File size: 27,869 Bytes
246d201
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
import copy
import os
import time
import warnings
from functools import partial
from typing import Any

import requests

from openhands.core.config import LLMConfig

with warnings.catch_warnings():
    warnings.simplefilter('ignore')
    import litellm

from litellm import ChatCompletionMessageToolCall, ModelInfo, PromptTokensDetails
from litellm import Message as LiteLLMMessage
from litellm import completion as litellm_completion
from litellm import completion_cost as litellm_completion_cost
from litellm.exceptions import (
    APIConnectionError,
    APIError,
    InternalServerError,
    RateLimitError,
    ServiceUnavailableError,
)
from litellm.types.utils import CostPerToken, ModelResponse, Usage
from litellm.utils import create_pretrained_tokenizer

from openhands.core.exceptions import CloudFlareBlockageError
from openhands.core.logger import openhands_logger as logger
from openhands.core.message import Message
from openhands.llm.debug_mixin import DebugMixin
from openhands.llm.fn_call_converter import (
    STOP_WORDS,
    convert_fncall_messages_to_non_fncall_messages,
    convert_non_fncall_messages_to_fncall_messages,
)
from openhands.llm.metrics import Metrics
from openhands.llm.retry_mixin import RetryMixin

__all__ = ['LLM']

# tuple of exceptions to retry on
LLM_RETRY_EXCEPTIONS: tuple[type[Exception], ...] = (
    APIConnectionError,
    # FIXME: APIError is useful on 502 from a proxy for example,
    # but it also retries on other errors that are permanent
    APIError,
    InternalServerError,
    RateLimitError,
    ServiceUnavailableError,
)

# cache prompt supporting models
# remove this when we gemini and deepseek are supported
CACHE_PROMPT_SUPPORTED_MODELS = [
    'claude-3-5-sonnet-20241022',
    'claude-3-5-sonnet-20240620',
    'claude-3-5-haiku-20241022',
    'claude-3-haiku-20240307',
    'claude-3-opus-20240229',
]

# function calling supporting models
FUNCTION_CALLING_SUPPORTED_MODELS = [
    'claude-3-5-sonnet',
    'claude-3-5-sonnet-20240620',
    'claude-3-5-sonnet-20241022',
    'claude-3.5-haiku',
    'claude-3-5-haiku-20241022',
    'gpt-4o-mini',
    'gpt-4o',
    'o1-2024-12-17',
]

REASONING_EFFORT_SUPPORTED_MODELS = [
    'o1-2024-12-17',
]

MODELS_WITHOUT_STOP_WORDS = [
    'o1-mini',
]


class LLM(RetryMixin, DebugMixin):
    """The LLM class represents a Language Model instance.



    Attributes:

        config: an LLMConfig object specifying the configuration of the LLM.

    """

    def __init__(

        self,

        config: LLMConfig,

        metrics: Metrics | None = None,

    ):
        """Initializes the LLM. If LLMConfig is passed, its values will be the fallback.



        Passing simple parameters always overrides config.



        Args:

            config: The LLM configuration.

            metrics: The metrics to use.

        """
        self._tried_model_info = False
        self.metrics: Metrics = (
            metrics if metrics is not None else Metrics(model_name=config.model)
        )
        self.cost_metric_supported: bool = True
        self.config: LLMConfig = copy.deepcopy(config)

        self.model_info: ModelInfo | None = None

        if self.config.log_completions:
            if self.config.log_completions_folder is None:
                raise RuntimeError(
                    'log_completions_folder is required when log_completions is enabled'
                )
            os.makedirs(self.config.log_completions_folder, exist_ok=True)

        # call init_model_info to initialize config.max_output_tokens
        # which is used in partial function
        with warnings.catch_warnings():
            warnings.simplefilter('ignore')
            self.init_model_info()
        if self.vision_is_active():
            logger.debug('LLM: model has vision enabled')
        if self.is_caching_prompt_active():
            logger.debug('LLM: caching prompt enabled')
        if self.is_function_calling_active():
            logger.debug('LLM: model supports function calling')

        # if using a custom tokenizer, make sure it's loaded and accessible in the format expected by litellm
        if self.config.custom_tokenizer is not None:
            self.tokenizer = create_pretrained_tokenizer(self.config.custom_tokenizer)
        else:
            self.tokenizer = None

