import gradio as gr import torch import torch.nn as nn import torch.nn.functional as F import torchaudio from transformers import AutoConfig, Wav2Vec2Processor, Wav2Vec2FeatureExtractor from src.models import Wav2Vec2ForSpeechClassification import librosa import IPython.display as ipd import numpy as np import pandas as pd import os model_name_or_path = "andromeda01111/Malayalam_SA" config = AutoConfig.from_pretrained(model_name_or_path) feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_name_or_path) sampling_rate = feature_extractor.sampling_rate model = Wav2Vec2ForSpeechClassification.from_pretrained(model_name_or_path) def speech_file_to_array_fn(path, sampling_rate): speech_array, _sampling_rate = torchaudio.load(path) resampler = torchaudio.transforms.Resample(_sampling_rate) speech = resampler(speech_array).squeeze().numpy() return speech def predict(path, sampling_rate): speech = speech_file_to_array_fn(path, sampling_rate) features = feature_extractor(speech, sampling_rate=sampling_rate, return_tensors="pt", padding=True) input_values = features.input_values attention_mask = features.attention_mask with torch.no_grad(): logits = model(input_values, attention_mask=attention_mask).logits scores = F.softmax(logits, dim=1).detach().cpu().numpy()[0] output_emotion = [{"Emotion": config.id2label[i], "Score": f"{round(score * 100, 3):.1f}%"} for i, score in enumerate(scores)] return output_emotion # Wrapper function for Gradio def gradio_predict(audio): predictions = predict(audio) return [f"{pred['Emotion']}: {pred['Score']}" for pred in predictions] # Gradio interface emotions = [config.id2label[i] for i in range(len(config.id2label))] outputs = [gr.Textbox(label=emotion, interactive=False) for emotion in emotions] interface = gr.Interface( fn=predict, inputs=gr.Audio(label="Upload Audio", type="filepath"), outputs=outputs, title="Emotion Recognition", description="Upload an audio file to predict emotions and their corresponding percentages.", ) # Launch the app interface.launch()