_params_dict["ip_image_encoder"],
|
607 |
+
ip_ckpt=ip_adapter_face_model_params_dict["ip_ckpt"],
|
608 |
+
cross_attention_dim=cross_attention_dim,
|
609 |
+
clip_embeddings_dim=ip_adapter_face_model_params_dict[
|
610 |
+
"clip_embeddings_dim"
|
611 |
+
],
|
612 |
+
clip_extra_context_tokens=ip_adapter_face_model_params_dict[
|
613 |
+
"clip_extra_context_tokens"
|
614 |
+
],
|
615 |
+
ip_scale=ip_adapter_face_model_params_dict["ip_scale"],
|
616 |
+
device=device,
|
617 |
+
unet=unet, # ip_adapter_face 目前没有参与unet中的训练,需要单独载入参数
|
618 |
+
)
|
619 |
+
else:
|
620 |
+
ip_adapter_face_emb_extractor = None
|
621 |
+
ip_adapter_face_image_proj = None
|
622 |
+
|
623 |
+
print("test_model_vae_model_path", test_model_vae_model_path)
|
624 |
+
|
625 |
+
sd_predictor = DiffusersPipelinePredictor(
|
626 |
+
sd_model_path=sd_model_path,
|
627 |
+
unet=unet,
|
628 |
+
lora_dict=lora_dict,
|
629 |
+
lcm_lora_dct=lcm_lora_dct,
|
630 |
+
device=device,
|
631 |
+
dtype=torch_dtype,
|
632 |
+
negative_embedding=negative_embedding,
|
633 |
+
referencenet=referencenet,
|
634 |
+
ip_adapter_image_proj=ip_adapter_image_proj,
|
635 |
+
vision_clip_extractor=vision_clip_extractor,
|
636 |
+
facein_image_proj=facein_image_proj,
|
637 |
+
face_emb_extractor=face_emb_extractor,
|
638 |
+
vae_model=test_model_vae_model_path,
|
639 |
+
ip_adapter_face_emb_extractor=ip_adapter_face_emb_extractor,
|
640 |
+
ip_adapter_face_image_proj=ip_adapter_face_image_proj,
|
641 |
+
pose_guider=pose_guider,
|
642 |
+
controlnet_name=controlnet_name,
|
643 |
+
# TODO: 一些过期参数,待去掉
|
644 |
+
include_body=True,
|
645 |
+
include_face=False,
|
646 |
+
include_hand=True,
|
647 |
+
enable_zero_snr=args.enable_zero_snr,
|
648 |
+
)
|
649 |
+
logger.debug(f"load referencenet"),
|
650 |
+
|
651 |
+
# TODO:这里修改为gradio
|
652 |
+
import cuid
|
653 |
+
|
654 |
+
|
655 |
+
def generate_cuid():
|
656 |
+
return cuid.cuid()
|
657 |
+
|
658 |
+
|
659 |
+
def online_v2v_inference(
|
660 |
+
prompt,
|
661 |
+
image_np,
|
662 |
+
video,
|
663 |
+
processor,
|
664 |
+
seed,
|
665 |
+
fps,
|
666 |
+
w,
|
667 |
+
h,
|
668 |
+
video_length,
|
669 |
+
img_edge_ratio: float = 1.0,
|
670 |
+
progress=gr.Progress(track_tqdm=True),
|
671 |
+
):
|
672 |
+
progress(0, desc="Starting...")
