File size: 24,266 Bytes
246d201 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 |
import json
import os
from collections import deque
from litellm import ModelResponse
import openhands
import openhands.agenthub.codeact_agent.function_calling as codeact_function_calling
from openhands.controller.agent import Agent
from openhands.controller.state.state import State
from openhands.core.config import AgentConfig
from openhands.core.logger import openhands_logger as logger
from openhands.core.message import ImageContent, Message, TextContent
from openhands.events.action import (
Action,
AgentDelegateAction,
AgentFinishAction,
BrowseInteractiveAction,
BrowseURLAction,
CmdRunAction,
FileEditAction,
FileReadAction,
IPythonRunCellAction,
MessageAction,
)
from openhands.events.observation import (
AgentCondensationObservation,
AgentDelegateObservation,
BrowserOutputObservation,
CmdOutputObservation,
FileEditObservation,
FileReadObservation,
IPythonRunCellObservation,
UserRejectObservation,
)
from openhands.events.observation.error import ErrorObservation
from openhands.events.observation.observation import Observation
from openhands.events.serialization.event import truncate_content
from openhands.llm.llm import LLM
from openhands.memory.condenser import Condenser
from openhands.runtime.plugins import (
AgentSkillsRequirement,
JupyterRequirement,
PluginRequirement,
)
from openhands.utils.prompt import PromptManager
class CodeActAgent(Agent):
VERSION = '2.2'
"""
The Code Act Agent is a minimalist agent.
The agent works by passing the model a list of action-observation pairs and prompting the model to take the next step.
### Overview
This agent implements the CodeAct idea ([paper](https://arxiv.org/abs/2402.01030), [tweet](https://twitter.com/xingyaow_/status/1754556835703751087)) that consolidates LLM agents’ **act**ions into a unified **code** action space for both *simplicity* and *performance* (see paper for more details).
The conceptual idea is illustrated below. At each turn, the agent can:
1. **Converse**: Communicate with humans in natural language to ask for clarification, confirmation, etc.
2. **CodeAct**: Choose to perform the task by executing code
- Execute any valid Linux `bash` command
- Execute any valid `Python` code with [an interactive Python interpreter](https://ipython.org/). This is simulated through `bash` command, see plugin system below for more details.
![image](https://github.com/All-Hands-AI/OpenHands/assets/38853559/92b622e3-72ad-4a61-8f41-8c040b6d5fb3)
"""
sandbox_plugins: list[PluginRequirement] = [
# NOTE: AgentSkillsRequirement need to go before JupyterRequirement, since
# AgentSkillsRequirement provides a lot of Python functions,
# and it needs to be initialized before Jupyter for Jupyter to use those functions.
AgentSkillsRequirement(),
JupyterRequirement(),
]
def __init__(
self,
llm: LLM,
config: AgentConfig,
) -> None:
"""Initializes a new instance of the CodeActAgent class.
Parameters:
- llm (LLM): The llm to be used by this agent
"""
super().__init__(llm, config)
self.pending_actions: deque[Action] = deque()
self.reset()
self.mock_function_calling = False
if not self.llm.is_function_calling_active():
logger.info(
f'Function calling not enabled for model {self.llm.config.model}. '
'Mocking function calling via prompting.'
)
self.mock_function_calling = True
# Function calling mode
self.tools = codeact_function_calling.get_tools(
codeact_enable_browsing=self.config.codeact_enable_browsing,
codeact_enable_jupyter=self.config.codeact_enable_jupyter,
codeact_enable_llm_editor=self.config.codeact_enable_llm_editor,
)
logger.debug(
f'TOOLS loaded for CodeActAgent: {json.dumps(self.tools, indent=2, ensure_ascii=False).replace("\\n", "\n")}'
)
self.prompt_manager = PromptManager(
microagent_dir=os.path.join(
os.path.dirname(os.path.dirname(openhands.__file__)),
'microagents',
)
if self.config.enable_prompt_extensions
else None,
prompt_dir=os.path.join(os.path.dirname(__file__), 'prompts'),
disabled_microagents=self.config.disabled_microagents,
)
self.condenser = Condenser.from_config(self.config.condenser)
logger.debug(f'Using condenser: {self.condenser}')
def get_action_message(
self,
action: Action,
pending_tool_call_action_messages: dict[str, Message],
) -> list[Message]:
"""Converts an action into a message format that can be sent to the LLM.
