from pathlib import Path import torch import torch.nn as nn import torch.nn.functional as F import torchaudio import torchaudio.transforms as T from hifigan.models import Generator as HiFiGAN from hifigan.utils import AttrDict from torch import Tensor from torchaudio.sox_effects import apply_effects_tensor from wavlm.WavLM import WavLM from knnvc_utils import generate_matrix_from_index SPEAKER_INFORMATION_LAYER = 6 SPEAKER_INFORMATION_WEIGHTS = generate_matrix_from_index(SPEAKER_INFORMATION_LAYER) def fast_cosine_dist(source_feats: Tensor, matching_pool: Tensor, device: str = 'cpu') -> Tensor: """ Like torch.cdist, but fixed dim=-1 and for cosine distance.""" source_norms = torch.norm(source_feats, p=2, dim=-1).to(device) matching_norms = torch.norm(matching_pool, p=2, dim=-1) dotprod = -torch.cdist(source_feats[None].to(device), matching_pool[None], p=2)[0]**2 + source_norms[:, None]**2 + matching_norms[None]**2 dotprod /= 2 dists = 1 - ( dotprod / (source_norms[:, None] * matching_norms[None]) ) return dists class KNeighborsVC(nn.Module): def __init__(self, wavlm: WavLM, hifigan: HiFiGAN, hifigan_cfg: AttrDict, device='cuda' ) -> None: """ kNN-VC matcher. Arguments: - `wavlm` : trained WavLM model - `hifigan`: trained hifigan model - `hifigan_cfg`: hifigan config to use for vocoding. """ super().__init__() # set which features to extract from wavlm self.weighting = torch.tensor(SPEAKER_INFORMATION_WEIGHTS, device=device)[:, None] # load hifigan self.hifigan = hifigan.eval() self.h = hifigan_cfg # store wavlm self.wavlm = wavlm.eval() self.device = torch.device(device) self.sr = self.h.sampling_rate self.hop_length = 320 def get_matching_set(self, wavs: list[Path] | list[Tensor], weights=None, vad_trigger_level=7) -> Tensor: """ Get concatenated wavlm features for the matching set using all waveforms in `wavs`, specified as either a list of paths or list of loaded waveform tensors of shape (channels, T), assumed to be of 16kHz sample rate. Optionally specify custom WavLM feature weighting with `weights`. """ feats = [] for p in wavs: feats.append(self.get_features(p, weights=self.weighting if weights is None else weights, vad_trigger_level=vad_trigger_level)) feats = torch.concat(feats, dim=0).cpu() return feats @torch.inference_mode() def vocode(self, c: Tensor) -> Tensor: """ Vocode features with hifigan. `c` is of shape (bs, seq_len, c_dim) """ y_g_hat = self.hifigan(c) y_g_hat = y_g_hat.squeeze(1) return y_g_hat @torch.inference_mode() def get_features(self, path, weights=None, vad_trigger_level=0): """Returns features of `path` waveform as a tensor of shape (seq_len, dim), optionally perform VAD trimming on start/end with `vad_trigger_level`. """ # load audio if weights == None: weights = self.weighting if type(path) in [str, Path]: x, sr = torchaudio.load(path, normalize=True) else: x: Tensor = path sr = self.sr if x.dim() == 1: x = x[None] if not sr == self.sr : print(f"resample {sr} to {self.sr} in {path}") x = torchaudio.functional.resample(x, orig_freq=sr, new_freq=self.sr) sr = self.sr # trim silence from front and back if vad_trigger_level > 1e-3: transform = T.Vad(sample_rate=sr, trigger_level=vad_trigger_level) x_front_trim = transform(x) # original way, disabled because it lacks windows support #waveform_reversed, sr = apply_effects_tensor(x_front_trim, sr, [["reverse"]]) waveform_reversed = torch.flip(x_front_trim, (-1,)) waveform_reversed_front_trim = transform(waveform_reversed) waveform_end_trim = torch.flip(waveform_reversed_front_trim, (-1,)) #waveform_end_trim, sr = apply_effects_tensor( # waveform_reversed_front_trim, sr, [["reverse"]] #) x = waveform_end_trim # extract the representation of each layer wav_input_16khz = x.to(self.device) if torch.allclose(weights, self.weighting): # use fastpath features = self.wavlm.extract_features(wav_input_16khz, output_layer=SPEAKER_INFORMATION_LAYER, ret_layer_results=False)[0] features = features.squeeze(0) else: # use slower weighted rep, layer_results = self.wavlm.extract_features(wav_input_16khz, output_layer=self.wavlm.cfg.encoder_layers, ret_layer_results=True)[0] features = torch.cat([x.transpose(0, 1) for x, _ in layer_results], dim=0) # (n_layers, seq_len, dim) # save full sequence features = ( features*weights[:, None] ).sum(dim=0) # (seq_len, dim) return features @torch.inference_mode() def match(self, query_seq: Tensor, matching_set: Tensor, synth_set: Tensor = None, topk: int = 4, tgt_loudness_db: float | None = -16, target_duration: float | None = None, device: str | None = None) -> Tensor: """ Given `query_seq`, `matching_set`, and `synth_set` tensors of shape (N, dim), perform kNN regression matching with k=`topk`. Inputs: - `query_seq`: Tensor (N1, dim) of the input/source query features. - `matching_set`: Tensor (N2, dim) of the matching set used as the 'training set' for the kNN algorithm. - `synth_set`: optional Tensor (N2, dim) corresponding to the matching set. We use the matching set to assign each query vector to a vector in the matching set, and then use the corresponding vector from the synth set during HiFiGAN synthesis. By default, and for best performance, this should be identical to the matching set. - `topk`: k in the kNN -- the number of nearest neighbors to average over. - `tgt_loudness_db`: float db used to normalize the output volume. Set to None to disable. - `target_duration`: if set to a float, interpolate resulting waveform duration to be equal to this value in seconds. - `device`: if None, uses default device at initialization. Otherwise uses specified device Returns: - converted waveform of shape (T,) """ device = torch.device(device) if device is not None else self.device if synth_set is None: synth_set = matching_set.to(device) else: synth_set = synth_set.to(device) matching_set = matching_set.to(device) query_seq = query_seq.to(device) if target_duration is not None: target_samples = int(target_duration*self.sr) scale_factor = (target_samples/self.hop_length) / query_seq.shape[0] # n_targ_feats / n_input_feats query_seq = F.interpolate(query_seq.T[None], scale_factor=scale_factor, mode='linear')[0].T dists = fast_cosine_dist(query_seq, matching_set, device=device) best = dists.topk(k=topk, largest=False, dim=-1) out_feats = synth_set[best.indices].mean(dim=1) prediction = self.vocode(out_feats[None].to(device)).cpu().squeeze() # normalization if tgt_loudness_db is not None: src_loudness = torchaudio.functional.loudness(prediction[None], self.h.sampling_rate) tgt_loudness = tgt_loudness_db pred_wav = torchaudio.functional.gain(prediction, tgt_loudness - src_loudness) else: pred_wav = prediction return pred_wav