        # set up the completion function
        self._completion = partial(
            litellm_completion,
            model=self.config.model,
            api_key=self.config.api_key.get_secret_value()
            if self.config.api_key
            else None,
            base_url=self.config.base_url,
            api_version=self.config.api_version,
            custom_llm_provider=self.config.custom_llm_provider,
            max_tokens=self.config.max_output_tokens,
            timeout=self.config.timeout,
            temperature=self.config.temperature,
            top_p=self.config.top_p,
            drop_params=self.config.drop_params,
        )

        self._completion_unwrapped = self._completion

        @self.retry_decorator(

            num_retries=self.config.num_retries,

            retry_exceptions=LLM_RETRY_EXCEPTIONS,

            retry_min_wait=self.config.retry_min_wait,

            retry_max_wait=self.config.retry_max_wait,

            retry_multiplier=self.config.retry_multiplier,

        )
        def wrapper(*args, **kwargs):
            """Wrapper for the litellm completion function. Logs the input and output of the completion function."""
            from openhands.core.utils import json

            messages: list[dict[str, Any]] | dict[str, Any] = []
            mock_function_calling = kwargs.pop('mock_function_calling', False)

            # some callers might send the model and messages directly
            # litellm allows positional args, like completion(model, messages, **kwargs)
            if len(args) > 1:
                # ignore the first argument if it's provided (it would be the model)
                # design wise: we don't allow overriding the configured values
                # implementation wise: the partial function set the model as a kwarg already
                # as well as other kwargs
                messages = args[1] if len(args) > 1 else args[0]
                kwargs['messages'] = messages

                # remove the first args, they're sent in kwargs
                args = args[2:]
            elif 'messages' in kwargs:
                messages = kwargs['messages']

            # ensure we work with a list of messages
            messages = messages if isinstance(messages, list) else [messages]
            original_fncall_messages = copy.deepcopy(messages)
            mock_fncall_tools = None
            if mock_function_calling:
                assert (
                    'tools' in kwargs
                ), "'tools' must be in kwargs when mock_function_calling is True"
                messages = convert_fncall_messages_to_non_fncall_messages(
                    messages, kwargs['tools']
                )
                kwargs['messages'] = messages
                if self.config.model not in MODELS_WITHOUT_STOP_WORDS:
                    kwargs['stop'] = STOP_WORDS
                mock_fncall_tools = kwargs.pop('tools')

            # if we have no messages, something went very wrong
            if not messages:
                raise ValueError(
                    'The messages list is empty. At least one message is required.'
                )

            # log the entire LLM prompt
            self.log_prompt(messages)

            if self.is_caching_prompt_active():
                # Anthropic-specific prompt caching
                if 'claude-3' in self.config.model:
                    kwargs['extra_headers'] = {
                        'anthropic-beta': 'prompt-caching-2024-07-31',
                    }

            # Set reasoning effort for models that support it
            if self.config.model.lower() in REASONING_EFFORT_SUPPORTED_MODELS:
                kwargs['reasoning_effort'] = self.config.reasoning_effort

            # set litellm modify_params to the configured value
            # True by default to allow litellm to do transformations like adding a default message, when a message is empty
            # NOTE: this setting is global; unlike drop_params, it cannot be overridden in the litellm completion partial
            litellm.modify_params = self.config.modify_params

            try:
                # Record start time for latency measurement
                start_time = time.time()
                # we don't support streaming here, thus we get a ModelResponse
                resp: ModelResponse = self._completion_unwrapped(*args, **kwargs)

                # Calculate and record latency
                latency = time.time() - start_time
                response_id = resp.get('id', 'unknown')
                self.metrics.add_response_latency(latency, response_id)

                non_fncall_response = copy.deepcopy(resp)
                if mock_function_calling:
                    assert len(resp.choices) == 1
                    assert mock_fncall_tools is not None
                    non_fncall_response_message = resp.choices[0].message
                    fn_call_messages_with_response = (
                        convert_non_fncall_messages_to_fncall_messages(
                            messages + [non_fncall_response_message], mock_fncall_tools
                        )
                    )
                    fn_call_response_message = fn_call_messages_with_response[-1]
                    if not isinstance(fn_call_response_message, LiteLLMMessage):
                        fn_call_response_message = LiteLLMMessage(
                            **fn_call_response_message
                        )
                    resp.choices[0].message = fn_call_response_message

                message_back: str = resp['choices'][0]['message']['content'] or ''
                tool_calls: list[ChatCompletionMessageToolCall] = resp['choices'][0][
                    'message'
                ].get('tool_calls', [])
                if tool_calls:
                    for tool_call in tool_calls:
                        fn_name = tool_call.function.name
                        fn_args = tool_call.function.arguments
                        message_back += f'\nFunction call: {fn_name}({fn_args})'