|
673 |
+
# Save the uploaded image to a specified path
|
674 |
+
if not os.path.exists(CACHE_PATH):
|
675 |
+
os.makedirs(CACHE_PATH)
|
676 |
+
image_cuid = generate_cuid()
|
677 |
+
import pdb
|
678 |
+
|
679 |
+
image_path = os.path.join(CACHE_PATH, f"{image_cuid}.jpg")
|
680 |
+
image = Image.fromarray(image_np)
|
681 |
+
image.save(image_path)
|
682 |
+
time_size = int(video_length)
|
683 |
+
test_data = {
|
684 |
+
"name": image_cuid,
|
685 |
+
"prompt": prompt,
|
686 |
+
"video_path": video,
|
687 |
+
"condition_images": image_path,
|
688 |
+
"refer_image": image_path,
|
689 |
+
"ipadapter_image": image_path,
|
690 |
+
"height": h,
|
691 |
+
"width": w,
|
692 |
+
"img_length_ratio": img_edge_ratio,
|
693 |
+
# 'style': 'anime',
|
694 |
+
# 'sex': 'female'
|
695 |
+
}
|
696 |
+
batch = []
|
697 |
+
texts = []
|
698 |
+
video_path = test_data.get("video_path")
|
699 |
+
video_reader = DecordVideoDataset(
|
700 |
+
video_path,
|
701 |
+
time_size=int(video_length),
|
702 |
+
step=time_size,
|
703 |
+
sample_rate=sample_rate,
|
704 |
+
device="cpu",
|
705 |
+
data_type="rgb",
|
706 |
+
channels_order="c t h w",
|
707 |
+
drop_last=True,
|
708 |
+
)
|
709 |
+
video_height = video_reader.height
|
710 |
+
video_width = video_reader.width
|
711 |
+
|
712 |
+
print("\n i_test_data", test_data, model_name)
|
713 |
+
test_data_name = test_data.get("name", test_data)
|
714 |
+
prompt = test_data["prompt"]
|
715 |
+
prompt = prefix_prompt + prompt + suffix_prompt
|
716 |
+
prompt_hash = get_signature_of_string(prompt, length=5)
|
717 |
+
test_data["prompt_hash"] = prompt_hash
|
718 |
+
test_data_height = test_data.get("height", height)
|
719 |
+
test_data_width = test_data.get("width", width)
|
720 |
+
test_data_condition_images_path = test_data.get("condition_images", None)
|
721 |
+
test_data_condition_images_index = test_data.get("condition_images_index", None)
|
722 |
+
test_data_redraw_condition_image = test_data.get(
|
723 |
+
"redraw_condition_image", redraw_condition_image
|
724 |
+
)
|
725 |
+
# read condition_image
|
726 |
+
if (
|
727 |
+
test_data_condition_images_path is not None
|
728 |
+
and use_condition_image
|
729 |
+
and (
|
730 |
+
isinstance(test_data_condition_images_path, list)
|
731 |
+
or (
|
732 |
+
isinstance(test_data_condition_images_path, str)
|
733 |
+
and is_image(test_data_condition_images_path)
|
734 |
+
)
|
735 |
+
)
|
736 |
+
):
|
737 |
+
(
|
738 |
+
test_data_condition_images,
|
739 |
+
test_data_condition_images_name,
|
740 |
+
) = read_image_and_name(test_data_condition_images_path)
|
741 |
+
condition_image_height = test_data_condition_images.shape[3]
|
742 |
+
condition_image_width = test_data_condition_images.shape[4]
|
743 |
+
logger.debug(
|
744 |
+
f"test_data_condition_images use {test_data_condition_images_path}"
|
745 |
+
)
|
746 |
+
else:
|
747 |
+
test_data_condition_images = None
|
748 |
+
test_data_condition_images_name = "no"
|
749 |
+
condition_image_height = None
|
750 |
+
condition_image_width = None
|
751 |
+
logger.debug(f"test_data_condition_images is None")
|
752 |
+
|
753 |
+
# 当没有指定生成视频的宽高时,使用输入条件的宽高,优先使用 condition_image,低优使用 video
|
754 |
+
if test_data_height in [None, -1]:
|
755 |