This method handles different types of actions and formats them appropriately:
1. For tool-based actions (AgentDelegate, CmdRun, IPythonRunCell, FileEdit) and agent-sourced AgentFinish:
- In function calling mode: Stores the LLM's response in pending_tool_call_action_messages
- In non-function calling mode: Creates a message with the action string
2. For MessageActions: Creates a message with the text content and optional image content
Args:
action (Action): The action to convert. Can be one of:
- CmdRunAction: For executing bash commands
- IPythonRunCellAction: For running IPython code
- FileEditAction: For editing files
- FileReadAction: For reading files using openhands-aci commands
- BrowseInteractiveAction: For browsing the web
- AgentFinishAction: For ending the interaction
- MessageAction: For sending messages
pending_tool_call_action_messages (dict[str, Message]): Dictionary mapping response IDs
to their corresponding messages. Used in function calling mode to track tool calls
that are waiting for their results.
Returns:
list[Message]: A list containing the formatted message(s) for the action.
May be empty if the action is handled as a tool call in function calling mode.
Note:
In function calling mode, tool-based actions are stored in pending_tool_call_action_messages
rather than being returned immediately. They will be processed later when all corresponding
tool call results are available.
"""
# create a regular message from an event
if isinstance(
action,
(
AgentDelegateAction,
IPythonRunCellAction,
FileEditAction,
FileReadAction,
BrowseInteractiveAction,
BrowseURLAction,
),
) or (isinstance(action, CmdRunAction) and action.source == 'agent'):
tool_metadata = action.tool_call_metadata
assert tool_metadata is not None, (
'Tool call metadata should NOT be None when function calling is enabled. Action: '
+ str(action)
)
llm_response: ModelResponse = tool_metadata.model_response
assistant_msg = llm_response.choices[0].message
# Add the LLM message (assistant) that initiated the tool calls
# (overwrites any previous message with the same response_id)
logger.debug(
f'Tool calls type: {type(assistant_msg.tool_calls)}, value: {assistant_msg.tool_calls}'
)
pending_tool_call_action_messages[llm_response.id] = Message(
role=assistant_msg.role,
# tool call content SHOULD BE a string
content=[TextContent(text=assistant_msg.content or '')]
if assistant_msg.content is not None
else [],
tool_calls=assistant_msg.tool_calls,
)
return []
elif isinstance(action, AgentFinishAction):
role = 'user' if action.source == 'user' else 'assistant'
# when agent finishes, it has tool_metadata
# which has already been executed, and it doesn't have a response
# when the user finishes (/exit), we don't have tool_metadata
tool_metadata = action.tool_call_metadata
if tool_metadata is not None:
# take the response message from the tool call
assistant_msg = tool_metadata.model_response.choices[0].message
content = assistant_msg.content or ''
# save content if any, to thought
if action.thought:
if action.thought != content:
action.thought += '\n' + content
else:
action.thought = content
# remove the tool call metadata
action.tool_call_metadata = None
return [
Message(
role=role,
content=[TextContent(text=action.thought)],
)
]
elif isinstance(action, MessageAction):
role = 'user' if action.source == 'user' else 'assistant'
content = [TextContent(text=action.content or '')]
if self.llm.vision_is_active() and action.image_urls:
content.append(ImageContent(image_urls=action.image_urls))
return [
Message(
role=role,
content=content,
)
]
elif isinstance(action, CmdRunAction) and action.source == 'user':
content = [
TextContent(text=f'User executed the command:\n{action.command}')
]
return [
Message(
role='user',
content=content,
)
]
return []
def get_observation_message(
self,
obs: Observation,
tool_call_id_to_message: dict[str, Message],
) -> list[Message]:
"""Converts an observation into a message format that can be sent to the LLM.
This method handles different types of observations and formats them appropriately:
- CmdOutputObservation: Formats command execution results with exit codes
- IPythonRunCellObservation: Formats IPython cell execution results, replacing base64 images
- FileEditObservation: Formats file editing results
- FileReadObservation: Formats file reading results from openhands-aci
- AgentDelegateObservation: Formats results from delegated agent tasks
- ErrorObservation: Formats error messages from failed actions
- UserRejectObservation: Formats user rejection messages
In function calling mode, observations with tool_call_metadata are stored in
tool_call_id_to_message for later processing instead of being returned immediately.