                # log the LLM response
                self.log_response(message_back)

                # post-process the response first to calculate cost
                cost = self._post_completion(resp)

                # log for evals or other scripts that need the raw completion
                if self.config.log_completions:
                    assert self.config.log_completions_folder is not None
                    log_file = os.path.join(
                        self.config.log_completions_folder,
                        # use the metric model name (for draft editor)
                        f'{self.metrics.model_name.replace("/", "__")}-{time.time()}.json',
                    )

                    # set up the dict to be logged
                    _d = {
                        'messages': messages,
                        'response': resp,
                        'args': args,
                        'kwargs': {k: v for k, v in kwargs.items() if k != 'messages'},
                        'timestamp': time.time(),
                        'cost': cost,
                    }

                    # if non-native function calling, save messages/response separately
                    if mock_function_calling:
                        # Overwrite response as non-fncall to be consistent with messages
                        _d['response'] = non_fncall_response

                        # Save fncall_messages/response separately
                        _d['fncall_messages'] = original_fncall_messages
                        _d['fncall_response'] = resp
                    with open(log_file, 'w') as f:
                        f.write(json.dumps(_d))

                return resp
            except APIError as e:
                if 'Attention Required! | Cloudflare' in str(e):
                    raise CloudFlareBlockageError(
                        'Request blocked by CloudFlare'
                    ) from e
                raise

        self._completion = wrapper

    @property
    def completion(self):
        """Decorator for the litellm completion function.



        Check the complete documentation at https://litellm.vercel.app/docs/completion

        """
        return self._completion

    def init_model_info(self):
        if self._tried_model_info:
            return
        self._tried_model_info = True
        try:
            if self.config.model.startswith('openrouter'):
                self.model_info = litellm.get_model_info(self.config.model)
        except Exception as e:
            logger.debug(f'Error getting model info: {e}')

        if self.config.model.startswith('litellm_proxy/'):
            # IF we are using LiteLLM proxy, get model info from LiteLLM proxy
            # GET {base_url}/v1/model/info with litellm_model_id as path param
            response = requests.get(
                f'{self.config.base_url}/v1/model/info',
                headers={
                    'Authorization': f'Bearer {self.config.api_key.get_secret_value() if self.config.api_key else None}'
                },
            )
            resp_json = response.json()
            if 'data' not in resp_json:
                logger.error(
                    f'Error getting model info from LiteLLM proxy: {resp_json}'
                )
            all_model_info = resp_json.get('data', [])
            current_model_info = next(
                (
                    info
                    for info in all_model_info
                    if info['model_name']
                    == self.config.model.removeprefix('litellm_proxy/')
                ),
                None,
            )
            if current_model_info:
                self.model_info = current_model_info['model_info']

        # Last two attempts to get model info from NAME
        if not self.model_info:
            try:
                self.model_info = litellm.get_model_info(
                    self.config.model.split(':')[0]
                )
            # noinspection PyBroadException
            except Exception:
                pass
        if not self.model_info:
            try:
                self.model_info = litellm.get_model_info(
                    self.config.model.split('/')[-1]
                )
            # noinspection PyBroadException
            except Exception:
                pass
        from openhands.core.utils import json

        logger.debug(f'Model info: {json.dumps(self.model_info, indent=2)}')

        if self.config.model.startswith('huggingface'):
            # HF doesn't support the OpenAI default value for top_p (1)
            logger.debug(
                f'Setting top_p to 0.9 for Hugging Face model: {self.config.model}'
            )
            self.config.top_p = 0.9 if self.config.top_p == 1 else self.config.top_p

        # Set the max tokens in an LM-specific way if not set
        if self.config.max_input_tokens is None:
            if (
                self.model_info is not None
                and 'max_input_tokens' in self.model_info
                and isinstance(self.model_info['max_input_tokens'], int)
            ):
                self.config.max_input_tokens = self.model_info['max_input_tokens']
            else:
                # Safe fallback for any potentially viable model
                self.config.max_input_tokens = 4096

        if self.config.max_output_tokens is None:
            # Safe default for any potentially viable model
            self.config.max_output_tokens = 4096
            if self.model_info is not None:
                # max_output_tokens has precedence over max_tokens, if either exists.
                # litellm has models with both, one or none of these 2 parameters!
                if 'max_output_tokens' in self.model_info and isinstance(
                    self.model_info['max_output_tokens'], int
                ):
                    self.config.max_output_tokens = self.model_info['max_output_tokens']
                elif 'max_tokens' in self.model_info and isinstance(
                    self.model_info['max_tokens'], int
                ):
                    self.config.max_output_tokens = self.model_info['max_tokens']

    def vision_is_active(self) -> bool:
        with warnings.catch_warnings():
            warnings.simplefilter('ignore')
            return not self.config.disable_vision and self._supports_vision()

    def _supports_vision(self) -> bool:
        """Acquire from litellm if model is vision capable.



