Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Hugging Face's logo
|
2 |
+
Hugging Face
|
3 |
+
Search models, datasets, users...
|
4 |
+
Models
|
5 |
+
Datasets
|
6 |
+
Spaces
|
7 |
+
Posts
|
8 |
+
Docs
|
9 |
+
Enterprise
|
10 |
+
Pricing
|
11 |
+
|
12 |
+
|
13 |
+
|
14 |
+
Spaces:
|
15 |
+
|
16 |
+
qanastek
|
17 |
+
/
|
18 |
+
Alexa-NLU-Clone
|
19 |
+
|
20 |
+
|
21 |
+
like
|
22 |
+
7
|
23 |
+
App
|
24 |
+
Files
|
25 |
+
Community
|
26 |
+
Alexa-NLU-Clone
|
27 |
+
/
|
28 |
+
app.py
|
29 |
+
|
30 |
+
qanastek's picture
|
31 |
+
qanastek
|
32 |
+
Update
|
33 |
+
51be472
|
34 |
+
over 2 years ago
|
35 |
+
raw
|
36 |
+
|
37 |
+
Copy download link
|
38 |
+
history
|
39 |
+
blame
|
40 |
+
contribute
|
41 |
+
delete
|
42 |
+
|
43 |
+
4.87 kB
|
44 |
+
import gradio as gr
|
45 |
+
|
46 |
+
import os
|
47 |
+
import torch
|
48 |
+
import librosa
|
49 |
+
from glob import glob
|
50 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, TextClassificationPipeline, AutoModelForTokenClassification, TokenClassificationPipeline, Wav2Vec2ForCTC, Wav2Vec2Processor, Wav2Vec2ProcessorWithLM
|
51 |
+
|
52 |
+
SAMPLE_RATE = 16_000
|
53 |
+
|
54 |
+
models = {}
|
55 |
+
|
56 |
+
models_paths = {
|
57 |
+
"en-US": "jonatasgrosman/wav2vec2-large-xlsr-53-english",
|
58 |
+
"fr-FR": "jonatasgrosman/wav2vec2-large-xlsr-53-french",
|
59 |
+
"nl-NL": "jonatasgrosman/wav2vec2-large-xlsr-53-dutch",
|
60 |
+
"pl-PL": "jonatasgrosman/wav2vec2-large-xlsr-53-polish",
|
61 |
+
"it-IT": "jonatasgrosman/wav2vec2-large-xlsr-53-italian",
|
62 |
+
"ru-RU": "jonatasgrosman/wav2vec2-large-xlsr-53-russian",
|
63 |
+
"pt-PT": "jonatasgrosman/wav2vec2-large-xlsr-53-portuguese",
|
64 |
+
"de-DE": "jonatasgrosman/wav2vec2-large-xlsr-53-german",
|
65 |
+
"es-ES": "jonatasgrosman/wav2vec2-large-xlsr-53-spanish",
|
66 |
+
"ja-JP": "jonatasgrosman/wav2vec2-large-xlsr-53-japanese",
|
67 |
+
"ar-SA": "jonatasgrosman/wav2vec2-large-xlsr-53-arabic",
|
68 |
+
"fi-FI": "jonatasgrosman/wav2vec2-large-xlsr-53-finnish",
|
69 |
+
"hu-HU": "jonatasgrosman/wav2vec2-large-xlsr-53-hungarian",
|
70 |
+
"zh-CN": "jonatasgrosman/wav2vec2-large-xlsr-53-chinese-zh-cn",
|
71 |
+
"el-GR": "jonatasgrosman/wav2vec2-large-xlsr-53-greek",
|
72 |
+
}
|
73 |
+
|
74 |
+
# Classifier Intent
|
75 |
+
model_name = 'qanastek/XLMRoberta-Alexa-Intents-Classification'
|
76 |
+
tokenizer_intent = AutoTokenizer.from_pretrained(model_name)
|
77 |
+
model_intent = AutoModelForSequenceClassification.from_pretrained(model_name)
|
78 |
+
classifier_intent = TextClassificationPipeline(model=model_intent, tokenizer=tokenizer_intent)
|
79 |
+
|
80 |
+
# Classifier Language
|
81 |
+
model_name = 'qanastek/51-languages-classifier'
|
82 |
+
tokenizer_langs = AutoTokenizer.from_pretrained(model_name)
|
83 |
+
model_langs = AutoModelForSequenceClassification.from_pretrained(model_name)
|
84 |
+
classifier_language = TextClassificationPipeline(model=model_langs, tokenizer=tokenizer_langs)
|
85 |
+
|
86 |
+
# NER Extractor
|
87 |
+
model_name = 'qanastek/XLMRoberta-Alexa-Intents-NER-NLU'
|
88 |
+
tokenizer_ner = AutoTokenizer.from_pretrained(model_name)
|
89 |
+
model_ner = AutoModelForTokenClassification.from_pretrained(model_name)
