Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Update app.py
Browse files
app.py
CHANGED
@@ -79,29 +79,58 @@ import gradio as gr
|
|
79 |
# translations = [tokenizer.decode(translation, skip_special_tokens=True) for translation in translated_tokens]
|
80 |
# return text, translations
|
81 |
|
82 |
-
############### ONNX MODEL INFERENCE ###############
|
83 |
-
from transformers import AutoTokenizer, pipeline
|
84 |
-
from optimum.onnxruntime import ORTModelForSeq2SeqLM
|
85 |
|
86 |
-
model_id = "anzorq/m2m100_418M_ft_ru-kbd_44K"
|
87 |
|
88 |
-
model = ORTModelForSeq2SeqLM.from_pretrained(model_id, subfolder="onnx", file_name="encoder_model_optimized.onnx")
|
89 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
90 |
|
91 |
-
def translate(text, num_beams=4, num_return_sequences=4):
|
92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
|
94 |
-
num_return_sequences = min(num_return_sequences, num_beams)
|
95 |
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
|
100 |
-
|
101 |
-
|
102 |
-
|
|
|
103 |
|
104 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
|
106 |
output = gr.Textbox()
|
107 |
# with gr.Accordion("Advanced Options"):
|
|
|
79 |
# translations = [tokenizer.decode(translation, skip_special_tokens=True) for translation in translated_tokens]
|
80 |
# return text, translations
|
81 |
|
82 |
+
# ############### ONNX MODEL INFERENCE ###############
|
83 |
+
# from transformers import AutoTokenizer, pipeline
|
84 |
+
# from optimum.onnxruntime import ORTModelForSeq2SeqLM
|
85 |
|
86 |
+
# model_id = "anzorq/m2m100_418M_ft_ru-kbd_44K"
|
87 |
|
88 |
+
# model = ORTModelForSeq2SeqLM.from_pretrained(model_id, subfolder="onnx", file_name="encoder_model_optimized.onnx")
|
89 |
+
# tokenizer = AutoTokenizer.from_pretrained(model_id)
|
90 |
|
91 |
+
# def translate(text, num_beams=4, num_return_sequences=4):
|
92 |
+
# inputs = tokenizer(text, return_tensors="pt")
|
93 |
+
|
94 |
+
# num_return_sequences = min(num_return_sequences, num_beams)
|
95 |
+
|
96 |
+
# translated_tokens = model.generate(
|
97 |
+
# **inputs, forced_bos_token_id=tokenizer.lang_code_to_id["zu"], num_beams=num_beams, num_return_sequences=num_return_sequences
|
98 |
+
# )
|
99 |
+
|
100 |
+
# translations = []
|
101 |
+
# for translation in tokenizer.batch_decode(translated_tokens, skip_special_tokens=True):
|
102 |
+
# translations.append(translation)
|
103 |
+
|
104 |
+
# return text, translations
|
105 |
|
|
|
106 |
|
107 |
+
############### CTRANSLATE2 INFERENCE ###############
|
108 |
+
import ctranslate2
|
109 |
+
import transformers
|
110 |
|
111 |
+
translator = ctranslate2.Translator("ctranslate")
|
112 |
+
tokenizer = transformers.AutoTokenizer.from_pretrained("anzorq/m2m100_418M_ft_ru-kbd_44K")
|
113 |
+
|
114 |
+
def translate(text, num_beams=4, num_return_sequences=4):
|
115 |
|
116 |
+
num_return_sequences = min(num_return_sequences, num_beams)
|
117 |
+
|
118 |
+
source = tokenizer.convert_ids_to_tokens(tokenizer.encode(text))
|
119 |
+
target_prefix = [tokenizer.lang_code_to_token["zu"]]
|
120 |
+
results = translator.translate_batch(
|
121 |
+
[source],
|
122 |
+
target_prefix=[target_prefix],
|
123 |
+
beam_size=num_beams,
|
124 |
+
num_hypotheses=num_return_sequences
|
125 |
+
)
|
126 |
+
|
127 |
+
translations = []
|
128 |
+
for hypothesis in results[0].hypotheses:
|
129 |
+
target = hypothesis[1:]
|
130 |
+
decoded_sentence = tokenizer.decode(tokenizer.convert_tokens_to_ids(target))
|
131 |
+
translations.append(decoded_sentence)
|
132 |
+
|
133 |
+
return text, translations
|
134 |
|
135 |
output = gr.Textbox()
|
136 |
# with gr.Accordion("Advanced Options"):
|