ankitkupadhyay commited on
Commit
d337955
·
verified ·
1 Parent(s): ae2a0cf

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +17 -8
app.py CHANGED
@@ -59,16 +59,25 @@ def predict(image, text_input):
59
  _, prediction = torch.max(outputs, dim=1)
60
  return prediction.item() # 1 for Malignant, 0 for Benign
61
 
62
- # Enhanced UI with color-coded prediction display
63
  with gr.Blocks(css="""
64
- .benign {background-color: white; border: 1px solid lightgray; padding: 10px; border-radius: 5px;}
65
- .malignant {background-color: white; border: 1px solid lightgray; padding: 10px; border-radius: 5px;}
66
- .benign.correct {background-color: lightgreen;}
67
- .malignant.correct {background-color: lightgreen;}
 
 
 
 
 
 
 
 
 
68
  """) as demo:
69
  gr.Markdown(
70
  """
71
- # 🩺 SKIN LESION CLASSIFICATION
72
  Upload an image of a skin lesion and provide clinical details to get a prediction of benign or malignant.
73
  """
74
  )
@@ -82,8 +91,7 @@ with gr.Blocks(css="""
82
  benign_output = gr.HTML("<div class='benign'>Benign</div>")
83
  malignant_output = gr.HTML("<div class='malignant'>Malignant</div>")
84
  gr.Markdown("## Example:")
85
- example_image = gr.Image(value="skin_cancer_detection/Unknown-4.png") # Provide path to an example image
86
- example_text = gr.Textbox(value="consistent with resolving/involuting keratoacanthoma 67", interactive=False)
87
 
88
  def display_prediction(image, text_input):
89
  prediction = predict(image, text_input)
@@ -98,3 +106,4 @@ with gr.Blocks(css="""
98
  demo.launch()
99
 
100
 
 
 
59
  _, prediction = torch.max(outputs, dim=1)
60
  return prediction.item() # 1 for Malignant, 0 for Benign
61
 
62
+ # Enhanced UI with background image and color-coded prediction display
63
  with gr.Blocks(css="""
64
+ body {
65
+ background: url('./skin_cancer_detection/melanoma.png') no-repeat center center fixed;
66
+ background-size: cover;
67
+ }
68
+ .benign, .malignant {
69
+ background-color: white;
70
+ border: 1px solid lightgray;
71
+ padding: 10px;
72
+ border-radius: 5px;
73
+ }
74
+ .benign.correct, .malignant.correct {
75
+ background-color: lightgreen;
76
+ }
77
  """) as demo:
78
  gr.Markdown(
79
  """
80
+ # 🩺 SKIN LESION CLASSIFICATION
81
  Upload an image of a skin lesion and provide clinical details to get a prediction of benign or malignant.
82
  """
83
  )
 
91
  benign_output = gr.HTML("<div class='benign'>Benign</div>")
92
  malignant_output = gr.HTML("<div class='malignant'>Malignant</div>")
93
  gr.Markdown("## Example:")
94
+ example_image = gr.Image(value="./skin_cancer_detection/Unknown-4.png", interactive=False)
 
95
 
96
  def display_prediction(image, text_input):
97
  prediction = predict(image, text_input)
 
106
  demo.launch()
107
 
108
 
109
+