Spaces:
Runtime error
Runtime error
# from https://github.com/jaywalnut310/vits | |
# from https://github.com/ncsoft/avocodo | |
import math | |
import torch | |
from torch import nn | |
from torch.nn import functional as F | |
from torch.nn import Conv1d, ConvTranspose1d, Conv2d | |
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm | |
import modules | |
import attentions | |
import commons | |
from commons import init_weights, get_padding | |
#for Q option | |
#from functions import vq, vq_st | |
from analysis import Pitch | |
from pqmf import PQMF | |
class StochasticDurationPredictor(nn.Module): | |
def __init__(self, | |
in_channels, | |
filter_channels, | |
kernel_size, | |
p_dropout, | |
n_flows=4, | |
gin_channels=0): | |
super().__init__() | |
# it needs to be removed from future version. | |
filter_channels = in_channels | |
self.in_channels = in_channels | |
self.filter_channels = filter_channels | |
self.kernel_size = kernel_size | |
self.p_dropout = p_dropout | |
self.n_flows = n_flows | |
self.gin_channels = gin_channels | |
self.log_flow = modules.Log() | |
self.flows = nn.ModuleList() | |
self.flows.append(modules.ElementwiseAffine(2)) | |
for i in range(n_flows): | |
self.flows.append( | |
modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3)) | |
self.flows.append(modules.Flip()) | |
self.post_pre = nn.Conv1d(1, filter_channels, 1) | |
self.post_proj = nn.Conv1d(filter_channels, filter_channels, 1) | |
self.post_convs = modules.DDSConv(filter_channels, | |
kernel_size, | |
n_layers=3, | |
p_dropout=p_dropout) | |
self.post_flows = nn.ModuleList() | |
self.post_flows.append(modules.ElementwiseAffine(2)) | |
for i in range(4): | |
self.post_flows.append( | |
modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3)) | |
self.post_flows.append(modules.Flip()) | |
self.pre = nn.Conv1d(in_channels, filter_channels, 1) | |
self.proj = nn.Conv1d(filter_channels, filter_channels, 1) | |
self.convs = modules.DDSConv(filter_channels, | |
kernel_size, | |
n_layers=3, | |
p_dropout=p_dropout) | |
if gin_channels != 0: | |
self.cond = nn.Conv1d(gin_channels, filter_channels, 1) | |
def forward(self, | |
x, | |
x_mask, | |
w=None, | |
g=None, | |
reverse=False, | |
noise_scale=1.0): | |
x = torch.detach(x) | |
x = self.pre(x) | |
if g is not None: | |
g = torch.detach(g) | |
x = x + self.cond(g) | |
x = self.convs(x, x_mask) | |
x = self.proj(x) * x_mask | |
if not reverse: | |
flows = self.flows | |
assert w is not None | |
logdet_tot_q = 0 | |
h_w = self.post_pre(w) | |
h_w = self.post_convs(h_w, x_mask) | |
h_w = self.post_proj(h_w) * x_mask | |
e_q = torch.randn(w.size(0), 2, w.size(2)).to( | |
device=x.device, dtype=x.dtype) * x_mask | |
z_q = e_q | |
for flow in self.post_flows: | |
z_q, logdet_q = flow(z_q, x_mask, g=(x + h_w)) | |
logdet_tot_q += logdet_q | |
z_u, z1 = torch.split(z_q, [1, 1], 1) | |
u = torch.sigmoid(z_u) * x_mask | |
z0 = (w - u) * x_mask | |
logdet_tot_q += torch.sum( | |
(F.logsigmoid(z_u) + F.logsigmoid(-z_u)) * x_mask, [1, 2]) | |
logq = torch.sum( | |
-0.5 * (math.log(2 * math.pi) + | |
(e_q**2)) * x_mask, [1, 2]) - logdet_tot_q | |
logdet_tot = 0 | |
z0, logdet = self.log_flow(z0, x_mask) | |
logdet_tot += logdet | |
z = torch.cat([z0, z1], 1) | |
for flow in flows: | |
z, logdet = flow(z, x_mask, g=x, reverse=reverse) | |
logdet_tot = logdet_tot + logdet | |
nll = torch.sum(0.5 * (math.log(2 * math.pi) + | |
(z**2)) * x_mask, [1, 2]) - logdet_tot | |
return nll + logq # [b] | |
else: | |
flows = list(reversed(self.flows)) | |
flows = flows[:-2] + [flows[-1]] # remove a useless vflow | |
z = torch.randn(x.size(0), 2, x.size(2)).to( | |
device=x.device, dtype=x.dtype) * noise_scale | |
for flow in flows: | |
z = flow(z, x_mask, g=x, reverse=reverse) | |
z0, z1 = torch.split(z, [1, 1], 1) | |
logw = z0 | |
return logw | |
class DurationPredictor(nn.Module): | |
def __init__(self, | |
in_channels, | |
filter_channels, | |
kernel_size, | |
p_dropout, | |
gin_channels=0): | |
super().__init__() | |
self.in_channels = in_channels | |
self.filter_channels = filter_channels | |
self.kernel_size = kernel_size | |
self.p_dropout = p_dropout | |
self.gin_channels = gin_channels | |
self.drop = nn.Dropout(p_dropout) | |
self.conv_1 = nn.Conv1d(in_channels, | |
filter_channels, | |
kernel_size, | |
padding=kernel_size // 2) | |
self.norm_1 = modules.LayerNorm(filter_channels) | |
self.conv_2 = nn.Conv1d(filter_channels, | |
filter_channels, | |
kernel_size, | |
padding=kernel_size // 2) | |
self.norm_2 = modules.LayerNorm(filter_channels) | |
self.proj = nn.Conv1d(filter_channels, 1, 1) | |
if gin_channels != 0: | |
self.cond = nn.Conv1d(gin_channels, in_channels, 1) | |
def forward(self, x, x_mask, g=None): | |
x = torch.detach(x) | |
if g is not None: | |
g = torch.detach(g) | |
x = x + self.cond(g) | |
x = self.conv_1(x * x_mask) | |
x = torch.relu(x) | |
x = self.norm_1(x) | |
x = self.drop(x) | |
x = self.conv_2(x * x_mask) | |
x = torch.relu(x) | |
x = self.norm_2(x) | |
