File size: 27,869 Bytes
246d201 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 |
import copy
import os
import time
import warnings
from functools import partial
from typing import Any
import requests
from openhands.core.config import LLMConfig
with warnings.catch_warnings():
warnings.simplefilter('ignore')
import litellm
from litellm import ChatCompletionMessageToolCall, ModelInfo, PromptTokensDetails
from litellm import Message as LiteLLMMessage
from litellm import completion as litellm_completion
from litellm import completion_cost as litellm_completion_cost
from litellm.exceptions import (
APIConnectionError,
APIError,
InternalServerError,
RateLimitError,
ServiceUnavailableError,
)
from litellm.types.utils import CostPerToken, ModelResponse, Usage
from litellm.utils import create_pretrained_tokenizer
from openhands.core.exceptions import CloudFlareBlockageError
from openhands.core.logger import openhands_logger as logger
from openhands.core.message import Message
from openhands.llm.debug_mixin import DebugMixin
from openhands.llm.fn_call_converter import (
STOP_WORDS,
convert_fncall_messages_to_non_fncall_messages,
convert_non_fncall_messages_to_fncall_messages,
)
from openhands.llm.metrics import Metrics
from openhands.llm.retry_mixin import RetryMixin
__all__ = ['LLM']
# tuple of exceptions to retry on
LLM_RETRY_EXCEPTIONS: tuple[type[Exception], ...] = (
APIConnectionError,
# FIXME: APIError is useful on 502 from a proxy for example,
# but it also retries on other errors that are permanent
APIError,
InternalServerError,
RateLimitError,
ServiceUnavailableError,
)
# cache prompt supporting models
# remove this when we gemini and deepseek are supported
CACHE_PROMPT_SUPPORTED_MODELS = [
'claude-3-5-sonnet-20241022',
'claude-3-5-sonnet-20240620',
'claude-3-5-haiku-20241022',
'claude-3-haiku-20240307',
'claude-3-opus-20240229',
]
# function calling supporting models
FUNCTION_CALLING_SUPPORTED_MODELS = [
'claude-3-5-sonnet',
'claude-3-5-sonnet-20240620',
'claude-3-5-sonnet-20241022',
'claude-3.5-haiku',
'claude-3-5-haiku-20241022',
'gpt-4o-mini',
'gpt-4o',
'o1-2024-12-17',
]
REASONING_EFFORT_SUPPORTED_MODELS = [
'o1-2024-12-17',
]
MODELS_WITHOUT_STOP_WORDS = [
'o1-mini',
]
class LLM(RetryMixin, DebugMixin):
"""The LLM class represents a Language Model instance.
Attributes:
config: an LLMConfig object specifying the configuration of the LLM.
"""
def __init__(
self,
config: LLMConfig,
metrics: Metrics | None = None,
):
"""Initializes the LLM. If LLMConfig is passed, its values will be the fallback.
Passing simple parameters always overrides config.
Args:
config: The LLM configuration.
metrics: The metrics to use.
"""
self._tried_model_info = False
self.metrics: Metrics = (
metrics if metrics is not None else Metrics(model_name=config.model)
)
self.cost_metric_supported: bool = True
self.config: LLMConfig = copy.deepcopy(config)
self.model_info: ModelInfo | None = None
if self.config.log_completions:
if self.config.log_completions_folder is None:
raise RuntimeError(
'log_completions_folder is required when log_completions is enabled'
)
os.makedirs(self.config.log_completions_folder, exist_ok=True)
# call init_model_info to initialize config.max_output_tokens
# which is used in partial function
with warnings.catch_warnings():
warnings.simplefilter('ignore')
self.init_model_info()
if self.vision_is_active():
logger.debug('LLM: model has vision enabled')
if self.is_caching_prompt_active():
logger.debug('LLM: caching prompt enabled')
if self.is_function_calling_active():
logger.debug('LLM: model supports function calling')
# if using a custom tokenizer, make sure it's loaded and accessible in the format expected by litellm
if self.config.custom_tokenizer is not None:
self.tokenizer = create_pretrained_tokenizer(self.config.custom_tokenizer)
else:
self.tokenizer = None
# set up the completion function
self._completion = partial(
litellm_completion,
model=self.config.model,
api_key=self.config.api_key.get_secret_value()
if self.config.api_key
else None,
base_url=self.config.base_url,
api_version=self.config.api_version,
custom_llm_provider=self.config.custom_llm_provider,
max_tokens=self.config.max_output_tokens,
timeout=self.config.timeout,
temperature=self.config.temperature,
top_p=self.config.top_p,
drop_params=self.config.drop_params,
)
self._completion_unwrapped = self._completion
@self.retry_decorator(
num_retries=self.config.num_retries,
retry_exceptions=LLM_RETRY_EXCEPTIONS,
retry_min_wait=self.config.retry_min_wait,
retry_max_wait=self.config.retry_max_wait,
retry_multiplier=self.config.retry_multiplier,
)
def wrapper(*args, **kwargs):
"""Wrapper for the litellm completion function. Logs the input and output of the completion function."""
