ankitkupadhyay
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -59,16 +59,25 @@ def predict(image, text_input):
|
|
59 |
_, prediction = torch.max(outputs, dim=1)
|
60 |
return prediction.item() # 1 for Malignant, 0 for Benign
|
61 |
|
62 |
-
# Enhanced UI with color-coded prediction display
|
63 |
with gr.Blocks(css="""
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
""") as demo:
|
69 |
gr.Markdown(
|
70 |
"""
|
71 |
-
# 🩺 SKIN LESION CLASSIFICATION
|
72 |
Upload an image of a skin lesion and provide clinical details to get a prediction of benign or malignant.
|
73 |
"""
|
74 |
)
|
@@ -82,8 +91,7 @@ with gr.Blocks(css="""
|
|
82 |
benign_output = gr.HTML("<div class='benign'>Benign</div>")
|
83 |
malignant_output = gr.HTML("<div class='malignant'>Malignant</div>")
|
84 |
gr.Markdown("## Example:")
|
85 |
-
example_image = gr.Image(value="skin_cancer_detection/Unknown-4.png")
|
86 |
-
example_text = gr.Textbox(value="consistent with resolving/involuting keratoacanthoma 67", interactive=False)
|
87 |
|
88 |
def display_prediction(image, text_input):
|
89 |
prediction = predict(image, text_input)
|
@@ -98,3 +106,4 @@ with gr.Blocks(css="""
|
|
98 |
demo.launch()
|
99 |
|
100 |
|
|
|
|
59 |
_, prediction = torch.max(outputs, dim=1)
|
60 |
return prediction.item() # 1 for Malignant, 0 for Benign
|
61 |
|
62 |
+
# Enhanced UI with background image and color-coded prediction display
|
63 |
with gr.Blocks(css="""
|
64 |
+
body {
|
65 |
+
background: url('./skin_cancer_detection/melanoma.png') no-repeat center center fixed;
|
66 |
+
background-size: cover;
|
67 |
+
}
|
68 |
+
.benign, .malignant {
|
69 |
+
background-color: white;
|
70 |
+
border: 1px solid lightgray;
|
71 |
+
padding: 10px;
|
72 |
+
border-radius: 5px;
|
73 |
+
}
|
74 |
+
.benign.correct, .malignant.correct {
|
75 |
+
background-color: lightgreen;
|
76 |
+
}
|
77 |
""") as demo:
|
78 |
gr.Markdown(
|
79 |
"""
|
80 |
+
# 🩺 SKIN LESION CLASSIFICATION
|
81 |
Upload an image of a skin lesion and provide clinical details to get a prediction of benign or malignant.
|
82 |
"""
|
83 |
)
|
|
|
91 |
benign_output = gr.HTML("<div class='benign'>Benign</div>")
|
92 |
malignant_output = gr.HTML("<div class='malignant'>Malignant</div>")
|
93 |
gr.Markdown("## Example:")
|
94 |
+
example_image = gr.Image(value="./skin_cancer_detection/Unknown-4.png", interactive=False)
|
|
|
95 |
|
96 |
def display_prediction(image, text_input):
|
97 |
prediction = predict(image, text_input)
|
|
|
106 |
demo.launch()
|
107 |
|
108 |
|
109 |
+
|