Update app.py
Browse files
app.py
CHANGED
@@ -1,73 +1,78 @@
|
|
1 |
-
|
2 |
-
from
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
|
|
|
|
|
|
72 |
if __name__ == "__main__":
|
73 |
-
|
|
|
|
|
|
1 |
+
from peft import AutoPeftModelForCausalLM
|
2 |
+
from transformers import GenerationConfig
|
3 |
+
from transformers import AutoTokenizer
|
4 |
+
import torch
|
5 |
+
import streamlit as st
|
6 |
+
from streamlit_chat import message
|
7 |
+
|
8 |
+
st.session_state.clicked=True
|
9 |
+
|
10 |
+
def process_data_sample(example):
|
11 |
+
|
12 |
+
processed_example = "<|system|>\n You are a support chatbot who helps with user queries chatbot who always responds in the style of a professional.</s>\n<|user|>\n" + example + "</s>\n<|assistant|>\n"
|
13 |
+
|
14 |
+
return processed_example
|
15 |
+
|
16 |
+
@st.cache_resource(show_spinner=True)
|
17 |
+
def create_bot():
|
18 |
+
|
19 |
+
tokenizer = AutoTokenizer.from_pretrained("Vasanth/zephyr-support-chatbot")
|
20 |
+
|
21 |
+
model = AutoPeftModelForCausalLM.from_pretrained(
|
22 |
+
"Vasanth/zephyr-support-chatbot",
|
23 |
+
low_cpu_mem_usage=True,
|
24 |
+
return_dict=True,
|
25 |
+
torch_dtype=torch.float16,
|
26 |
+
device_map="cuda"
|
27 |
+
)
|
28 |
+
|
29 |
+
generation_config = GenerationConfig(
|
30 |
+
do_sample=True,
|
31 |
+
temperature=0.5,
|
32 |
+
max_new_tokens=256,
|
33 |
+
pad_token_id=tokenizer.eos_token_id
|
34 |
+
)
|
35 |
+
|
36 |
+
return model, tokenizer, generation_config
|
37 |
+
|
38 |
+
model, tokenizer, generation_config = create_bot()
|
39 |
+
|
40 |
+
bot = create_bot()
|
41 |
+
|
42 |
+
def infer_bot(prompt):
|
43 |
+
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
|
44 |
+
outputs = model.generate(**inputs, generation_config=generation_config)
|
45 |
+
out_str = tokenizer.decode(outputs[0], skip_special_tokens=True).replace(prompt, '')
|
46 |
+
return out_str
|
47 |
+
|
48 |
+
def display_conversation(history):
|
49 |
+
for i in range(len(history["assistant"])):
|
50 |
+
message(history["user"][i], is_user=True, key=str(i) + "_user")
|
51 |
+
message(history["assistant"][i],key=str(i))
|
52 |
+
|
53 |
+
def main():
|
54 |
+
|
55 |
+
st.title("Support Member 📚🤖")
|
56 |
+
st.subheader("A bot created using Zephyr which was finetuned to possess the capabilities to be a support member")
|
57 |
+
|
58 |
+
user_input = st.text_input("Enter your query")
|
59 |
+
|
60 |
+
if "assistant" not in st.session_state:
|
61 |
+
st.session_state["assistant"] = ["I am ready to help you"]
|
62 |
+
if "user" not in st.session_state:
|
63 |
+
st.session_state["user"] = ["Hey there!"]
|
64 |
+
|
65 |
+
if st.session_state.clicked:
|
66 |
+
if st.button("Answer"):
|
67 |
+
|
68 |
+
answer = infer_bot(user_input)
|
69 |
+
st.session_state["user"].append(user_input)
|
70 |
+
st.session_state["assistant"].append(answer)
|
71 |
+
|
72 |
+
if st.session_state["assistant"]:
|
73 |
+
display_conversation(st.session_state)
|
74 |
+
|
75 |
if __name__ == "__main__":
|
76 |
+
main()
|
77 |
+
|
78 |
+
|