x = self.drop(x) | |
x = self.proj(x * x_mask) | |
return x * x_mask | |
class TextEncoder(nn.Module): | |
def __init__(self, n_vocab, out_channels, hidden_channels, filter_channels, | |
n_heads, n_layers, kernel_size, p_dropout): | |
super().__init__() | |
self.n_vocab = n_vocab | |
self.out_channels = out_channels | |
self.hidden_channels = hidden_channels | |
self.filter_channels = filter_channels | |
self.n_heads = n_heads | |
self.n_layers = n_layers | |
self.kernel_size = kernel_size | |
self.p_dropout = p_dropout | |
self.emb = nn.Embedding(n_vocab, hidden_channels) | |
nn.init.normal_(self.emb.weight, 0.0, hidden_channels**-0.5) | |
self.emb_t = nn.Embedding(6, hidden_channels) | |
nn.init.normal_(self.emb_t.weight, 0.0, hidden_channels**-0.5) | |
self.encoder = attentions.Encoder(hidden_channels, filter_channels, | |
n_heads, n_layers, kernel_size, | |
p_dropout) | |
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1) | |
def forward(self, x, t, x_lengths): | |
t_zero = (t == 0) | |
emb_t = self.emb_t(t) | |
emb_t[t_zero, :] = 0 | |
x = (self.emb(x) + emb_t) * math.sqrt( | |
self.hidden_channels) # [b, t, h] | |
#x = torch.transpose(x, 1, -1) # [b, h, t] | |
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(1)), | |
1).to(x.dtype) | |
#x = self.encoder(x * x_mask, x_mask) | |
x = torch.einsum('btd,but->bdt', x, x_mask) | |
x = self.encoder(x, x_mask) | |
stats = self.proj(x) * x_mask | |
m, logs = torch.split(stats, self.out_channels, dim=1) | |
return x, m, logs, x_mask | |
class ResidualCouplingBlock(nn.Module): | |
def __init__(self, | |
channels, | |
hidden_channels, | |
kernel_size, | |
dilation_rate, | |
n_layers, | |
n_flows=4, | |
gin_channels=0): | |
super().__init__() | |
self.channels = channels | |
self.hidden_channels = hidden_channels | |
self.kernel_size = kernel_size | |
self.dilation_rate = dilation_rate | |
self.n_layers = n_layers | |
self.n_flows = n_flows | |
self.gin_channels = gin_channels | |
self.flows = nn.ModuleList() | |
for i in range(n_flows): | |
self.flows.append( | |
modules.ResidualCouplingLayer(channels, | |
hidden_channels, | |
kernel_size, | |
dilation_rate, | |
n_layers, | |
gin_channels=gin_channels, | |
mean_only=True)) | |
self.flows.append(modules.Flip()) | |
def forward(self, x, x_mask, g=None, reverse=False): | |
if not reverse: | |
for flow in self.flows: | |
x, _ = flow(x, x_mask, g=g, reverse=reverse) | |
else: | |
for flow in reversed(self.flows): | |
x = flow(x, x_mask, g=g, reverse=reverse) | |
return x | |
class PosteriorEncoder(nn.Module): | |
def __init__(self, | |
in_channels, | |
out_channels, | |
hidden_channels, | |
kernel_size, | |
dilation_rate, | |
n_layers, | |
gin_channels=0): | |
super().__init__() | |
self.in_channels = in_channels | |
self.out_channels = out_channels | |
self.hidden_channels = hidden_channels | |
self.kernel_size = kernel_size | |
self.dilation_rate = dilation_rate | |
self.n_layers = n_layers | |
self.gin_channels = gin_channels | |
self.pre = nn.Conv1d(in_channels, hidden_channels, 1) | |
self.enc = modules.WN(hidden_channels, | |
kernel_size, | |
dilation_rate, | |
n_layers, | |
gin_channels=gin_channels) | |
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1) | |
def forward(self, x, x_lengths, g=None): | |
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), | |
1).to(x.dtype) | |
x = self.pre(x) * x_mask | |
x = self.enc(x, x_mask, g=g) | |
stats = self.proj(x) * x_mask | |
m, logs = torch.split(stats, self.out_channels, dim=1) | |
z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask | |
return z, m, logs, x_mask | |
class Generator(nn.Module): | |
def __init__(self, | |
initial_channel, | |
resblock, | |
resblock_kernel_sizes, | |
resblock_dilation_sizes, | |
upsample_rates, | |
upsample_initial_channel, | |
upsample_kernel_sizes, | |
gin_channels=0): | |
super(Generator, self).__init__() | |
self.num_kernels = len(resblock_kernel_sizes) | |
self.num_upsamples = len(upsample_rates) | |
self.conv_pre = Conv1d(initial_channel, | |
upsample_initial_channel, | |
7, | |
1, | |
padding=3) | |
resblock = modules.ResBlock1 if resblock == '1' else modules.ResBlock2 | |
self.ups = nn.ModuleList() | |
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)): | |
self.ups.append( | |
weight_norm( | |
ConvTranspose1d(upsample_initial_channel // (2**i), | |
upsample_initial_channel // (2**(i + 1)), | |
k, | |
u, | |
padding=(k - u) // 2))) | |
self.resblocks = nn.ModuleList() | |
self.conv_posts = nn.ModuleList() | |
for i in range(len(self.ups)): | |
ch = upsample_initial_channel // (2**(i + 1)) | |
for j, (k, d) in enumerate( | |
zip(resblock_kernel_sizes, resblock_dilation_sizes)): | |
self.resblocks.append(resblock(ch, k, d)) | |
if i >= len(self.ups) - 3: | |
self.conv_posts.append( | |
Conv1d(ch, 1, 7, 1, padding=3, bias=False)) | |
self.ups.apply(init_weights) | |
if gin_channels != 0: | |
self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1) | |
def forward(self, x, g=None): | |
