anezatra2 commited on
Commit
b046bfe
·
verified ·
1 Parent(s): 3009573

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +75 -60
app.py CHANGED
@@ -1,63 +1,78 @@
1
- import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
- """
43
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
- """
45
- demo = gr.ChatInterface(
46
- respond,
47
- additional_inputs=[
48
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
- gr.Slider(
52
- minimum=0.1,
53
- maximum=1.0,
54
- value=0.95,
55
- step=0.05,
56
- label="Top-p (nucleus sampling)",
57
- ),
58
- ],
59
- )
60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61
 
62
  if __name__ == "__main__":
63
- demo.launch()
 
 
 
1
+ from peft import AutoPeftModelForCausalLM
2
+ from transformers import GenerationConfig
3
+ from transformers import AutoTokenizer
4
+ import torch
5
+ import streamlit as st
6
+ from streamlit_chat import message
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
 
8
+ st.session_state.clicked=True
9
+
10
+ def process_data_sample(example):
11
+
12
+ processed_example = "<|system|>\n You are a support chatbot who helps with user queries chatbot who always responds in the style of a professional.</s>\n<|user|>\n" + example + "</s>\n<|assistant|>\n"
13
+
14
+ return processed_example
15
+
16
+ @st.cache_resource(show_spinner=True)
17
+ def create_bot():
18
+
19
+ tokenizer = AutoTokenizer.from_pretrained("Vasanth/zephyr-support-chatbot")
20
+
21
+ model = AutoPeftModelForCausalLM.from_pretrained(
22
+ "Vasanth/zephyr-support-chatbot",
23
+ low_cpu_mem_usage=True,
24
+ return_dict=True,
25
+ torch_dtype=torch.float16,
26
+ device_map="cuda"
27
+ )
28
+
29
+ generation_config = GenerationConfig(
30
+ do_sample=True,
31
+ temperature=0.5,
32
+ max_new_tokens=256,
33
+ pad_token_id=tokenizer.eos_token_id
34
+ )
35
+
36
+ return model, tokenizer, generation_config
37
+
38
+ model, tokenizer, generation_config = create_bot()
39
+
40
+ bot = create_bot()
41
+
42
+ def infer_bot(prompt):
43
+ inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
44
+ outputs = model.generate(**inputs, generation_config=generation_config)
45
+ out_str = tokenizer.decode(outputs[0], skip_special_tokens=True).replace(prompt, '')
46
+ return out_str
47
+
48
+ def display_conversation(history):
49
+ for i in range(len(history["assistant"])):
50
+ message(history["user"][i], is_user=True, key=str(i) + "_user")
51
+ message(history["assistant"][i],key=str(i))
52
+
53
+ def main():
54
+
55
+ st.title("Support Member 📚🤖")
56
+ st.subheader("A bot created using Zephyr which was finetuned to possess the capabilities to be a support member")
57
+
58
+ user_input = st.text_input("Enter your query")
59
+
60
+ if "assistant" not in st.session_state:
61
+ st.session_state["assistant"] = ["I am ready to help you"]
62
+ if "user" not in st.session_state:
63
+ st.session_state["user"] = ["Hey there!"]
64
+
65
+ if st.session_state.clicked:
66
+ if st.button("Answer"):
67
+
68
+ answer = infer_bot(user_input)
69
+ st.session_state["user"].append(user_input)
70
+ st.session_state["assistant"].append(answer)
71
+
72
+ if st.session_state["assistant"]:
73
+ display_conversation(st.session_state)
74
 
75
  if __name__ == "__main__":
76
+ main()
77
+
78
+