+
test_data_height = condition_image_height
|
756 |
+
|
757 |
+
if test_data_width in [None, -1]:
|
758 |
+
test_data_width = condition_image_width
|
759 |
+
|
760 |
+
test_data_img_length_ratio = float(
|
761 |
+
test_data.get("img_length_ratio", img_length_ratio)
|
762 |
+
)
|
763 |
+
|
764 |
+
test_data_height = int(test_data_height * test_data_img_length_ratio // 64 * 64)
|
765 |
+
test_data_width = int(test_data_width * test_data_img_length_ratio // 64 * 64)
|
766 |
+
pprint(test_data)
|
767 |
+
print(f"test_data_height={test_data_height}")
|
768 |
+
print(f"test_data_width={test_data_width}")
|
769 |
+
# continue
|
770 |
+
test_data_style = test_data.get("style", None)
|
771 |
+
test_data_sex = test_data.get("sex", None)
|
772 |
+
# 如果使用|进行多参数任务设置时对应的字段是字符串类型,需要显式转换浮点数。
|
773 |
+
test_data_motion_speed = float(test_data.get("motion_speed", motion_speed))
|
774 |
+
test_data_w_ind_noise = float(test_data.get("w_ind_noise", w_ind_noise))
|
775 |
+
test_data_img_weight = float(test_data.get("img_weight", img_weight))
|
776 |
+
logger.debug(f"test_data_condition_images_path {test_data_condition_images_path}")
|
777 |
+
logger.debug(f"test_data_condition_images_index {test_data_condition_images_index}")
|
778 |
+
test_data_refer_image_path = test_data.get("refer_image", referencenet_image_path)
|
779 |
+
test_data_ipadapter_image_path = test_data.get(
|
780 |
+
"ipadapter_image", ipadapter_image_path
|
781 |
+
)
|
782 |
+
test_data_refer_face_image_path = test_data.get("face_image", face_image_path)
|
783 |
+
test_data_video_is_middle = test_data.get("video_is_middle", video_is_middle)
|
784 |
+
test_data_video_has_condition = test_data.get(
|
785 |
+
"video_has_condition", video_has_condition
|
786 |
+
)
|
787 |
+
|
788 |
+
controlnet_processor_params = {
|
789 |
+
"detect_resolution": min(test_data_height, test_data_width),
|
790 |
+
"image_resolution": min(test_data_height, test_data_width),
|
791 |
+
}
|
792 |
+
if negprompt_cfg_path is not None:
|
793 |
+
if "video_negative_prompt" in test_data:
|
794 |
+
(
|
795 |
+
test_data_video_negative_prompt_name,
|
796 |
+
test_data_video_negative_prompt,
|
797 |
+
) = get_negative_prompt(
|
798 |
+
test_data.get(
|
799 |
+
"video_negative_prompt",
|
800 |
+
),
|
801 |
+
cfg_path=negprompt_cfg_path,
|
802 |
+
n=negtive_prompt_length,
|
803 |
+
)
|
804 |
+
else:
|
805 |
+
test_data_video_negative_prompt_name = video_negative_prompt_name
|
806 |
+
test_data_video_negative_prompt = video_negative_prompt
|
807 |
+
if "negative_prompt" in test_data:
|
808 |
+
(
|
809 |
+
test_data_negative_prompt_name,
|
810 |
+
test_data_negative_prompt,
|
811 |
+
) = get_negative_prompt(
|
812 |
+
test_data.get(
|
813 |
+
"negative_prompt",
|
814 |
+
),
|
815 |
+
cfg_path=negprompt_cfg_path,
|
816 |
+
n=negtive_prompt_length,
|
817 |
+
)
|
818 |
+
else:
|
819 |
+
test_data_negative_prompt_name = negative_prompt_name
|
820 |
+
test_data_negative_prompt = negative_prompt
|
821 |
+
else:
|
822 |
+
test_data_video_negative_prompt = test_data.get(
|
823 |
+
"video_negative_prompt", video_negative_prompt
|
824 |
+
)
|
825 |
+
test_data_video_negative_prompt_name = test_data_video_negative_prompt[
|
826 |
+