x = self.conv_pre(x) | |
if g is not None: | |
x = x + self.cond(g) | |
for i in range(self.num_upsamples): | |
x = F.leaky_relu(x, modules.LRELU_SLOPE) | |
x = self.ups[i](x) | |
xs = None | |
for j in range(self.num_kernels): | |
xs = xs + self.resblocks[i * self.num_kernels + j](x) if xs is not None \ | |
else self.resblocks[i * self.num_kernels + j](x) | |
x = xs / self.num_kernels | |
x = F.leaky_relu(x) | |
x = self.conv_posts[-1](x) | |
x = torch.tanh(x) | |
return x | |
def hier_forward(self, x, g=None): | |
outs = [] | |
x = self.conv_pre(x) | |
if g is not None: | |
x = x + self.cond(g) | |
for i in range(self.num_upsamples): | |
x = F.leaky_relu(x, modules.LRELU_SLOPE) | |
x = self.ups[i](x) | |
xs = None | |
for j in range(self.num_kernels): | |
xs = xs + self.resblocks[i * self.num_kernels + j](x) if xs is not None \ | |
else self.resblocks[i * self.num_kernels + j](x) | |
x = xs / self.num_kernels | |
if i >= self.num_upsamples - 3: | |
_x = F.leaky_relu(x) | |
_x = self.conv_posts[i - self.num_upsamples + 3](_x) | |
_x = torch.tanh(_x) | |
outs.append(_x) | |
return outs | |
def remove_weight_norm(self): | |
print('Removing weight norm...') | |
for l in self.ups: | |
remove_weight_norm(l) | |
for l in self.resblocks: | |
l.remove_weight_norm() | |
class DiscriminatorP(nn.Module): | |
def __init__(self, | |
period, | |
kernel_size=5, | |
stride=3, | |
use_spectral_norm=False): | |
super(DiscriminatorP, self).__init__() | |
self.period = period | |
self.use_spectral_norm = use_spectral_norm | |
norm_f = weight_norm if use_spectral_norm == False else spectral_norm | |
self.convs = nn.ModuleList([ | |
norm_f( | |
Conv2d(1, | |
32, (kernel_size, 1), (stride, 1), | |
padding=(get_padding(kernel_size, 1), 0))), | |
norm_f( | |
Conv2d(32, | |
128, (kernel_size, 1), (stride, 1), | |
padding=(get_padding(kernel_size, 1), 0))), | |
norm_f( | |
Conv2d(128, | |
512, (kernel_size, 1), (stride, 1), | |
padding=(get_padding(kernel_size, 1), 0))), | |
norm_f( | |
Conv2d(512, | |
1024, (kernel_size, 1), (stride, 1), | |
padding=(get_padding(kernel_size, 1), 0))), | |
norm_f( | |
Conv2d(1024, | |
1024, (kernel_size, 1), | |
1, | |
padding=(get_padding(kernel_size, 1), 0))), | |
]) | |
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0))) | |
def forward(self, x): | |
fmap = [] | |
# 1d to 2d | |
b, c, t = x.shape | |
if t % self.period != 0: # pad first | |
n_pad = self.period - (t % self.period) | |
x = F.pad(x, (0, n_pad), "reflect") | |
t = t + n_pad | |
x = x.view(b, c, t // self.period, self.period) | |
for l in self.convs: | |
x = l(x) | |
x = F.leaky_relu(x, modules.LRELU_SLOPE) | |
fmap.append(x) | |
x = self.conv_post(x) | |
fmap.append(x) | |
x = torch.flatten(x, 1, -1) | |
return x, fmap | |
class DiscriminatorS(nn.Module): | |
def __init__(self, use_spectral_norm=False): | |
super(DiscriminatorS, self).__init__() | |
norm_f = weight_norm if use_spectral_norm == False else spectral_norm | |
self.convs = nn.ModuleList([ | |
norm_f(Conv1d(1, 16, 15, 1, padding=7)), | |
norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)), | |
norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)), | |
norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)), | |
norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)), | |
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)), | |
]) | |
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1)) | |
def forward(self, x): | |
fmap = [] | |
for l in self.convs: | |
x = l(x) | |
x = F.leaky_relu(x, modules.LRELU_SLOPE) | |
fmap.append(x) | |
x = self.conv_post(x) | |
fmap.append(x) | |
x = torch.flatten(x, 1, -1) | |
return x, fmap | |
class MultiPeriodDiscriminator(nn.Module): | |
def __init__(self, use_spectral_norm=False): | |
super(MultiPeriodDiscriminator, self).__init__() | |
periods = [2, 3, 5, 7, 11] | |
discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)] | |
discs = discs + \ | |
[DiscriminatorP(i, use_spectral_norm=use_spectral_norm) | |
for i in periods] | |
self.discriminators = nn.ModuleList(discs) | |
def forward(self, y, y_hat): | |
y_d_rs = [] | |
y_d_gs = [] | |
fmap_rs = [] | |
fmap_gs = [] | |
for i, d in enumerate(self.discriminators): | |
y_d_r, fmap_r = d(y) | |
y_d_g, fmap_g = d(y_hat) | |
y_d_rs.append(y_d_r) | |
y_d_gs.append(y_d_g) | |
fmap_rs.append(fmap_r) | |
fmap_gs.append(fmap_g) | |
return y_d_rs, y_d_gs, fmap_rs, fmap_gs | |
##### Avocodo | |
class CoMBDBlock(torch.nn.Module): | |
def __init__( | |
self, | |
h_u, # List[int], | |
d_k, # List[int], | |
d_s, # List[int], | |
d_d, # List[int], | |
d_g, # List[int], | |
d_p, # List[int], | |
op_f, # int, | |
op_k, # int, | |
op_g, # int, | |
use_spectral_norm=False): | |
super(CoMBDBlock, self).__init__() | |
norm_f = weight_norm if use_spectral_norm is False else spectral_norm | |
self.convs = nn.ModuleList() | |
filters = [[1, h_u[0]]] | |
for i in range(len(h_u) - 1): | |
filters.append([h_u[i], h_u[i + 1]]) | |
for _f, _k, _s, _d, _g, _p in zip(filters, d_k, d_s, d_d, d_g, d_p): | |
