File size: 4,755 Bytes
2c19098
 
26063e6
2c19098
76b564d
 
 
 
8131717
6ba7689
 
 
 
 
 
 
76b564d
 
 
 
 
 
8131717
6ba7689
 
 
 
 
 
 
76b564d
9458c70
76b564d
 
26063e6
 
2c19098
76b564d
 
01b89ba
76b564d
 
 
 
 
 
 
 
 
 
4cb8223
 
2c19098
01b89ba
 
 
 
 
 
 
 
7bd0a5a
 
 
 
 
 
 
 
 
 
 
 
76b564d
7bd0a5a
 
 
01b89ba
6ba7689
7bd0a5a
 
 
 
2c19098
088c386
2c19098
76b564d
6ba7689
76b564d
 
2c19098
088c386
2c19098
4cb8223
2c19098
01b89ba
2c19098
01b89ba
 
 
 
 
4cb8223
40a8b65
 
01b89ba
40a8b65
 
 
 
 
 
 
2c19098
 
e7f153f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
from diffusers import StableDiffusionPipeline
import gradio as gr
import torch

models = [
  "nitrosocke/Arcane-Diffusion",
  "nitrosocke/archer-diffusion",
  "nitrosocke/elden-ring-diffusion",
  "nitrosocke/spider-verse-diffusion",
  "nitrosocke/modern-disney-diffusion",
  "hakurei/waifu-diffusion",
  "lambdalabs/sd-pokemon-diffusers",
  "yuk/fuyuko-waifu-diffusion",
  "AstraliteHeart/pony-diffusion",
  "IfanSnek/JohnDiffusion",
  "nousr/robo-diffusion"
]

prompt_prefixes = {
  models[0]: "arcane style ",
  models[1]: "archer style ",
  models[2]: "elden ring style ",
  models[3]: "spiderverse style ",
  models[4]: "modern disney style ",
  models[5]: "",
  models[6]: "",
  models[7]: "",
  models[8]: "",
  models[9]: "",
  models[10]: "",
}

current_model = models[0]
pipe = StableDiffusionPipeline.from_pretrained(current_model, torch_dtype=torch.float16)
if torch.cuda.is_available():
  pipe = pipe.to("cuda")

device = "GPU 🔥" if torch.cuda.is_available() else "CPU 🥶"

def inference(model, prompt, guidance, steps):

    global current_model
    global pipe
    if model != current_model:
        current_model = model
        pipe = StableDiffusionPipeline.from_pretrained(current_model, torch_dtype=torch.float16)
        if torch.cuda.is_available():
            pipe = pipe.to("cuda")

    prompt = prompt_prefixes[current_model] + prompt
    image = pipe(prompt, num_inference_steps=int(steps), guidance_scale=guidance, width=512, height=512).images[0]
    return image

css = """
  <style>
  a {
    text-decoration: underline;
  }
  </style>
"""
with gr.Blocks(css=css) as demo:
    gr.HTML(
        """
            <div style="text-align: center; max-width: 700px; margin: 0 auto;">
              <div
                style="
                  display: inline-flex;
                  align-items: center;
                  gap: 0.8rem;
                  font-size: 1.75rem;
                "
              >
                <h1 style="font-weight: 900; margin-bottom: 7px;">
                  Finetuned Diffusion
                </h1>
              </div>
              <p style="margin-bottom: 10px; font-size: 94%">
               Demo for multiple fine-tuned Stable Diffusion models, trained on different styles: <br>
               <a href="https://huggingface.co/nitrosocke/Arcane-Diffusion">Arcane</a>, <a href="https://huggingface.co/nitrosocke/archer-diffusion">Archer</a>, <a href="https://huggingface.co/nitrosocke/elden-ring-diffusion">Elden Ring</a>, <a href="https://huggingface.co/nitrosocke/spider-verse-diffusion">Spiderverse</a>, <a href="https://huggingface.co/nitrosocke/modern-disney-diffusion">Modern Disney</a>, <a href="https://huggingface.co/hakurei/waifu-diffusion">Waifu</a>, <a href="https://huggingface.co/lambdalabs/sd-pokemon-diffusers">Pokemon</a>, <a href="https://huggingface.co/yuk/fuyuko-waifu-diffusion">Fuyuko Waifu</a>, <a href="https://huggingface.co/AstraliteHeart/pony-diffusion">Pony</a>, <a href="https://huggingface.co/IfanSnek/JohnDiffusion">John</a>, <a href="https://huggingface.co/nousr/robo-diffusion">Robo</a>.
              </p>
            </div>
        """
    )
    with gr.Row():
        
        with gr.Column():
            model = gr.Dropdown(label="Model", choices=models, value=models[0])
            prompt = gr.Textbox(label="Prompt", placeholder="Style prefix is applied automatically")
            guidance = gr.Slider(label="Guidance scale", value=7.5, maximum=15)
            steps = gr.Slider(label="Steps", value=50, maximum=100, minimum=2)
            run = gr.Button(value="Run")
            gr.Markdown(f"Running on: {device}")
        with gr.Column():
            image_out = gr.Image(height=512)

    run.click(inference, inputs=[model, prompt, guidance, steps], outputs=image_out)
    gr.Examples([
        [models[0], "jason bateman disassembling the demon core", 7.5, 50],
        [models[3], "portrait of dwayne johnson", 7.0, 75],
        [models[4], "portrait of a beautiful alyx vance half life", 10, 50],
        [models[5], "Aloy from Horizon: Zero Dawn, half body portrait, smooth, detailed armor, beautiful face, illustration", 7, 45],
        [models[4], "fantasy portrait painting, digital art", 4, 30],
    ], [prompt, guidance, steps], image_out, inference, cache_examples=torch.cuda.is_available())
    gr.HTML('''
        <div>
            <p>Model by <a href="https://huggingface.co/nitrosocke" target="_blank">@nitrosocke</a> ❤️</p>
        </div>
        <div>Space by 
            <a href="https://twitter.com/hahahahohohe">
              <img alt="Twitter Follow" src="https://img.shields.io/twitter/follow/hahahahohohe?label=%40anzorq&style=social">
            </a>
        </div>
        ''')

demo.queue()
demo.launch()