Spaces:
Runtime error
Runtime error
# remove np from https://github.com/dhchoi99/NANSY/blob/master/models/yin.py | |
# adapted from https://github.com/patriceguyot/Yin | |
# https://github.com/NVIDIA/mellotron/blob/master/yin.py | |
import torch | |
import torch.nn.functional as F | |
from math import log2, ceil | |
def differenceFunction(x, N, tau_max): | |
""" | |
Compute difference function of data x. This corresponds to equation (6) in [1] | |
This solution is implemented directly with torch rfft. | |
:param x: audio data (Tensor) | |
:param N: length of data | |
:param tau_max: integration window size | |
:return: difference function | |
:rtype: list | |
""" | |
#x = np.array(x, np.float64) #[B,T] | |
assert x.dim() == 2 | |
b, w = x.shape | |
if w < tau_max: | |
x = F.pad(x, (tau_max - w - (tau_max - w) // 2, (tau_max - w) // 2), | |
'constant', | |
mode='reflect') | |
w = tau_max | |
#x_cumsum = np.concatenate((np.array([0.]), (x * x).cumsum())) | |
x_cumsum = torch.cat( | |
[torch.zeros([b, 1], device=x.device), (x * x).cumsum(dim=1)], dim=1) | |
size = w + tau_max | |
p2 = (size // 32).bit_length() | |
#p2 = ceil(log2(size+1 // 32)) | |
nice_numbers = (16, 18, 20, 24, 25, 27, 30, 32) | |
size_pad = min(n * 2**p2 for n in nice_numbers if n * 2**p2 >= size) | |
fc = torch.fft.rfft(x, size_pad) #[B,F] | |
conv = torch.fft.irfft(fc * fc.conj())[:, :tau_max] | |
return x_cumsum[:, w:w - tau_max: | |
-1] + x_cumsum[:, w] - x_cumsum[:, :tau_max] - 2 * conv | |
def differenceFunction_np(x, N, tau_max): | |
""" | |
Compute difference function of data x. This corresponds to equation (6) in [1] | |
This solution is implemented directly with Numpy fft. | |
:param x: audio data | |
:param N: length of data | |
:param tau_max: integration window size | |
:return: difference function | |
:rtype: list | |
""" | |
x = np.array(x, np.float64) | |
w = x.size | |
tau_max = min(tau_max, w) | |
x_cumsum = np.concatenate((np.array([0.]), (x * x).cumsum())) | |
size = w + tau_max | |
p2 = (size // 32).bit_length() | |
nice_numbers = (16, 18, 20, 24, 25, 27, 30, 32) | |
size_pad = min(x * 2**p2 for x in nice_numbers if x * 2**p2 >= size) | |
fc = np.fft.rfft(x, size_pad) | |
conv = np.fft.irfft(fc * fc.conjugate())[:tau_max] | |
return x_cumsum[w:w - | |
tau_max:-1] + x_cumsum[w] - x_cumsum[:tau_max] - 2 * conv | |
def cumulativeMeanNormalizedDifferenceFunction(df, N, eps=1e-8): | |
""" | |
Compute cumulative mean normalized difference function (CMND). | |
This corresponds to equation (8) in [1] | |
:param df: Difference function | |
:param N: length of data | |
:return: cumulative mean normalized difference function | |
:rtype: list | |
""" | |
#np.seterr(divide='ignore', invalid='ignore') | |
# scipy method, assert df>0 for all element | |
# cmndf = df[1:] * np.asarray(list(range(1, N))) / (np.cumsum(df[1:]).astype(float) + eps) | |
B, _ = df.shape | |
cmndf = df[:, | |
1:] * torch.arange(1, N, device=df.device, dtype=df.dtype).view( | |
1, -1) / (df[:, 1:].cumsum(dim=-1) + eps) | |
return torch.cat( | |
[torch.ones([B, 1], device=df.device, dtype=df.dtype), cmndf], dim=-1) | |
def differenceFunctionTorch(xs: torch.Tensor, N, tau_max) -> torch.Tensor: | |
"""pytorch backend batch-wise differenceFunction | |
has 1e-4 level error with input shape of (32, 22050*1.5) | |
Args: | |
xs: | |
N: | |
tau_max: | |
Returns: | |
""" | |
xs = xs.double() | |
w = xs.shape[-1] | |
tau_max = min(tau_max, w) | |
zeros = torch.zeros((xs.shape[0], 1)) | |
x_cumsum = torch.cat((torch.zeros((xs.shape[0], 1), device=xs.device), | |
(xs * xs).cumsum(dim=-1, dtype=torch.double)), | |
dim=-1) # B x w | |
size = w + tau_max | |
p2 = (size // 32).bit_length() | |
nice_numbers = (16, 18, 20, 24, 25, 27, 30, 32) | |
size_pad = min(x * 2**p2 for x in nice_numbers if x * 2**p2 >= size) | |
fcs = torch.fft.rfft(xs, n=size_pad, dim=-1) | |
convs = torch.fft.irfft(fcs * fcs.conj())[:, :tau_max] | |
y1 = torch.flip(x_cumsum[:, w - tau_max + 1:w + 1], dims=[-1]) | |
y = y1 + x_cumsum[:, w].unsqueeze(-1) - x_cumsum[:, :tau_max] - 2 * convs | |
return y | |
def cumulativeMeanNormalizedDifferenceFunctionTorch(dfs: torch.Tensor, | |
N, | |
eps=1e-8) -> torch.Tensor: | |
arange = torch.arange(1, N, device=dfs.device, dtype=torch.float64) | |
cumsum = torch.cumsum(dfs[:, 1:], dim=-1, | |
dtype=torch.float64).to(dfs.device) | |
cmndfs = dfs[:, 1:] * arange / (cumsum + eps) | |
cmndfs = torch.cat( | |
(torch.ones(cmndfs.shape[0], 1, device=dfs.device), cmndfs), dim=-1) | |
return cmndfs | |
if __name__ == '__main__': | |
wav = torch.randn(32, int(22050 * 1.5)).cuda() | |
wav_numpy = wav.detach().cpu().numpy() | |
x = wav_numpy[0] | |
w_len = 2048 | |
w_step = 256 | |
tau_max = 2048 | |
W = 2048 | |
startFrames = list(range(0, x.shape[-1] - w_len, w_step)) | |
startFrames = np.asarray(startFrames) | |
# times = startFrames / sr | |
frames = [x[..., t:t + W] for t in startFrames] | |
frames = np.asarray(frames) | |
frames_torch = torch.from_numpy(frames).cuda() | |
cmndfs0 = [] | |
for idx, frame in enumerate(frames): | |
df = differenceFunction(frame, frame.shape[-1], tau_max) | |
cmndf = cumulativeMeanNormalizedDifferenceFunction(df, tau_max) | |
cmndfs0.append(cmndf) | |
cmndfs0 = np.asarray(cmndfs0) | |
dfs = differenceFunctionTorch(frames_torch, frames_torch.shape[-1], | |
tau_max) | |
cmndfs1 = cumulativeMeanNormalizedDifferenceFunctionTorch( | |
dfs, tau_max).detach().cpu().numpy() | |
print(cmndfs0.shape, cmndfs1.shape) | |
print(np.sum(np.abs(cmndfs0 - cmndfs1))) | |