self.convs.append( | |
norm_f( | |
Conv1d(in_channels=_f[0], | |
out_channels=_f[1], | |
kernel_size=_k, | |
stride=_s, | |
dilation=_d, | |
groups=_g, | |
padding=_p))) | |
self.projection_conv = norm_f( | |
Conv1d(in_channels=filters[-1][1], | |
out_channels=op_f, | |
kernel_size=op_k, | |
groups=op_g)) | |
def forward(self, x, b_y, b_y_hat): | |
fmap_r = [] | |
fmap_g = [] | |
for block in self.convs: | |
x = block(x) | |
x = F.leaky_relu(x, 0.2) | |
f_r, f_g = x.split([b_y, b_y_hat], dim=0) | |
fmap_r.append(f_r.tile([2, 1, 1]) if b_y < b_y_hat else f_r) | |
fmap_g.append(f_g) | |
x = self.projection_conv(x) | |
x_r, x_g = x.split([b_y, b_y_hat], dim=0) | |
return x_r.tile([2, 1, 1 | |
]) if b_y < b_y_hat else x_r, x_g, fmap_r, fmap_g | |
class CoMBD(torch.nn.Module): | |
def __init__(self, use_spectral_norm=False): | |
super(CoMBD, self).__init__() | |
self.pqmf_list = nn.ModuleList([ | |
PQMF(4, 192, 0.13, 10.0), #lv2 | |
PQMF(2, 256, 0.25, 10.0) #lv1 | |
]) | |
combd_h_u = [[16, 64, 256, 1024, 1024, 1024] for _ in range(3)] | |
combd_d_k = [[7, 11, 11, 11, 11, 5], [11, 21, 21, 21, 21, 5], | |
[15, 41, 41, 41, 41, 5]] | |
combd_d_s = [[1, 1, 4, 4, 4, 1] for _ in range(3)] | |
combd_d_d = [[1, 1, 1, 1, 1, 1] for _ in range(3)] | |
combd_d_g = [[1, 4, 16, 64, 256, 1] for _ in range(3)] | |
combd_d_p = [[3, 5, 5, 5, 5, 2], [5, 10, 10, 10, 10, 2], | |
[7, 20, 20, 20, 20, 2]] | |
combd_op_f = [1, 1, 1] | |
combd_op_k = [3, 3, 3] | |
combd_op_g = [1, 1, 1] | |
self.blocks = nn.ModuleList() | |
for _h_u, _d_k, _d_s, _d_d, _d_g, _d_p, _op_f, _op_k, _op_g in zip( | |
combd_h_u, | |
combd_d_k, | |
combd_d_s, | |
combd_d_d, | |
combd_d_g, | |
combd_d_p, | |
combd_op_f, | |
combd_op_k, | |
combd_op_g, | |
): | |
self.blocks.append( | |
CoMBDBlock( | |
_h_u, | |
_d_k, | |
_d_s, | |
_d_d, | |
_d_g, | |
_d_p, | |
_op_f, | |
_op_k, | |
_op_g, | |
)) | |
def _block_forward(self, ys, ys_hat, blocks): | |
outs_real = [] | |
outs_fake = [] | |
f_maps_real = [] | |
f_maps_fake = [] | |
for y, y_hat, block in zip(ys, ys_hat, | |
blocks): #y:B, y_hat: 2B if i!=-1 else B,B | |
b_y = y.shape[0] | |
b_y_hat = y_hat.shape[0] | |
cat_y = torch.cat([y, y_hat], dim=0) | |
out_real, out_fake, f_map_r, f_map_g = block(cat_y, b_y, b_y_hat) | |
outs_real.append(out_real) | |
outs_fake.append(out_fake) | |
f_maps_real.append(f_map_r) | |
f_maps_fake.append(f_map_g) | |
return outs_real, outs_fake, f_maps_real, f_maps_fake | |
def _pqmf_forward(self, ys, ys_hat): | |
# preprocess for multi_scale forward | |
multi_scale_inputs_hat = [] | |
for pqmf_ in self.pqmf_list: | |
multi_scale_inputs_hat.append(pqmf_.analysis(ys_hat[-1])[:, :1, :]) | |
# real | |
# for hierarchical forward | |
#outs_real_, f_maps_real_ = self._block_forward( | |
# ys, self.blocks) | |
# for multi_scale forward | |
#outs_real, f_maps_real = self._block_forward( | |
# ys[:-1], self.blocks[:-1], outs_real, f_maps_real) | |
#outs_real.extend(outs_real[:-1]) | |
#f_maps_real.extend(f_maps_real[:-1]) | |
#outs_real = [torch.cat([o,o], dim=0) if i!=len(outs_real_)-1 else o for i,o in enumerate(outs_real_)] | |
#f_maps_real = [[torch.cat([fmap,fmap], dim=0) if i!=len(f_maps_real_)-1 else fmap for fmap in fmaps ] \ | |
# for i,fmaps in enumerate(f_maps_real_)] | |
inputs_fake = [ | |
torch.cat([y, multi_scale_inputs_hat[i]], dim=0) | |
if i != len(ys_hat) - 1 else y for i, y in enumerate(ys_hat) | |
] | |
outs_real, outs_fake, f_maps_real, f_maps_fake = self._block_forward( | |
ys, inputs_fake, self.blocks) | |
# predicted | |
# for hierarchical forward | |
#outs_fake, f_maps_fake = self._block_forward( | |
# inputs_fake, self.blocks) | |
#outs_real_, f_maps_real_ = self._block_forward( | |
# ys, self.blocks) | |
# for multi_scale forward | |
#outs_fake, f_maps_fake = self._block_forward( | |
# multi_scale_inputs_hat, self.blocks[:-1], outs_fake, f_maps_fake) | |
return outs_real, outs_fake, f_maps_real, f_maps_fake | |
def forward(self, ys, ys_hat): | |
outs_real, outs_fake, f_maps_real, f_maps_fake = self._pqmf_forward( | |
ys, ys_hat) | |
return outs_real, outs_fake, f_maps_real, f_maps_fake | |
class MDC(torch.nn.Module): | |
def __init__(self, | |
in_channels, | |
out_channels, | |
strides, | |
kernel_size, | |
dilations, | |
use_spectral_norm=False): | |
super(MDC, self).__init__() | |
norm_f = weight_norm if not use_spectral_norm else spectral_norm | |
self.d_convs = nn.ModuleList() | |
for _k, _d in zip(kernel_size, dilations): | |
self.d_convs.append( | |
norm_f( | |
Conv1d(in_channels=in_channels, | |
out_channels=out_channels, | |
kernel_size=_k, | |
dilation=_d, | |
padding=get_padding(_k, _d)))) | |
self.post_conv = norm_f( | |
Conv1d(in_channels=out_channels, | |
out_channels=out_channels, | |
kernel_size=3, | |
stride=strides, | |
padding=get_padding(_k, _d))) | |
self.softmax = torch.nn.Softmax(dim=-1) | |
def forward(self, x): | |
_out = None | |
for _l in self.d_convs: | |
_x = torch.unsqueeze(_l(x), -1) | |
