Voice-Clone-GPU / TTS /cs_api.py
Shadhil's picture
voice-clone with single audio sample input
9b2107c
import http.client
import json
import os
import tempfile
import urllib.request
from typing import Tuple
import numpy as np
import requests
from scipy.io import wavfile
from TTS.utils.audio.numpy_transforms import save_wav
class Speaker(object):
"""Convert dict to object."""
def __init__(self, d, is_voice=False):
self.is_voice = is_voice
for k, v in d.items():
if isinstance(k, (list, tuple)):
setattr(self, k, [Speaker(x) if isinstance(x, dict) else x for x in v])
else:
setattr(self, k, Speaker(v) if isinstance(v, dict) else v)
def __repr__(self):
return str(self.__dict__)
class CS_API:
"""🐸Coqui Studio API Wrapper.
🐸Coqui Studio is the most advanced voice generation platform. You can generate new voices by voice cloning, voice
interpolation, or our unique prompt to voice technology. It also provides a set of built-in voices with different
characteristics. You can use these voices to generate new audio files or use them in your applications.
You can use all the built-in and your own 🐸Coqui Studio speakers with this API with an API token.
You can signup to 🐸Coqui Studio from https://app.coqui.ai/auth/signup and get an API token from
https://app.coqui.ai/account. We can either enter the token as an environment variable as
`export COQUI_STUDIO_TOKEN=<token>` or pass it as `CS_API(api_token=<toke>)`.
Visit https://app.coqui.ai/api for more information.
Args:
api_token (str): 🐸Coqui Studio API token. If not provided, it will be read from the environment variable
`COQUI_STUDIO_TOKEN`.
model (str): 🐸Coqui Studio model. It can be either `V1`, `XTTS`. Default is `XTTS`.
Example listing all available speakers:
>>> from TTS.api import CS_API
>>> tts = CS_API()
>>> tts.speakers
Example listing all emotions:
>>> # emotions are only available for `V1` model
>>> from TTS.api import CS_API
>>> tts = CS_API(model="V1")
>>> tts.emotions
Example with a built-in 🐸 speaker:
>>> from TTS.api import CS_API
>>> tts = CS_API()
>>> wav, sr = api.tts("Hello world", speaker_name=tts.speakers[0].name)
>>> filepath = tts.tts_to_file(text="Hello world!", speaker_name=tts.speakers[0].name, file_path="output.wav")
Example with multi-language model:
>>> from TTS.api import CS_API
>>> tts = CS_API(model="XTTS")
>>> wav, sr = api.tts("Hello world", speaker_name=tts.speakers[0].name, language="en")
"""
MODEL_ENDPOINTS = {
"V1": {
"list_speakers": "https://app.coqui.ai/api/v2/speakers",
"synthesize": "https://app.coqui.ai/api/v2/samples",
"list_voices": "https://app.coqui.ai/api/v2/voices",
},
"XTTS": {
"list_speakers": "https://app.coqui.ai/api/v2/speakers",
"synthesize": "https://app.coqui.ai/api/v2/samples/xtts/render/",
"list_voices": "https://app.coqui.ai/api/v2/voices/xtts",
},
}
SUPPORTED_LANGUAGES = ["en", "es", "de", "fr", "it", "pt", "pl", "tr", "ru", "nl", "cs", "ar", "zh-cn", "ja"]
def __init__(self, api_token=None, model="XTTS"):
self.api_token = api_token
self.model = model
self.headers = None
self._speakers = None
self._check_token()
@staticmethod
def ping_api():
URL = "https://coqui.gateway.scarf.sh/tts/api"
_ = requests.get(URL)
@property
def speakers(self):
if self._speakers is None:
self._speakers = self.list_all_speakers()
return self._speakers
@property
def emotions(self):
"""Return a list of available emotions.
TODO: Get this from the API endpoint.
"""
if self.model == "V1":
return ["Neutral", "Happy", "Sad", "Angry", "Dull"]
else:
raise ValueError(f"❗ Emotions are not available for {self.model}.")
def _check_token(self):
if self.api_token is None:
self.api_token = os.environ.get("COQUI_STUDIO_TOKEN")
self.headers = {"Content-Type": "application/json", "Authorization": f"Bearer {self.api_token}"}
if not self.api_token:
raise ValueError(
"No API token found for 🐸Coqui Studio voices - https://coqui.ai \n"
"Visit 🔗https://app.coqui.ai/account to get one.\n"
"Set it as an environment variable `export COQUI_STUDIO_TOKEN=<token>`\n"
""
)
def list_all_speakers(self):
"""Return both built-in Coqui Studio speakers and custom voices created by the user."""
return self.list_speakers() + self.list_voices()
def list_speakers(self):
"""List built-in Coqui Studio speakers."""
self._check_token()
conn = http.client.HTTPSConnection("app.coqui.ai")
url = self.MODEL_ENDPOINTS[self.model]["list_speakers"]
conn.request("GET", f"{url}?page=1&per_page=100", headers=self.headers)
res = conn.getresponse()
data = res.read()
return [Speaker(s) for s in json.loads(data)["result"]]
def list_voices(self):
"""List custom voices created by the user."""
conn = http.client.HTTPSConnection("app.coqui.ai")
url = self.MODEL_ENDPOINTS[self.model]["list_voices"]
conn.request("GET", f"{url}?page=1&per_page=100", headers=self.headers)
res = conn.getresponse()
data = res.read()
return [Speaker(s, True) for s in json.loads(data)["result"]]
def list_speakers_as_tts_models(self):
"""List speakers in ModelManager format."""
models = []
for speaker in self.speakers:
model = f"coqui_studio/multilingual/{speaker.name}/{self.model}"
models.append(model)
return models
def name_to_speaker(self, name):
for speaker in self.speakers:
if speaker.name == name:
return speaker
raise ValueError(f"Speaker {name} not found in {self.speakers}")
def id_to_speaker(self, speaker_id):
for speaker in self.speakers:
if speaker.id == speaker_id:
return speaker
raise ValueError(f"Speaker {speaker_id} not found.")