Args:
obs (Observation): The observation to convert
tool_call_id_to_message (dict[str, Message]): Dictionary mapping tool call IDs
to their corresponding messages (used in function calling mode)
Returns:
list[Message]: A list containing the formatted message(s) for the observation.
May be empty if the observation is handled as a tool response in function calling mode.
Raises:
ValueError: If the observation type is unknown
"""
message: Message
max_message_chars = self.llm.config.max_message_chars
if isinstance(obs, CmdOutputObservation):
# if it doesn't have tool call metadata, it was triggered by a user action
if obs.tool_call_metadata is None:
text = truncate_content(
f'\nObserved result of command executed by user:\n{obs.content}',
max_message_chars,
)
else:
text = truncate_content(
obs.content
+ f'\n[Python Interpreter: {obs.metadata.py_interpreter_path}]',
max_message_chars,
)
text += f'\n[Command finished with exit code {obs.exit_code}]'
message = Message(role='user', content=[TextContent(text=text)])
elif isinstance(obs, IPythonRunCellObservation):
text = obs.content
# replace base64 images with a placeholder
splitted = text.split('\n')
for i, line in enumerate(splitted):
if '![image](data:image/png;base64,' in line:
splitted[i] = (
'![image](data:image/png;base64, ...) already displayed to user'
)
text = '\n'.join(splitted)
text = truncate_content(text, max_message_chars)
message = Message(role='user', content=[TextContent(text=text)])
elif isinstance(obs, FileEditObservation):
text = truncate_content(str(obs), max_message_chars)
message = Message(role='user', content=[TextContent(text=text)])
elif isinstance(obs, FileReadObservation):
message = Message(
role='user', content=[TextContent(text=obs.content)]
) # Content is already truncated by openhands-aci
elif isinstance(obs, BrowserOutputObservation):
text = obs.get_agent_obs_text()
message = Message(
role='user',
content=[TextContent(text=text)],
)
elif isinstance(obs, AgentDelegateObservation):
text = truncate_content(
obs.outputs['content'] if 'content' in obs.outputs else '',
max_message_chars,
)
message = Message(role='user', content=[TextContent(text=text)])
elif isinstance(obs, ErrorObservation):
text = truncate_content(obs.content, max_message_chars)
text += '\n[Error occurred in processing last action]'
message = Message(role='user', content=[TextContent(text=text)])
elif isinstance(obs, UserRejectObservation):
text = 'OBSERVATION:\n' + truncate_content(obs.content, max_message_chars)
text += '\n[Last action has been rejected by the user]'
message = Message(role='user', content=[TextContent(text=text)])
elif isinstance(obs, AgentCondensationObservation):
text = truncate_content(obs.content, max_message_chars)
message = Message(role='user', content=[TextContent(text=text)])
else:
# If an observation message is not returned, it will cause an error
# when the LLM tries to return the next message
raise ValueError(f'Unknown observation type: {type(obs)}')
# Update the message as tool response properly
if (tool_call_metadata := obs.tool_call_metadata) is not None:
tool_call_id_to_message[tool_call_metadata.tool_call_id] = Message(
role='tool',
content=message.content,
tool_call_id=tool_call_metadata.tool_call_id,
name=tool_call_metadata.function_name,
)
# No need to return the observation message
# because it will be added by get_action_message when all the corresponding
# tool calls in the SAME request are processed
return []
return [message]
def reset(self) -> None:
"""Resets the CodeAct Agent."""
super().reset()
self.pending_actions.clear()
def step(self, state: State) -> Action:
"""Performs one step using the CodeAct Agent.
This includes gathering info on previous steps and prompting the model to make a command to execute.
Parameters:
- state (State): used to get updated info
Returns:
- CmdRunAction(command) - bash command to run
- IPythonRunCellAction(code) - IPython code to run
- AgentDelegateAction(agent, inputs) - delegate action for (sub)task
- MessageAction(content) - Message action to run (e.g. ask for clarification)
- AgentFinishAction() - end the interaction
"""
# Continue with pending actions if any
if self.pending_actions:
return self.pending_actions.popleft()
# if we're done, go back
latest_user_message = state.get_last_user_message()
if latest_user_message and latest_user_message.content.strip() == '/exit':
return AgentFinishAction()
# prepare what we want to send to the LLM
messages = self._get_messages(state)
params: dict = {
'messages': self.llm.format_messages_for_llm(messages),
}
params['tools'] = self.tools
if self.mock_function_calling:
params['mock_function_calling'] = True
response = self.llm.completion(**params)
actions = codeact_function_calling.response_to_actions(response)
for action in actions:
self.pending_actions.append(action)
return self.pending_actions.popleft()
def _get_messages(self, state: State) -> list[Message]:
"""Constructs the message history for the LLM conversation.