_x = F.leaky_relu(_x, 0.2) | |
_out = torch.cat([_out, _x], axis=-1) if _out is not None \ | |
else _x | |
x = torch.sum(_out, dim=-1) | |
x = self.post_conv(x) | |
x = F.leaky_relu(x, 0.2) # @@ | |
return x | |
class SBDBlock(torch.nn.Module): | |
def __init__(self, | |
segment_dim, | |
strides, | |
filters, | |
kernel_size, | |
dilations, | |
use_spectral_norm=False): | |
super(SBDBlock, self).__init__() | |
norm_f = weight_norm if not use_spectral_norm else spectral_norm | |
self.convs = nn.ModuleList() | |
filters_in_out = [(segment_dim, filters[0])] | |
for i in range(len(filters) - 1): | |
filters_in_out.append([filters[i], filters[i + 1]]) | |
for _s, _f, _k, _d in zip(strides, filters_in_out, kernel_size, | |
dilations): | |
self.convs.append( | |
MDC(in_channels=_f[0], | |
out_channels=_f[1], | |
strides=_s, | |
kernel_size=_k, | |
dilations=_d, | |
use_spectral_norm=use_spectral_norm)) | |
self.post_conv = norm_f( | |
Conv1d(in_channels=_f[1], | |
out_channels=1, | |
kernel_size=3, | |
stride=1, | |
padding=3 // 2)) # @@ | |
def forward(self, x): | |
fmap_r = [] | |
fmap_g = [] | |
for _l in self.convs: | |
x = _l(x) | |
f_r, f_g = torch.chunk(x, 2, dim=0) | |
fmap_r.append(f_r) | |
fmap_g.append(f_g) | |
x = self.post_conv(x) # @@ | |
x_r, x_g = torch.chunk(x, 2, dim=0) | |
return x_r, x_g, fmap_r, fmap_g | |
class MDCDConfig: | |
def __init__(self): | |
self.pqmf_params = [16, 256, 0.03, 10.0] | |
self.f_pqmf_params = [64, 256, 0.1, 9.0] | |
self.filters = [[64, 128, 256, 256, 256], [64, 128, 256, 256, 256], | |
[64, 128, 256, 256, 256], [32, 64, 128, 128, 128]] | |
self.kernel_sizes = [[[7, 7, 7], [7, 7, 7], [7, 7, 7], [7, 7, 7], | |
[7, 7, 7]], | |
[[5, 5, 5], [5, 5, 5], [5, 5, 5], [5, 5, 5], | |
[5, 5, 5]], | |
[[3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], | |
[3, 3, 3]], | |
[[5, 5, 5], [5, 5, 5], [5, 5, 5], [5, 5, 5], | |
[5, 5, 5]]] | |
self.dilations = [[[5, 7, 11], [5, 7, 11], [5, 7, 11], [5, 7, 11], | |
[5, 7, 11]], | |
[[3, 5, 7], [3, 5, 7], [3, 5, 7], [3, 5, 7], | |
[3, 5, 7]], | |
[[1, 2, 3], [1, 2, 3], [1, 2, 3], [1, 2, 3], | |
[1, 2, 3]], | |
[[1, 2, 3], [1, 2, 3], [1, 2, 3], [2, 3, 5], | |
[2, 3, 5]]] | |
self.strides = [[1, 1, 3, 3, 1], [1, 1, 3, 3, 1], [1, 1, 3, 3, 1], | |
[1, 1, 3, 3, 1]] | |
self.band_ranges = [[0, 6], [0, 11], [0, 16], [0, 64]] | |
self.transpose = [False, False, False, True] | |
self.segment_size = 8192 | |
class SBD(torch.nn.Module): | |
def __init__(self, use_spectral_norm=False): | |
super(SBD, self).__init__() | |
self.config = MDCDConfig() | |
self.pqmf = PQMF(*self.config.pqmf_params) | |
if True in self.config.transpose: | |
self.f_pqmf = PQMF(*self.config.f_pqmf_params) | |
else: | |
self.f_pqmf = None | |
self.discriminators = torch.nn.ModuleList() | |
for _f, _k, _d, _s, _br, _tr in zip(self.config.filters, | |
self.config.kernel_sizes, | |
self.config.dilations, | |
self.config.strides, | |
self.config.band_ranges, | |
self.config.transpose): | |
if _tr: | |
segment_dim = self.config.segment_size // _br[1] - _br[0] | |
else: | |
segment_dim = _br[1] - _br[0] | |
self.discriminators.append( | |
SBDBlock(segment_dim=segment_dim, | |
filters=_f, | |
kernel_size=_k, | |
dilations=_d, | |
strides=_s, | |
use_spectral_norm=use_spectral_norm)) | |
def forward(self, y, y_hat): | |
y_d_rs = [] | |
y_d_gs = [] | |
fmap_rs = [] | |
fmap_gs = [] | |
y_in = self.pqmf.analysis(y) | |
y_hat_in = self.pqmf.analysis(y_hat) | |
y_in_f = self.f_pqmf.analysis(y) | |
y_hat_in_f = self.f_pqmf.analysis(y_hat) | |
for d, br, tr in zip(self.discriminators, self.config.band_ranges, | |
self.config.transpose): | |
if not tr: | |
_y_in = y_in[:, br[0]:br[1], :] | |
_y_hat_in = y_hat_in[:, br[0]:br[1], :] | |
else: | |
_y_in = y_in_f[:, br[0]:br[1], :] | |
_y_hat_in = y_hat_in_f[:, br[0]:br[1], :] | |
_y_in = torch.transpose(_y_in, 1, 2) | |
_y_hat_in = torch.transpose(_y_hat_in, 1, 2) | |
#y_d_r, fmap_r = d(_y_in) | |
#y_d_g, fmap_g = d(_y_hat_in) | |
cat_y = torch.cat([_y_in, _y_hat_in], dim=0) | |
y_d_r, y_d_g, fmap_r, fmap_g = d(cat_y) | |
y_d_rs.append(y_d_r) | |
fmap_rs.append(fmap_r) | |
y_d_gs.append(y_d_g) | |
fmap_gs.append(fmap_g) | |
return y_d_rs, y_d_gs, fmap_rs, fmap_gs | |
class AvocodoDiscriminator(nn.Module): | |
def __init__(self, use_spectral_norm=False): | |
super(AvocodoDiscriminator, self).__init__() | |
self.combd = CoMBD(use_spectral_norm) | |
self.sbd = SBD(use_spectral_norm) | |
def forward(self, y, ys_hat): | |
ys = [ | |
self.combd.pqmf_list[0].analysis(y)[:, :1], #lv2 | |
self.combd.pqmf_list[1].analysis(y)[:, :1], #lv1 | |
y | |
] | |
y_c_rs, y_c_gs, fmap_c_rs, fmap_c_gs = self.combd(ys, ys_hat) | |
y_s_rs, y_s_gs, fmap_s_rs, fmap_s_gs = self.sbd(y, ys_hat[-1]) | |
y_c_rs.extend(y_s_rs) | |
y_c_gs.extend(y_s_gs) | |
fmap_c_rs.extend(fmap_s_rs) | |
fmap_c_gs.extend(fmap_s_gs) | |
return y_c_rs, y_c_gs, fmap_c_rs, fmap_c_gs | |
##### Avocodo | |
class YingDecoder(nn.Module): | |
def __init__(self, | |
hidden_channels, | |
kernel_size, | |