        Returns:

            bool: True if model is vision capable. Return False if model not supported by litellm.

        """
        # litellm.supports_vision currently returns False for 'openai/gpt-...' or 'anthropic/claude-...' (with prefixes)
        # but model_info will have the correct value for some reason.
        # we can go with it, but we will need to keep an eye if model_info is correct for Vertex or other providers
        # remove when litellm is updated to fix https://github.com/BerriAI/litellm/issues/5608
        # Check both the full model name and the name after proxy prefix for vision support
        return (
            litellm.supports_vision(self.config.model)
            or litellm.supports_vision(self.config.model.split('/')[-1])
            or (
                self.model_info is not None
                and self.model_info.get('supports_vision', False)
            )
        )

    def is_caching_prompt_active(self) -> bool:
        """Check if prompt caching is supported and enabled for current model.



        Returns:

            boolean: True if prompt caching is supported and enabled for the given model.

        """
        return (
            self.config.caching_prompt is True
            and (
                self.config.model in CACHE_PROMPT_SUPPORTED_MODELS
                or self.config.model.split('/')[-1] in CACHE_PROMPT_SUPPORTED_MODELS
            )
            # We don't need to look-up model_info, because only Anthropic models needs the explicit caching breakpoint
        )

    def is_function_calling_active(self) -> bool:
        # Check if model name is in our supported list
        model_name_supported = (
            self.config.model in FUNCTION_CALLING_SUPPORTED_MODELS
            or self.config.model.split('/')[-1] in FUNCTION_CALLING_SUPPORTED_MODELS
            or any(m in self.config.model for m in FUNCTION_CALLING_SUPPORTED_MODELS)
        )

        # Handle native_tool_calling user-defined configuration
        if self.config.native_tool_calling is None:
            return model_name_supported
        elif self.config.native_tool_calling is False:
            return False
        else:
            # try to enable native tool calling if supported by the model
            supports_fn_call = litellm.supports_function_calling(
                model=self.config.model
            )
            return supports_fn_call

    def _post_completion(self, response: ModelResponse) -> float:
        """Post-process the completion response.



        Logs the cost and usage stats of the completion call.

        """
        try:
            cur_cost = self._completion_cost(response)
        except Exception:
            cur_cost = 0

        stats = ''
        if self.cost_metric_supported:
            # keep track of the cost
            stats = 'Cost: %.2f USD | Accumulated Cost: %.2f USD\n' % (
                cur_cost,
                self.metrics.accumulated_cost,
            )

        # Add latency to stats if available
        if self.metrics.response_latencies:
            latest_latency = self.metrics.response_latencies[-1]
            stats += 'Response Latency: %.3f seconds\n' % latest_latency.latency

        usage: Usage | None = response.get('usage')

        if usage:
            # keep track of the input and output tokens
            input_tokens = usage.get('prompt_tokens')
            output_tokens = usage.get('completion_tokens')

            if input_tokens:
                stats += 'Input tokens: ' + str(input_tokens)

            if output_tokens:
                stats += (
                    (' | ' if input_tokens else '')
                    + 'Output tokens: '
                    + str(output_tokens)
                    + '\n'
                )

            # read the prompt cache hit, if any
            prompt_tokens_details: PromptTokensDetails = usage.get(
                'prompt_tokens_details'
            )
            cache_hit_tokens = (
                prompt_tokens_details.cached_tokens if prompt_tokens_details else None
            )
            if cache_hit_tokens:
                stats += 'Input tokens (cache hit): ' + str(cache_hit_tokens) + '\n'

            # For Anthropic, the cache writes have a different cost than regular input tokens
            # but litellm doesn't separate them in the usage stats
            # so we can read it from the provider-specific extra field
            model_extra = usage.get('model_extra', {})
            cache_write_tokens = model_extra.get('cache_creation_input_tokens')
            if cache_write_tokens:
                stats += 'Input tokens (cache write): ' + str(cache_write_tokens) + '\n'

        # log the stats
        if stats:
            logger.debug(stats)

        return cur_cost

    def get_token_count(self, messages: list[dict] | list[Message]) -> int:
        """Get the number of tokens in a list of messages. Use dicts for better token counting.