@staticmethod
def url_to_np(url):
tmp_file, _ = urllib.request.urlretrieve(url)
rate, data = wavfile.read(tmp_file)
return data, rate
@staticmethod
def _create_payload(model, text, speaker, speed, emotion, language):
payload = {}
# if speaker.is_voice:
payload["voice_id"] = speaker.id
# else:
payload["speaker_id"] = speaker.id
if model == "V1":
payload.update(
{
"emotion": emotion,
"name": speaker.name,
"text": text,
"speed": speed,
}
)
elif model == "XTTS":
payload.update(
{
"name": speaker.name,
"text": text,
"speed": speed,
"language": language,
}
)
else:
raise ValueError(f"❗ Unknown model {model}")
return payload
def _check_tts_args(self, text, speaker_name, speaker_id, emotion, speed, language):
assert text is not None, "❗ text is required for V1 model."
assert speaker_name is not None, "❗ speaker_name is required for V1 model."
if self.model == "V1":
if emotion is None:
emotion = "Neutral"
assert language is None, "❗ language is not supported for V1 model."
elif self.model == "XTTS":
assert emotion is None, f"❗ Emotions are not supported for XTTS model. Use V1 model."
assert language is not None, "❗ Language is required for XTTS model."
assert (
language in self.SUPPORTED_LANGUAGES
), f"❗ Language {language} is not yet supported. Check https://docs.coqui.ai/reference/samples_xtts_create."
return text, speaker_name, speaker_id, emotion, speed, language
def tts(
self,
text: str,
speaker_name: str = None,
speaker_id=None,
emotion=None,
speed=1.0,
language=None, # pylint: disable=unused-argument
) -> Tuple[np.ndarray, int]:
"""Synthesize speech from text.
Args:
text (str): Text to synthesize.
speaker_name (str): Name of the speaker. You can get the list of speakers with `list_speakers()` and
voices (user generated speakers) with `list_voices()`.
speaker_id (str): Speaker ID. If None, the speaker name is used.
emotion (str): Emotion of the speaker. One of "Neutral", "Happy", "Sad", "Angry", "Dull". Emotions are only
supported by `V1` model. Defaults to None.
speed (float): Speed of the speech. 1.0 is normal speed.
language (str): Language of the text. If None, the default language of the speaker is used. Language is only
supported by `XTTS` model. See https://docs.coqui.ai/reference/samples_xtts_create for supported languages.
"""
self._check_token()
self.ping_api()
if speaker_name is None and speaker_id is None:
raise ValueError(" [!] Please provide either a `speaker_name` or a `speaker_id`.")
if speaker_id is None:
speaker = self.name_to_speaker(speaker_name)
else:
speaker = self.id_to_speaker(speaker_id)
text, speaker_name, speaker_id, emotion, speed, language = self._check_tts_args(
text, speaker_name, speaker_id, emotion, speed, language
)
conn = http.client.HTTPSConnection("app.coqui.ai")
payload = self._create_payload(self.model, text, speaker, speed, emotion, language)
url = self.MODEL_ENDPOINTS[self.model]["synthesize"]
conn.request("POST", url, json.dumps(payload), self.headers)
res = conn.getresponse()
data = res.read()
try:
wav, sr = self.url_to_np(json.loads(data)["audio_url"])
except KeyError as e:
raise ValueError(f" [!] 🐸 API returned error: {data}") from e
return wav, sr
def tts_to_file(
self,
text: str,
speaker_name: str,
speaker_id=None,
emotion=None,
speed=1.0,
pipe_out=None,
language=None,
file_path: str = None,
) -> str:
"""Synthesize speech from text and save it to a file.
Args:
text (str): Text to synthesize.
speaker_name (str): Name of the speaker. You can get the list of speakers with `list_speakers()` and
voices (user generated speakers) with `list_voices()`.
speaker_id (str): Speaker ID. If None, the speaker name is used.
emotion (str): Emotion of the speaker. One of "Neutral", "Happy", "Sad", "Angry", "Dull".
speed (float): Speed of the speech. 1.0 is normal speed.
pipe_out (BytesIO, optional): Flag to stdout the generated TTS wav file for shell pipe.
language (str): Language of the text. If None, the default language of the speaker is used. Language is only
supported by `XTTS` model. Currently supports en, de, es, fr, it, pt, pl. Defaults to "en".
file_path (str): Path to save the file. If None, a temporary file is created.
"""
if file_path is None:
file_path = tempfile.mktemp(".wav")
wav, sr = self.tts(text, speaker_name, speaker_id, emotion, speed, language)
save_wav(wav=wav, path=file_path, sample_rate=sr, pipe_out=pipe_out)
return file_path
if __name__ == "__main__":
import time
api = CS_API()
print(api.speakers)
print(api.list_speakers_as_tts_models())
ts = time.time()
wav, sr = api.tts(
"It took me quite a long time to develop a voice.", language="en", speaker_name=api.speakers[0].name
)
print(f" [i] XTTS took {time.time() - ts:.2f}s")
filepath = api.tts_to_file(
text="Hello world!", speaker_name=api.speakers[0].name, language="en", file_path="output.wav"
)