dilation_rate, | |
n_layers, | |
yin_start, | |
yin_scope, | |
yin_shift_range, | |
gin_channels=0): | |
super().__init__() | |
self.in_channels = yin_scope | |
self.out_channels = yin_scope | |
self.hidden_channels = hidden_channels | |
self.kernel_size = kernel_size | |
self.dilation_rate = dilation_rate | |
self.n_layers = n_layers | |
self.gin_channels = gin_channels | |
self.yin_start = yin_start | |
self.yin_scope = yin_scope | |
self.yin_shift_range = yin_shift_range | |
self.pre = nn.Conv1d(self.in_channels, hidden_channels, 1) | |
self.dec = modules.WN(hidden_channels, | |
kernel_size, | |
dilation_rate, | |
n_layers, | |
gin_channels=gin_channels) | |
self.proj = nn.Conv1d(hidden_channels, self.out_channels, 1) | |
def crop_scope(self, x, yin_start, | |
scope_shift): # x: tensor [B,C,T] #scope_shift: tensor [B] | |
return torch.stack([ | |
x[i, yin_start + scope_shift[i]:yin_start + self.yin_scope + | |
scope_shift[i], :] for i in range(x.shape[0]) | |
], | |
dim=0) | |
def infer(self, z_yin, z_mask, g=None): | |
B = z_yin.shape[0] | |
scope_shift = torch.randint(-self.yin_shift_range, | |
self.yin_shift_range, (B, ), | |
dtype=torch.int) | |
z_yin_crop = self.crop_scope(z_yin, self.yin_start, scope_shift) | |
x = self.pre(z_yin_crop) * z_mask | |
x = self.dec(x, z_mask, g=g) | |
yin_hat_crop = self.proj(x) * z_mask | |
return yin_hat_crop | |
def forward(self, z_yin, yin_gt, z_mask, g=None): | |
B = z_yin.shape[0] | |
scope_shift = torch.randint(-self.yin_shift_range, | |
self.yin_shift_range, (B, ), | |
dtype=torch.int) | |
z_yin_crop = self.crop_scope(z_yin, self.yin_start, scope_shift) | |
yin_gt_shifted_crop = self.crop_scope(yin_gt, self.yin_start, | |
scope_shift) | |
yin_gt_crop = self.crop_scope(yin_gt, self.yin_start, | |
torch.zeros_like(scope_shift)) | |
x = self.pre(z_yin_crop) * z_mask | |
x = self.dec(x, z_mask, g=g) | |
yin_hat_crop = self.proj(x) * z_mask | |
return yin_gt_crop, yin_gt_shifted_crop, yin_hat_crop, z_yin_crop, scope_shift | |
# For Q option | |
#class VQEmbedding(nn.Module): | |
# | |
# def __init__(self, codebook_size, | |
# code_channels): | |
# super().__init__() | |
# self.embedding = nn.Embedding(codebook_size, code_channels) | |
# self.embedding.weight.data.uniform_(-1. / codebook_size, | |
# 1. / codebook_size) | |
# | |
# def forward(self, z_e_x): | |
# z_e_x_ = z_e_x.permute(0, 2, 1).contiguous() | |
# latent_indices = vq(z_e_x_, self.embedding.weight) | |
# z_q = self.embedding(latent_indices).permute(0, 2, 1) | |
# return z_q | |
# | |
# def straight_through(self, z_e_x): | |
# z_e_x_ = z_e_x.permute(0, 2, 1).contiguous() | |
# z_q_x_st_, indices = vq_st(z_e_x_, self.embedding.weight.detach()) | |
# z_q_x_st = z_q_x_st_.permute(0, 2, 1).contiguous() | |
# | |
# z_q_x_flatten = torch.index_select(self.embedding.weight, | |
# dim=0, | |
# index=indices) | |
# z_q_x_ = z_q_x_flatten.view_as(z_e_x_) | |
# z_q_x = z_q_x_.permute(0, 2, 1).contiguous() | |
# return z_q_x_st, z_q_x | |
class SynthesizerTrn(nn.Module): | |
""" | |
Synthesizer for Training | |
""" | |
def __init__( | |
self, | |
n_vocab, | |
spec_channels, | |
segment_size, | |
midi_start, | |
midi_end, | |
octave_range, | |
inter_channels, | |
hidden_channels, | |
filter_channels, | |
n_heads, | |
n_layers, | |
kernel_size, | |
p_dropout, | |
resblock, | |
resblock_kernel_sizes, | |
resblock_dilation_sizes, | |
upsample_rates, | |
upsample_initial_channel, | |
upsample_kernel_sizes, | |
yin_channels, | |
yin_start, | |
yin_scope, | |
yin_shift_range, | |
n_speakers=0, | |
gin_channels=0, | |
use_sdp=True, | |
#codebook_size=256, #for Q option | |
**kwargs): | |
super().__init__() | |
self.n_vocab = n_vocab | |
self.spec_channels = spec_channels | |
self.inter_channels = inter_channels | |
self.hidden_channels = hidden_channels | |
self.filter_channels = filter_channels | |
self.n_heads = n_heads | |
self.n_layers = n_layers | |
self.kernel_size = kernel_size | |
self.p_dropout = p_dropout | |
self.resblock = resblock | |
self.resblock_kernel_sizes = resblock_kernel_sizes | |
self.resblock_dilation_sizes = resblock_dilation_sizes | |
self.upsample_rates = upsample_rates | |
self.upsample_initial_channel = upsample_initial_channel | |
self.upsample_kernel_sizes = upsample_kernel_sizes | |
self.segment_size = segment_size | |
self.n_speakers = n_speakers | |
self.gin_channels = gin_channels | |
self.yin_channels = yin_channels | |
self.yin_start = yin_start | |
self.yin_scope = yin_scope | |
self.use_sdp = use_sdp | |
self.enc_p = TextEncoder(n_vocab, inter_channels, hidden_channels, | |
filter_channels, n_heads, n_layers, | |
kernel_size, p_dropout) | |
self.dec = Generator( | |
inter_channels - yin_channels + | |
yin_scope, | |
resblock, | |
resblock_kernel_sizes, | |
resblock_dilation_sizes, | |
upsample_rates, | |
upsample_initial_channel, | |
upsample_kernel_sizes, | |
gin_channels=gin_channels) | |
self.enc_spec = PosteriorEncoder(spec_channels, | |
inter_channels - yin_channels, | |