        Args:

            messages (list): A list of messages, either as a list of dicts or as a list of Message objects.

        Returns:

            int: The number of tokens.

        """
        # attempt to convert Message objects to dicts, litellm expects dicts
        if (
            isinstance(messages, list)
            and len(messages) > 0
            and isinstance(messages[0], Message)
        ):
            logger.info(
                'Message objects now include serialized tool calls in token counting'
            )
            messages = self.format_messages_for_llm(messages)  # type: ignore

        # try to get the token count with the default litellm tokenizers
        # or the custom tokenizer if set for this LLM configuration
        try:
            return litellm.token_counter(
                model=self.config.model,
                messages=messages,
                custom_tokenizer=self.tokenizer,
            )
        except Exception as e:
            # limit logspam in case token count is not supported
            logger.error(
                f'Error getting token count for\n model {self.config.model}\n{e}'
                + (
                    f'\ncustom_tokenizer: {self.config.custom_tokenizer}'
                    if self.config.custom_tokenizer is not None
                    else ''
                )
            )
            return 0

    def _is_local(self) -> bool:
        """Determines if the system is using a locally running LLM.



        Returns:

            boolean: True if executing a local model.

        """
        if self.config.base_url is not None:
            for substring in ['localhost', '127.0.0.1' '0.0.0.0']:
                if substring in self.config.base_url:
                    return True
        elif self.config.model is not None:
            if self.config.model.startswith('ollama'):
                return True
        return False

    def _completion_cost(self, response) -> float:
        """Calculate the cost of a completion response based on the model.  Local models are treated as free.

        Add the current cost into total cost in metrics.



        Args:

            response: A response from a model invocation.



        Returns:

            number: The cost of the response.

        """
        if not self.cost_metric_supported:
            return 0.0

        extra_kwargs = {}
        if (
            self.config.input_cost_per_token is not None
            and self.config.output_cost_per_token is not None
        ):
            cost_per_token = CostPerToken(
                input_cost_per_token=self.config.input_cost_per_token,
                output_cost_per_token=self.config.output_cost_per_token,
            )
            logger.debug(f'Using custom cost per token: {cost_per_token}')
            extra_kwargs['custom_cost_per_token'] = cost_per_token

        # try directly get response_cost from response
        _hidden_params = getattr(response, '_hidden_params', {})
        cost = _hidden_params.get('additional_headers', {}).get(
            'llm_provider-x-litellm-response-cost', None
        )
        if cost is not None:
            cost = float(cost)
            logger.debug(f'Got response_cost from response: {cost}')

        try:
            if cost is None:
                try:
                    cost = litellm_completion_cost(
                        completion_response=response, **extra_kwargs
                    )
                except Exception as e:
                    logger.error(f'Error getting cost from litellm: {e}')

            if cost is None:
                _model_name = '/'.join(self.config.model.split('/')[1:])
                cost = litellm_completion_cost(
                    completion_response=response, model=_model_name, **extra_kwargs
                )
                logger.debug(
                    f'Using fallback model name {_model_name} to get cost: {cost}'
                )
            self.metrics.add_cost(cost)
            return cost
        except Exception:
            self.cost_metric_supported = False
            logger.debug('Cost calculation not supported for this model.')
        return 0.0

    def __str__(self):
        if self.config.api_version:
            return f'LLM(model={self.config.model}, api_version={self.config.api_version}, base_url={self.config.base_url})'
        elif self.config.base_url:
            return f'LLM(model={self.config.model}, base_url={self.config.base_url})'
        return f'LLM(model={self.config.model})'

    def __repr__(self):
        return str(self)

    def reset(self) -> None:
        self.metrics.reset()

    def format_messages_for_llm(self, messages: Message | list[Message]) -> list[dict]:
        if isinstance(messages, Message):
            messages = [messages]

        # set flags to know how to serialize the messages
        for message in messages:
            message.cache_enabled = self.is_caching_prompt_active()
            message.vision_enabled = self.vision_is_active()
            message.function_calling_enabled = self.is_function_calling_active()
            if 'deepseek' in self.config.model:
                message.force_string_serializer = True

        # let pydantic handle the serialization
        return [message.model_dump() for message in messages]