This method builds a structured conversation history by processing events from the state
and formatting them into messages that the LLM can understand. It handles both regular
message flow and function-calling scenarios.
The method performs the following steps:
1. Initializes with system prompt and optional initial user message
2. Processes events (Actions and Observations) into messages
3. Handles tool calls and their responses in function-calling mode
4. Manages message role alternation (user/assistant/tool)
5. Applies caching for specific LLM providers (e.g., Anthropic)
6. Adds environment reminders for non-function-calling mode
Args:
state (State): The current state object containing conversation history and other metadata
Returns:
list[Message]: A list of formatted messages ready for LLM consumption, including:
- System message with prompt
- Initial user message (if configured)
- Action messages (from both user and assistant)
- Observation messages (including tool responses)
- Environment reminders (in non-function-calling mode)
Note:
- In function-calling mode, tool calls and their responses are carefully tracked
to maintain proper conversation flow
- Messages from the same role are combined to prevent consecutive same-role messages
- For Anthropic models, specific messages are cached according to their documentation
"""
if not self.prompt_manager:
raise Exception('Prompt Manager not instantiated.')
messages: list[Message] = [
Message(
role='system',
content=[
TextContent(
text=self.prompt_manager.get_system_message(),
cache_prompt=self.llm.is_caching_prompt_active(),
)
],
)
]
example_message = self.prompt_manager.get_example_user_message()
if example_message:
messages.append(
Message(
role='user',
content=[TextContent(text=example_message)],
cache_prompt=self.llm.is_caching_prompt_active(),
)
)
# Repository and runtime info
additional_info = self.prompt_manager.get_additional_info()
if self.config.enable_prompt_extensions and additional_info:
# only add these if prompt extension is enabled
messages.append(
Message(
role='user',
content=[TextContent(text=additional_info)],
)
)
pending_tool_call_action_messages: dict[str, Message] = {}
tool_call_id_to_message: dict[str, Message] = {}
# Condense the events from the state.
events = self.condenser.condensed_history(state)
for event in events:
# create a regular message from an event
if isinstance(event, Action):
messages_to_add = self.get_action_message(
action=event,
pending_tool_call_action_messages=pending_tool_call_action_messages,
)
elif isinstance(event, Observation):
messages_to_add = self.get_observation_message(
obs=event,
tool_call_id_to_message=tool_call_id_to_message,
)
else:
raise ValueError(f'Unknown event type: {type(event)}')
# Check pending tool call action messages and see if they are complete
_response_ids_to_remove = []
for (
response_id,
pending_message,
) in pending_tool_call_action_messages.items():
assert pending_message.tool_calls is not None, (
'Tool calls should NOT be None when function calling is enabled & the message is considered pending tool call. '
f'Pending message: {pending_message}'
)
if all(
tool_call.id in tool_call_id_to_message
for tool_call in pending_message.tool_calls
):
# If complete:
# -- 1. Add the message that **initiated** the tool calls
messages_to_add.append(pending_message)
# -- 2. Add the tool calls **results***
for tool_call in pending_message.tool_calls:
messages_to_add.append(tool_call_id_to_message[tool_call.id])
tool_call_id_to_message.pop(tool_call.id)
_response_ids_to_remove.append(response_id)
# Cleanup the processed pending tool messages
for response_id in _response_ids_to_remove:
pending_tool_call_action_messages.pop(response_id)
for message in messages_to_add:
if message:
if message.role == 'user':
self.prompt_manager.enhance_message(message)
messages.append(message)
if self.llm.is_caching_prompt_active():
# NOTE: this is only needed for anthropic
# following logic here:
# https://github.com/anthropics/anthropic-quickstarts/blob/8f734fd08c425c6ec91ddd613af04ff87d70c5a0/computer-use-demo/computer_use_demo/loop.py#L241-L262
breakpoints_remaining = 3 # remaining 1 for system/tool
for message in reversed(messages):
if message.role == 'user' or message.role == 'tool':
if breakpoints_remaining > 0:
message.content[
-1
].cache_prompt = True # Last item inside the message content
breakpoints_remaining -= 1
else:
break
return messages
|