inter_channels - yin_channels, | |
5, | |
1, | |
16, | |
gin_channels=gin_channels) | |
self.enc_pitch = PosteriorEncoder(yin_channels, | |
yin_channels, | |
yin_channels, | |
5, | |
1, | |
16, | |
gin_channels=gin_channels) | |
self.flow = ResidualCouplingBlock(inter_channels, | |
hidden_channels, | |
5, | |
1, | |
4, | |
gin_channels=gin_channels) | |
if use_sdp: | |
self.dp = StochasticDurationPredictor(hidden_channels, | |
192, | |
3, | |
0.5, | |
4, | |
gin_channels=gin_channels) | |
else: | |
self.dp = DurationPredictor(hidden_channels, | |
256, | |
3, | |
0.5, | |
gin_channels=gin_channels) | |
self.yin_dec = YingDecoder(yin_scope, | |
5, | |
1, | |
4, | |
yin_start, | |
yin_scope, | |
yin_shift_range, | |
gin_channels=gin_channels) | |
#self.vq = VQEmbedding(codebook_size, inter_channels - yin_channels)#inter_channels // 2) | |
self.emb_g = nn.Embedding(self.n_speakers, gin_channels) | |
self.pitch = Pitch(midi_start=midi_start, | |
midi_end=midi_end, | |
octave_range=octave_range) | |
def crop_scope( | |
self, | |
x, | |
scope_shift=0): # x: list #need to modify for non-scalar shift | |
return [ | |
i[:, self.yin_start + scope_shift:self.yin_start + self.yin_scope + | |
scope_shift, :] for i in x | |
] | |
def crop_scope_tensor( | |
self, x, | |
scope_shift): # x: tensor [B,C,T] #scope_shift: tensor [B] | |
return torch.stack([ | |
x[i, self.yin_start + scope_shift[i]:self.yin_start + | |
self.yin_scope + scope_shift[i], :] for i in range(x.shape[0]) | |
], | |
dim=0) | |
def yin_dec_infer(self, z_yin, z_mask, sid=None): | |
if self.n_speakers > 0: | |
g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1] | |
else: | |
g = None | |
return self.yin_dec.infer(z_yin, z_mask, g) | |
def forward(self, | |
x, | |
t, | |
x_lengths, | |
y, | |
y_lengths, | |
ying, | |
ying_lengths, | |
sid=None, | |
scope_shift=0): | |
x, m_p, logs_p, x_mask = self.enc_p(x, t, x_lengths) | |
if self.n_speakers > 0: | |
g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1] | |
else: | |
g = None | |
z_spec, m_spec, logs_spec, spec_mask = self.enc_spec(y, y_lengths, g=g) | |
#for Q option | |
#z_spec_q_st, z_spec_q = self.vq.straight_through(z_spec) | |
#z_spec_q_st = z_spec_q_st * spec_mask | |
#z_spec_q = z_spec_q * spec_mask | |
z_yin, m_yin, logs_yin, yin_mask = self.enc_pitch(ying, y_lengths, g=g) | |
z_yin_crop, logs_yin_crop, m_yin_crop = self.crop_scope( | |
[z_yin, logs_yin, m_yin], scope_shift) | |
#yin dec loss | |
yin_gt_crop, yin_gt_shifted_crop, yin_dec_crop, z_yin_crop_shifted, scope_shift = self.yin_dec( | |
z_yin, ying, yin_mask, g) | |
z = torch.cat([z_spec, z_yin], dim=1) | |
logs_q = torch.cat([logs_spec, logs_yin], dim=1) | |
m_q = torch.cat([m_spec, m_yin], dim=1) | |
y_mask = spec_mask | |
z_p = self.flow(z, y_mask, g=g) | |
z_dec = torch.cat([z_spec, z_yin_crop], dim=1) | |
z_dec_shifted = torch.cat([z_spec.detach(), z_yin_crop_shifted], dim=1) | |
z_dec_ = torch.cat([z_dec, z_dec_shifted], dim=0) | |
with torch.no_grad(): | |
# negative cross-entropy | |
s_p_sq_r = torch.exp(-2 * logs_p) # [b, d, t] | |
# [b, 1, t_s] | |
neg_cent1 = torch.sum(-0.5 * math.log(2 * math.pi) - logs_p, [1], | |
keepdim=True) | |
# [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s], z_p: [b,d,t] | |
#neg_cent2 = torch.matmul(-0.5 * (z_p**2).transpose(1, 2), s_p_sq_r) | |
neg_cent2 = torch.einsum('bdt, bds -> bts', -0.5 * (z_p**2), | |
s_p_sq_r) | |
# [b, t_t, d] x [b, d, t_s] = [b, t_t, t_s] | |
#neg_cent3 = torch.matmul(z_p.transpose(1, 2), (m_p * s_p_sq_r)) | |
neg_cent3 = torch.einsum('bdt, bds -> bts', z_p, (m_p * s_p_sq_r)) | |
neg_cent4 = torch.sum(-0.5 * (m_p**2) * s_p_sq_r, [1], | |
keepdim=True) # [b, 1, t_s] | |
neg_cent = neg_cent1 + neg_cent2 + neg_cent3 + neg_cent4 | |
attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze( | |
y_mask, -1) | |
from monotonic_align import maximum_path | |
attn = maximum_path(neg_cent, | |
attn_mask.squeeze(1)).unsqueeze(1).detach() | |
w = attn.sum(2) | |
if self.use_sdp: | |
l_length = self.dp(x, x_mask, w, g=g) | |
l_length = l_length / torch.sum(x_mask) | |
else: | |
logw_ = torch.log(w + 1e-6) * x_mask | |
logw = self.dp(x, x_mask, g=g) | |
l_length = torch.sum( | |
(logw - logw_)**2, [1, 2]) / torch.sum(x_mask) # for averaging | |
# expand prior | |
m_p = torch.einsum('bctn, bdn -> bdt', attn, m_p) | |
logs_p = torch.einsum('bctn, bdn -> bdt', attn, logs_p) | |
#z_slice, ids_slice = commons.rand_slice_segments(z_dec, y_lengths, self.segment_size) | |
#o = self.dec(z_slice, g=g) | |
z_slice, ids_slice = commons.rand_slice_segments_for_cat( | |
z_dec_, torch.cat([y_lengths, y_lengths], dim=0), | |
self.segment_size) | |
o_ = self.dec.hier_forward(z_slice, g=torch.cat([g, g], dim=0)) | |
o = [torch.chunk(o_hier, 2, dim=0)[0] for o_hier in o_] | |
o_pad = F.pad(o_[-1], (768, 768 + (-o_[-1].shape[-1]) % 256 + 256 * | |
(o_[-1].shape[-1] % 256 == 0)), | |
mode='constant').squeeze(1) | |
yin_hat = self.pitch.yingram(o_pad) | |
yin_hat_crop = self.crop_scope([yin_hat])[0] | |
