from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel,load_tool,tool import datetime import math import requests import pytz import yaml from tools.final_answer import FinalAnswerTool from Gradio_UI import GradioUI # Below is an example of a tool that does nothing. Amaze us with your creativity ! @tool def my_custom_tool(arg1:str, arg2:int)-> str: #it's import to specify the return type #Keep this format for the description / args / args description but feel free to modify the tool """A tool that does nothing yet Args: arg1: the first argument arg2: the second argument """ return "What magic will you build ?" @tool def get_square_root_tool(input_number:int)-> int: #it's import to specify the return type #Keep this format for the description / args / args description but feel free to modify the tool """A tool that does nothing yet Args: input_number: an integer whose square root is to be calculated """ try: # get square root square_root = math.sqrt(input_number) return f"Square root of {input_number} is: {square_root}" except Exception as e: return f"Error fetching Square root of '{input_number}': {str(e)}" @tool def classify_educational_article(text: str) -> str: """ Classifier for judging the educational value of web pages. Args: text: The content of the educational article to be classified. Returns: str: This function will output a dictionary with the input text, the predicted score, and an integer score between 0 and 5 """ from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("HuggingFaceTB/fineweb-edu-classifier") model = AutoModelForSequenceClassification.from_pretrained("HuggingFaceTB/fineweb-edu-classifier") inputs = tokenizer(text, return_tensors="pt", padding="longest", truncation=True) outputs = model(**inputs) logits = outputs.logits.squeeze(-1).float().detach().numpy() score = logits.item() result = {"text": text, "score": score, "int_score": int(round(max(0, min(score, 5)))), } return result @tool def get_current_time_in_timezone(timezone: str) -> str: """A tool that fetches the current local time in a specified timezone. Args: timezone: A string representing a valid timezone (e.g., 'America/New_York'). """ try: # Create timezone object tz = pytz.timezone(timezone) # Get current time in that timezone local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S") return f"The current local time in {timezone} is: {local_time}" except Exception as e: return f"Error fetching time for timezone '{timezone}': {str(e)}" final_answer = FinalAnswerTool() # If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder: # model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud' model = HfApiModel( max_tokens=2096, temperature=0.5, model_id='Qwen/Qwen2.5-Coder-32B-Instruct',# it is possible that this model may be overloaded custom_role_conversions=None, ) # Import tool from Hub image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True) with open("prompts.yaml", 'r') as stream: prompt_templates = yaml.safe_load(stream) agent = CodeAgent( model=model, tools=[final_answer,image_generation_tool,get_square_root_tool,classify_educational_article], ## add your tools here (don't remove final answer) max_steps=6, verbosity_level=1, grammar=None, planning_interval=None, name=None, description=None, prompt_templates=prompt_templates ) GradioUI(agent).launch()