:negtive_prompt_length
|
827 |
+
]
|
828 |
+
test_data_negative_prompt = test_data.get("negative_prompt", negative_prompt)
|
829 |
+
test_data_negative_prompt_name = test_data_negative_prompt[
|
830 |
+
:negtive_prompt_length
|
831 |
+
]
|
832 |
+
|
833 |
+
# 准备 test_data_refer_image
|
834 |
+
if referencenet is not None:
|
835 |
+
if test_data_refer_image_path is None:
|
836 |
+
test_data_refer_image = test_data_condition_images
|
837 |
+
test_data_refer_image_name = test_data_condition_images_name
|
838 |
+
logger.debug(f"test_data_refer_image use test_data_condition_images")
|
839 |
+
else:
|
840 |
+
test_data_refer_image, test_data_refer_image_name = read_image_and_name(
|
841 |
+
test_data_refer_image_path
|
842 |
+
)
|
843 |
+
logger.debug(f"test_data_refer_image use {test_data_refer_image_path}")
|
844 |
+
else:
|
845 |
+
test_data_refer_image = None
|
846 |
+
test_data_refer_image_name = "no"
|
847 |
+
logger.debug(f"test_data_refer_image is None")
|
848 |
+
|
849 |
+
# 准备 test_data_ipadapter_image
|
850 |
+
if vision_clip_extractor is not None:
|
851 |
+
if test_data_ipadapter_image_path is None:
|
852 |
+
test_data_ipadapter_image = test_data_condition_images
|
853 |
+
test_data_ipadapter_image_name = test_data_condition_images_name
|
854 |
+
|
855 |
+
logger.debug(f"test_data_ipadapter_image use test_data_condition_images")
|
856 |
+
else:
|
857 |
+
(
|
858 |
+
test_data_ipadapter_image,
|
859 |
+
test_data_ipadapter_image_name,
|
860 |
+
) = read_image_and_name(test_data_ipadapter_image_path)
|
861 |
+
logger.debug(
|
862 |
+
f"test_data_ipadapter_image use f{test_data_ipadapter_image_path}"
|
863 |
+
)
|
864 |
+
else:
|
865 |
+
test_data_ipadapter_image = None
|
866 |
+
test_data_ipadapter_image_name = "no"
|
867 |
+
logger.debug(f"test_data_ipadapter_image is None")
|
868 |
+
|
869 |
+
# 准备 test_data_refer_face_image
|
870 |
+
if facein_image_proj is not None or ip_adapter_face_image_proj is not None:
|
871 |
+
if test_data_refer_face_image_path is None:
|
872 |
+
test_data_refer_face_image = test_data_condition_images
|
873 |
+
test_data_refer_face_image_name = test_data_condition_images_name
|
874 |
+
|
875 |
+
logger.debug(f"test_data_refer_face_image use test_data_condition_images")
|
876 |
+
else:
|
877 |
+
(
|
878 |
+
test_data_refer_face_image,
|
879 |
+
test_data_refer_face_image_name,
|
880 |
+
) = read_image_and_name(test_data_refer_face_image_path)
|
881 |
+
logger.debug(
|
882 |
+
f"test_data_refer_face_image use f{test_data_refer_face_image_path}"
|
883 |
+
)
|
884 |
+
else:
|
885 |
+
test_data_refer_face_image = None
|
886 |
+
test_data_refer_face_image_name = "no"
|
887 |
+
logger.debug(f"test_data_refer_face_image is None")
|
888 |
+
|
889 |
+
# # 当模型的sex、style与test_data同时存在且不相等时,就跳过这个测试用例
|
890 |
+
# if (
|
891 |
+
# model_sex is not None
|
892 |
+
# and test_data_sex is not None
|
893 |
+
# and model_sex != test_data_sex
|
894 |
+
# ) or (
|
895 |
+
# model_style is not None
|
896 |
+
# and test_data_style is not None
|
897 |
+
# and model_style != test_data_style
|
898 |
+
# ):
|
899 |
+
# print("model doesnt match test_data")
|
900 |
+
# print("model name: ", model_name)
|
901 |
+
# print("test_data: ", test_data)
|