yin_hat_shifted = self.crop_scope_tensor( | |
torch.chunk(yin_hat, 2, dim=0)[0], scope_shift) | |
return o, l_length, attn, ids_slice, x_mask, y_mask, o_, \ | |
(z, z_p, m_p, logs_p, m_q, logs_q), \ | |
(z_dec_), \ | |
(z_spec, m_spec, logs_spec, spec_mask, z_yin, m_yin, logs_yin, yin_mask), \ | |
(yin_gt_crop, yin_gt_shifted_crop, yin_dec_crop, yin_hat_crop, scope_shift, yin_hat_shifted) | |
def infer(self, | |
x, | |
t, | |
x_lengths, | |
sid=None, | |
noise_scale=1, | |
length_scale=1, | |
noise_scale_w=1., | |
max_len=None, | |
scope_shift=0): #need to fix #vector scope shift needed | |
x, m_p, logs_p, x_mask = self.enc_p(x, t, x_lengths) | |
if self.n_speakers > 0: | |
g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1] | |
else: | |
g = None | |
if self.use_sdp: | |
logw = self.dp(x, | |
x_mask, | |
g=g, | |
reverse=True, | |
noise_scale=noise_scale_w) | |
else: | |
logw = self.dp(x, x_mask, g=g) | |
w = torch.exp(logw) * x_mask * length_scale | |
w_ceil = torch.ceil(w) | |
y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long() | |
y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, None), | |
1).to(x_mask.dtype) | |
attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1) | |
attn = commons.generate_path(w_ceil, attn_mask) | |
m_p = torch.einsum('bctn, bdn -> bdt', attn, m_p) | |
logs_p = torch.einsum('bctn, bdn -> bdt', attn, logs_p) | |
z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale | |
z = self.flow(z_p, y_mask, g=g, reverse=True) | |
z_spec, z_yin = torch.split(z, | |
self.inter_channels - self.yin_channels, | |
dim=1) | |
z_yin_crop = self.crop_scope([z_yin], scope_shift)[0] | |
z_crop = torch.cat([z_spec, z_yin_crop], dim=1) | |
o = self.dec((z_crop * y_mask)[:, :, :max_len], g=g) | |
return o, attn, y_mask, (z_crop, z, z_p, m_p, logs_p) | |
def infer_pre_decoder(self, | |
x, | |
t, | |
x_lengths, | |
sid=None, | |
noise_scale=1., | |
length_scale=1., | |
noise_scale_w=1., | |
max_len=None, | |
scope_shift=0): | |
x, m_p, logs_p, x_mask = self.enc_p(x, t, x_lengths) | |
if self.n_speakers > 0: | |
g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1] | |
else: | |
g = None | |
if self.use_sdp: | |
logw = self.dp(x, | |
x_mask, | |
g=g, | |
reverse=True, | |
noise_scale=noise_scale_w) | |
else: | |
logw = self.dp(x, x_mask, g=g) | |
w = torch.exp(logw) * x_mask * length_scale | |
w_ceil = torch.ceil(w) | |
y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long() | |
y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, None), | |
1).to(x_mask.dtype) | |
attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1) | |
attn = commons.generate_path(w_ceil, attn_mask) | |
m_p = torch.einsum('bctn, bdn -> bdt', attn, m_p) | |
logs_p = torch.einsum('bctn, bdn -> bdt', attn, logs_p) | |
z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale | |
z = self.flow(z_p, y_mask, g=g, reverse=True) | |
z_spec, z_yin = torch.split(z, | |
self.inter_channels - self.yin_channels, | |
dim=1) | |
z_yin_crop = self.crop_scope([z_yin], scope_shift)[0] | |
z_crop = torch.cat([z_spec, z_yin_crop], dim=1) | |
decoder_inputs = z_crop * y_mask | |
return decoder_inputs, attn, y_mask, (z_crop, z, z_p, m_p, logs_p) | |
def infer_pre_lr( | |
self, | |
x, | |
t, | |
x_lengths, | |
sid=None, | |
length_scale=1, | |
noise_scale_w=1., | |
): | |
x, m_p, logs_p, x_mask = self.enc_p(x, t, x_lengths) | |
if self.n_speakers > 0: | |
g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1] | |
else: | |
g = None | |
if self.use_sdp: | |
logw = self.dp(x, | |
x_mask, | |
g=g, | |
reverse=True, | |
noise_scale=noise_scale_w) | |
else: | |
logw = self.dp(x, x_mask, g=g) | |
w = torch.exp(logw) * x_mask * length_scale | |
w_ceil = torch.ceil(w) | |
return w_ceil, x, m_p, logs_p, x_mask, g | |
def infer_lr(self, w_ceil, x, m_p, logs_p, x_mask): | |
y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long() | |
y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, None), | |
1).to(x_mask.dtype) | |
attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1) | |
attn = commons.generate_path(w_ceil, attn_mask) | |
m_p = torch.einsum('bctn, bdn -> bdt', attn, m_p) | |
logs_p = torch.einsum('bctn, bdn -> bdt', attn, logs_p) | |
return m_p, logs_p, y_mask | |
def infer_post_lr_pre_decoder(self, | |
m_p, | |
logs_p, | |
g, | |
y_mask, | |
noise_scale=1, | |
scope_shift=0): | |
z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale | |
z = self.flow(z_p, y_mask, g=g, reverse=True) | |
z_spec, z_yin = torch.split(z, | |
self.inter_channels - self.yin_channels, | |
dim=1) | |
z_yin_crop = self.crop_scope([z_yin], scope_shift)[0] | |
z_crop = torch.cat([z_spec, z_yin_crop], dim=1) | |
decoder_inputs = z_crop * y_mask | |
return decoder_inputs, y_mask, (z_crop, z, z_p, m_p, logs_p) | |
def infer_decode_chunk(self, decoder_inputs, sid=None): | |
if self.n_speakers > 0: | |
g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1] | |
else: | |
g = None | |
return self.dec(decoder_inputs, g=g) | |