apruvd commited on
Commit
b43c1b7
1 Parent(s): 7c5f1d9

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -7
app.py CHANGED
@@ -10,7 +10,7 @@ import matplotlib.pyplot as plt
10
  import numpy as np
11
  import PIL
12
 
13
- torch.cuda.empty_cache()
14
 
15
  model = whisper.load_model("base")
16
  model.device
@@ -18,7 +18,7 @@ model.device
18
  model_id = 'prompthero/midjourney-v4-diffusion' #"stabilityai/stable-diffusion-2"
19
 
20
  scheduler = EulerDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler")
21
- pipe = StableDiffusionPipeline.from_pretrained(model_id) #pipe = StableDiffusionPipeline.from_pretrained(model_id , torch_dtype=torch.float16 #pipe = StableDiffusionPipeline.from_pretrained(model_id, scheduler=scheduler, revision="fp16", torch_dtype=torch.float16)
22
  pipe = pipe.to("cuda")
23
 
24
  def transcribe(audio,prompt_num,user_keywords):
@@ -175,11 +175,12 @@ def keywords(text,prompt_num,user_keywords):
175
  count += 1
176
  print(i)
177
  print("works4")
178
- # with torch.autocast("cuda"):
179
- image = pipe(i, height=768, width=768, guidance_scale = 10).images[0]
180
- print("works5")
181
- images.append(image)
182
- print("works6")
 
183
 
184
  # min_shape = sorted( [(np.sum(i.size), i.size ) for i in images])[0][1]
185
  # imgs_comb = np.hstack([i.resize(min_shape) for i in images])
 
10
  import numpy as np
11
  import PIL
12
 
13
+
14
 
15
  model = whisper.load_model("base")
16
  model.device
 
18
  model_id = 'prompthero/midjourney-v4-diffusion' #"stabilityai/stable-diffusion-2"
19
 
20
  scheduler = EulerDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler")
21
+ pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.torch.cuda.empty_cache()16) #pipe = StableDiffusionPipeline.from_pretrained(model_id , torch_dtype=torch.float16 #pipe = StableDiffusionPipeline.from_pretrained(model_id, scheduler=scheduler, revision="fp16", torch_dtype=torch.float16)
22
  pipe = pipe.to("cuda")
23
 
24
  def transcribe(audio,prompt_num,user_keywords):
 
175
  count += 1
176
  print(i)
177
  print("works4")
178
+ torch.cuda.empty_cache()
179
+ with torch.autocast("cuda"):
180
+ image = pipe(i, height=768, width=768, guidance_scale = 10).images[0]
181
+ print("works5")
182
+ images.append(image)
183
+ print("works6")
184
 
185
  # min_shape = sorted( [(np.sum(i.size), i.size ) for i in images])[0][1]
186
  # imgs_comb = np.hstack([i.resize(min_shape) for i in images])