902 |
+
# continue
|
903 |
+
# video
|
904 |
+
filename = os.path.basename(video_path).split(".")[0]
|
905 |
+
for i_num in range(n_repeat):
|
906 |
+
test_data_seed = random.randint(0, 1e8) if seed in [None, -1] else seed
|
907 |
+
cpu_generator, gpu_generator = set_all_seed(int(test_data_seed))
|
908 |
+
|
909 |
+
save_file_name = (
|
910 |
+
f"{which2video_name}_m={model_name}_rm={referencenet_model_name}_c={test_data_name}"
|
911 |
+
f"_w={test_data_width}_h={test_data_height}_t={time_size}_n={n_batch}"
|
912 |
+
f"_vn={video_num_inference_steps}"
|
913 |
+
f"_w={test_data_img_weight}_w={test_data_w_ind_noise}"
|
914 |
+
f"_s={test_data_seed}_n={controlnet_name_str}"
|
915 |
+
f"_s={strength}_g={guidance_scale}_vs={video_strength}_vg={video_guidance_scale}"
|
916 |
+
f"_p={prompt_hash}_{test_data_video_negative_prompt_name[:10]}"
|
917 |
+
f"_r={test_data_refer_image_name[:3]}_ip={test_data_refer_image_name[:3]}_f={test_data_refer_face_image_name[:3]}"
|
918 |
+
)
|
919 |
+
save_file_name = clean_str_for_save(save_file_name)
|
920 |
+
output_path = os.path.join(
|
921 |
+
output_dir,
|
922 |
+
f"{save_file_name}.{save_filetype}",
|
923 |
+
)
|
924 |
+
if os.path.exists(output_path) and not overwrite:
|
925 |
+
print("existed", output_path)
|
926 |
+
continue
|
927 |
+
|
928 |
+
if which2video in ["video", "video_middle"]:
|
929 |
+
need_video2video = False
|
930 |
+
if which2video == "video":
|
931 |
+
need_video2video = True
|
932 |
+
|
933 |
+
(
|
934 |
+
out_videos,
|
935 |
+
out_condition,
|
936 |
+
videos,
|
937 |
+
) = sd_predictor.run_pipe_video2video(
|
938 |
+
video=video_path,
|
939 |
+
time_size=time_size,
|
940 |
+
step=time_size,
|
941 |
+
sample_rate=sample_rate,
|
942 |
+
need_return_videos=need_return_videos,
|
943 |
+
need_return_condition=need_return_condition,
|
944 |
+
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
945 |
+
control_guidance_start=control_guidance_start,
|
946 |
+
control_guidance_end=control_guidance_end,
|
947 |
+
end_to_end=end_to_end,
|
948 |
+
need_video2video=need_video2video,
|
949 |
+
video_strength=video_strength,
|
950 |
+
prompt=prompt,
|
951 |
+
width=test_data_width,
|
952 |
+
height=test_data_height,
|
953 |
+
generator=gpu_generator,
|
954 |
+
noise_type=noise_type,
|
955 |
+
negative_prompt=test_data_negative_prompt,
|
956 |
+
video_negative_prompt=test_data_video_negative_prompt,
|
957 |
+
max_batch_num=n_batch,
|
958 |
+
strength=strength,
|
959 |
+
need_img_based_video_noise=need_img_based_video_noise,
|
960 |
+
video_num_inference_steps=video_num_inference_steps,
|
961 |
+
condition_images=test_data_condition_images,
|
962 |
+
fix_condition_images=fix_condition_images,
|
963 |
+
video_guidance_scale=video_guidance_scale,
|
964 |
+
guidance_scale=guidance_scale,
|
965 |
+
num_inference_steps=num_inference_steps,
|
966 |
+
redraw_condition_image=test_data_redraw_condition_image,
|
967 |
+
img_weight=test_data_img_weight,
|
968 |
+
w_ind_noise=test_data_w_ind_noise,
|
969 |
+
n_vision_condition=n_vision_condition,
|
970 |
+
motion_speed=test_data_motion_speed,
|
971 |
+
need_hist_match=need_hist_match,
|
972 |
+
video_guidance_scale_end=video_guidance_scale_end,
|
973 |