|
90 |
+
predict_ner = TokenClassificationPipeline(model=model_ner, tokenizer=tokenizer_ner)
|
91 |
+
|
92 |
+
EXAMPLE_DIR = './wavs/'
|
93 |
+
examples = sorted(glob(os.path.join(EXAMPLE_DIR, '*.wav')))
|
94 |
+
examples = [[e, e.split("=")[0].split("/")[-1]] for e in examples]
|
95 |
+
|
96 |
+
def transcribe(audio_path, lang_code):
|
97 |
+
|
98 |
+
speech_array, sampling_rate = librosa.load(audio_path, sr=16_000)
|
99 |
+
|
100 |
+
if lang_code not in models:
|
101 |
+
models[lang_code] = {}
|
102 |
+
models[lang_code]["processor"] = Wav2Vec2Processor.from_pretrained(models_paths[lang_code])
|
103 |
+
models[lang_code]["model"] = Wav2Vec2ForCTC.from_pretrained(models_paths[lang_code])
|
104 |
+
|
105 |
+
# Load model
|
106 |
+
processor_asr = models[lang_code]["processor"]
|
107 |
+
model_asr = models[lang_code]["model"]
|
108 |
+
|
109 |
+
inputs = processor_asr(speech_array, sampling_rate=16_000, return_tensors="pt", padding=True)
|
110 |
+
|
111 |
+
with torch.no_grad():
|
112 |
+
logits = model_asr(inputs.input_values, attention_mask=inputs.attention_mask).logits
|
113 |
+
|
114 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
115 |
+
|
116 |
+
return processor_asr.batch_decode(predicted_ids)[0]
|
117 |
+
|
118 |
+
def getUniform(text):
|
119 |
+
|
120 |
+
idx = 0
|
121 |
+
res = {}
|
122 |
+
|
123 |
+
for t in text:
|
124 |
+
|
125 |
+
raw = t["entity"].replace("B-","").replace("I-","")
|
126 |
+
word = t["word"].replace("▁","")
|
127 |
+
|
128 |
+
if "B-" in t["entity"]:
|
129 |
+
res[f"{raw}|{idx}"] = [word]
|
130 |
+
idx += 1
|
131 |
+
else:
|
132 |
+
res[f"{raw}|{idx}"].append(word)
|
133 |
+
|
134 |
+
res = [(r.split("|")[0], res[r]) for r in res]
|
135 |
+
|
136 |
+
return res
|
137 |
+
|
138 |
+
|
139 |
+
def predict(wav_file, lang_code):
|
140 |
+
|
141 |
+
if lang_code not in models_paths.keys():
|
142 |
+
|
143 |
+
return {
|
144 |
+
"The language code is unknown!"
|
145 |
+
}
|
146 |
+
|
147 |
+
text = transcribe(wav_file, lang_code).replace("apizza","a pizza") + " ."
|
148 |
+
|
149 |
+
intent_class = classifier_intent(text)[0]["label"]
|
150 |
+
language_class = classifier_language(text)[0]["label"]
|
151 |
+
named_entities = getUniform(predict_ner(text))
|
152 |
+
|
153 |
+
return {
|
154 |
+
"text": text,
|
155 |
+
"language": language_class,
|
156 |
+
"intent_class": intent_class,
|
157 |
+
"named_entities": named_entities,
|
158 |
+
}
|
159 |
+
|
160 |
+
iface = gr.Interface(
|
161 |
+
predict,
|
162 |
+
title='Sentiment Analysis project',
|
163 |
+
description='Upload your wav file to test the models (<i>First execution take about 20s to 30s, then next run in less than 1s</i>)',
|
164 |
+
# thumbnail="",
|
165 |
+
inputs=[
|
166 |
+
gr.inputs.Audio(label='wav file', source='microphone', type='filepath'),
|
167 |
+
gr.inputs.Dropdown(choices=list(models_paths.keys())),
|
168 |
+
],
|
169 |
+
outputs=[
|
170 |
+
gr.outputs.JSON(label='ASR -> Slot Recognition + Intent Classification + Language Classification'),
|
171 |
+
],
|
172 |
+
examples=examples,
|
173 |
+
article='Sentiment Analysis project',
|
174 |
+
)
|
175 |
+
|
176 |
+
iface.launch()
|