anezatra2 commited on
Commit
28a3cc7
·
verified ·
1 Parent(s): 47018a8

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +64 -48
app.py CHANGED
@@ -1,63 +1,79 @@
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
  messages = [{"role": "system", "content": system_message}]
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
 
 
26
  messages.append({"role": "user", "content": message})
27
 
28
  response = ""
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
- """
43
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
- """
45
- demo = gr.ChatInterface(
46
- respond,
47
- additional_inputs=[
48
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
- gr.Slider(
52
- minimum=0.1,
53
- maximum=1.0,
54
- value=0.95,
55
- step=0.05,
56
- label="Top-p (nucleus sampling)",
57
- ),
58
- ],
59
- )
60
 
 
 
 
 
 
 
 
61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62
  if __name__ == "__main__":
63
- demo.launch()
 
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
3
+ from transformers import AutoTokenizer
4
 
5
+ client = InferenceClient(model="AriakimTaiyo/gpt2-chat")
 
 
 
6
 
7
+ # Load the tokenizer explicitly
8
+ tokenizer = AutoTokenizer.from_pretrained("AriakimTaiyo/gpt2-chat")
9
 
10
+ def respond(message, history, system_message):
11
+ # Prepare messages, starting with the system message
 
 
 
 
 
 
12
  messages = [{"role": "system", "content": system_message}]
13
 
14
+ for user_msg, assistant_msg in history:
15
+ if user_msg:
16
+ messages.append({"role": "user", "content": user_msg})
17
+ if assistant_msg:
18
+ messages.append({"role": "assistant", "content": assistant_msg})
19
 
20
+ # Add the latest user message
21
  messages.append({"role": "user", "content": message})
22
 
23
  response = ""
24
+ try:
25
+ # Generate responses
26
+ for message in client.chat_completion(
27
+ messages=messages,
28
+ max_tokens=256,
29
+ stream=True,
30
+ temperature=0.7,
31
+ top_p=0.95,
32
+ ):
33
+ token = message.choices[0].delta.get('content', '')
34
+ response += token
35
+ yield response
36
+ except Exception as e:
37
+ # Return the error message in case of an exception
38
+ yield f"Hata: {e}"
39
 
40
+ # Create the Gradio interface
41
+ with gr.Blocks(theme=gr.Theme.from_hub('HaleyCH/HaleyCH_Theme')) as demo:
42
+ system_message = gr.HTML("""
43
+ <h1 style="color: #fff; text-shadow: 0 0 5px #fff, 0 0 10px #fff, 0 0 15px #fff, 0 0 10px #0000ff, 0 0 15px #0000ff; text-align: center;">
44
+ SIMULACRA GPT-2
45
+ </h1>
46
+ <p>🤖 Welcome to Simulacra user! See our account for more information.</p>
47
+ """)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48
 
49
+ chatbot = gr.Chatbot()
50
+ msg = gr.Textbox(label="Mesajınızı yazın")
51
+
52
+ # Place buttons side by side
53
+ with gr.Row():
54
+ clear = gr.Button("Temizle")
55
+ submit = gr.Button("Gönder")
56
 
57
+ def user_input(user_message, history):
58
+ return "", history + [[user_message, None]]
59
+
60
+ def bot_response(history):
61
+ last_message = history[-1][0]
62
+ response_gen = respond(
63
+ message=last_message,
64
+ history=history[:-1],
65
+ system_message=system_message.value,
66
+ )
67
+ for response in response_gen:
68
+ history[-1][1] = response
69
+ yield history
70
+
71
+ msg.submit(user_input, [msg, chatbot], [msg, chatbot], queue=False).then(
72
+ bot_response, chatbot, chatbot
73
+ )
74
+ clear.click(lambda: None, None, chatbot, queue=False)
75
+ submit.click(lambda: msg.submit(), None, chatbot, queue=False) # Send the message when the "Gönder" button is clicked
76
+
77
+ # Launch the app
78
  if __name__ == "__main__":
79
+ demo.launch(share=True)