+
video_guidance_scale_method=video_guidance_scale_method,
|
974 |
+
vision_condition_latent_index=test_data_condition_images_index,
|
975 |
+
refer_image=test_data_refer_image,
|
976 |
+
fixed_refer_image=fixed_refer_image,
|
977 |
+
redraw_condition_image_with_referencenet=redraw_condition_image_with_referencenet,
|
978 |
+
ip_adapter_image=test_data_ipadapter_image,
|
979 |
+
refer_face_image=test_data_refer_face_image,
|
980 |
+
fixed_refer_face_image=fixed_refer_face_image,
|
981 |
+
facein_scale=facein_scale,
|
982 |
+
redraw_condition_image_with_facein=redraw_condition_image_with_facein,
|
983 |
+
ip_adapter_face_scale=ip_adapter_face_scale,
|
984 |
+
redraw_condition_image_with_ip_adapter_face=redraw_condition_image_with_ip_adapter_face,
|
985 |
+
fixed_ip_adapter_image=fixed_ip_adapter_image,
|
986 |
+
ip_adapter_scale=ip_adapter_scale,
|
987 |
+
redraw_condition_image_with_ipdapter=redraw_condition_image_with_ipdapter,
|
988 |
+
prompt_only_use_image_prompt=prompt_only_use_image_prompt,
|
989 |
+
controlnet_processor_params=controlnet_processor_params,
|
990 |
+
# serial_denoise parameter start
|
991 |
+
record_mid_video_noises=record_mid_video_noises,
|
992 |
+
record_mid_video_latents=record_mid_video_latents,
|
993 |
+
video_overlap=video_overlap,
|
994 |
+
# serial_denoise parameter end
|
995 |
+
# parallel_denoise parameter start
|
996 |
+
context_schedule=context_schedule,
|
997 |
+
context_frames=context_frames,
|
998 |
+
context_stride=context_stride,
|
999 |
+
context_overlap=context_overlap,
|
1000 |
+
context_batch_size=context_batch_size,
|
1001 |
+
interpolation_factor=interpolation_factor,
|
1002 |
+
# parallel_denoise parameter end
|
1003 |
+
video_is_middle=test_data_video_is_middle,
|
1004 |
+
video_has_condition=test_data_video_has_condition,
|
1005 |
+
)
|
1006 |
+
else:
|
1007 |
+
raise ValueError(
|
1008 |
+
f"only support video, videomiddle2video, but given {which2video_name}"
|
1009 |
+
)
|
1010 |
+
print("out_videos.shape", out_videos.shape)
|
1011 |
+
batch = [out_videos]
|
1012 |
+
texts = ["out"]
|
1013 |
+
if videos is not None:
|
1014 |
+
print("videos.shape", videos.shape)
|
1015 |
+
batch.insert(0, videos / 255.0)
|
1016 |
+
texts.insert(0, "videos")
|
1017 |
+
if need_controlnet and out_condition is not None:
|
1018 |
+
if not isinstance(out_condition, list):
|
1019 |
+
print("out_condition", out_condition.shape)
|
1020 |
+
batch.append(out_condition / 255.0)
|
1021 |
+
texts.append(controlnet_name)
|
1022 |
+
else:
|
1023 |
+
batch.extend([x / 255.0 for x in out_condition])
|
1024 |
+
texts.extend(controlnet_name)
|
1025 |
+
out = np.concatenate(batch, axis=0)
|
1026 |
+
save_videos_grid_with_opencv(
|
1027 |
+
out,
|
1028 |
+
output_path,
|
1029 |
+
texts=texts,
|
1030 |
+
fps=fps,
|
1031 |
+
tensor_order="b c t h w",
|
1032 |
+
n_cols=n_cols,
|
1033 |
+
write_info=args.write_info,
|
1034 |
+
save_filetype=save_filetype,
|
1035 |
+
save_images=save_images,
|
1036 |
+
)
|
1037 |
+
print("Save to", output_path)
|
1038 |
+
print("\n" * 2)
|
1039 |
+
return output_path
|
requirements.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
musev @ git+https://github.com/TMElyralab/MuseV.git@setup
|