from openhands.core.utils import json
messages: list[dict[str, Any]] | dict[str, Any] = []
mock_function_calling = kwargs.pop('mock_function_calling', False)
# some callers might send the model and messages directly
# litellm allows positional args, like completion(model, messages, **kwargs)
if len(args) > 1:
# ignore the first argument if it's provided (it would be the model)
# design wise: we don't allow overriding the configured values
# implementation wise: the partial function set the model as a kwarg already
# as well as other kwargs
messages = args[1] if len(args) > 1 else args[0]
kwargs['messages'] = messages
# remove the first args, they're sent in kwargs
args = args[2:]
elif 'messages' in kwargs:
messages = kwargs['messages']
# ensure we work with a list of messages
messages = messages if isinstance(messages, list) else [messages]
original_fncall_messages = copy.deepcopy(messages)
mock_fncall_tools = None
if mock_function_calling:
assert (
'tools' in kwargs
), "'tools' must be in kwargs when mock_function_calling is True"
messages = convert_fncall_messages_to_non_fncall_messages(
messages, kwargs['tools']
)
kwargs['messages'] = messages
if self.config.model not in MODELS_WITHOUT_STOP_WORDS:
kwargs['stop'] = STOP_WORDS
mock_fncall_tools = kwargs.pop('tools')
# if we have no messages, something went very wrong
if not messages:
raise ValueError(
'The messages list is empty. At least one message is required.'
)
# log the entire LLM prompt
self.log_prompt(messages)
if self.is_caching_prompt_active():
# Anthropic-specific prompt caching
if 'claude-3' in self.config.model:
kwargs['extra_headers'] = {
'anthropic-beta': 'prompt-caching-2024-07-31',
}
# Set reasoning effort for models that support it
if self.config.model.lower() in REASONING_EFFORT_SUPPORTED_MODELS:
kwargs['reasoning_effort'] = self.config.reasoning_effort
# set litellm modify_params to the configured value
# True by default to allow litellm to do transformations like adding a default message, when a message is empty
# NOTE: this setting is global; unlike drop_params, it cannot be overridden in the litellm completion partial
litellm.modify_params = self.config.modify_params
try:
# Record start time for latency measurement
start_time = time.time()
# we don't support streaming here, thus we get a ModelResponse
resp: ModelResponse = self._completion_unwrapped(*args, **kwargs)
# Calculate and record latency
latency = time.time() - start_time
response_id = resp.get('id', 'unknown')
self.metrics.add_response_latency(latency, response_id)
non_fncall_response = copy.deepcopy(resp)
if mock_function_calling:
assert len(resp.choices) == 1
assert mock_fncall_tools is not None
non_fncall_response_message = resp.choices[0].message
fn_call_messages_with_response = (
convert_non_fncall_messages_to_fncall_messages(
messages + [non_fncall_response_message], mock_fncall_tools
)
)
fn_call_response_message = fn_call_messages_with_response[-1]
if not isinstance(fn_call_response_message, LiteLLMMessage):
fn_call_response_message = LiteLLMMessage(
**fn_call_response_message
)
resp.choices[0].message = fn_call_response_message
message_back: str = resp['choices'][0]['message']['content'] or ''
tool_calls: list[ChatCompletionMessageToolCall] = resp['choices'][0][
'message'
].get('tool_calls', [])
if tool_calls:
for tool_call in tool_calls:
fn_name = tool_call.function.name
fn_args = tool_call.function.arguments
message_back += f'\nFunction call: {fn_name}({fn_args})'
# log the LLM response
self.log_response(message_back)
# post-process the response first to calculate cost
cost = self._post_completion(resp)
# log for evals or other scripts that need the raw completion
if self.config.log_completions:
assert self.config.log_completions_folder is not None
log_file = os.path.join(
self.config.log_completions_folder,
# use the metric model name (for draft editor)
f'{self.metrics.model_name.replace("/", "__")}-{time.time()}.json',
)
# set up the dict to be logged
_d = {
'messages': messages,
'response': resp,
'args': args,
'kwargs': {k: v for k, v in kwargs.items() if k != 'messages'},
'timestamp': time.time(),
'cost': cost,
}
# if non-native function calling, save messages/response separately
if mock_function_calling:
# Overwrite response as non-fncall to be consistent with messages
_d['response'] = non_fncall_response
# Save fncall_messages/response separately
_d['fncall_messages'] = original_fncall_messages
_d['fncall_response'] = resp
with open(log_file, 'w') as f:
f.write(json.dumps(_d))
return resp
except APIError as e:
if 'Attention Required! | Cloudflare' in str(e):
raise CloudFlareBlockageError(
'Request blocked by CloudFlare'
) from e
raise
self._completion = wrapper
@property
def completion(self):
"""Decorator for the litellm completion function.
Check the complete documentation at https://litellm.vercel.app/docs/completion
"""
return self._completion
def init_model_info(self):
if self._tried_model_info:
return
self._tried_model_info = True
try:
if self.config.model.startswith('openrouter'):
self.model_info = litellm.get_model_info(self.config.model)
except Exception as e:
logger.debug(f'Error getting model info: {e}')
if self.config.model.startswith('litellm_proxy/'):
# IF we are using LiteLLM proxy, get model info from LiteLLM proxy
# GET {base_url}/v1/model/info with litellm_model_id as path param
response = requests.get(
f'{self.config.base_url}/v1/model/info',
headers={
'Authorization': f'Bearer {self.config.api_key.get_secret_value() if self.config.api_key else None}'
},
)
resp_json = response.json()
if 'data' not in resp_json:
logger.error(
f'Error getting model info from LiteLLM proxy: {resp_json}'
)
all_model_info = resp_json.get('data', [])
current_model_info = next(
(
info
for info in all_model_info
if info['model_name']
== self.config.model.removeprefix('litellm_proxy/')
),
None,
)
if current_model_info:
self.model_info = current_model_info['model_info']
# Last two attempts to get model info from NAME
if not self.model_info:
try:
self.model_info = litellm.get_model_info(
self.config.model.split(':')[0]
)
# noinspection PyBroadException
except Exception:
pass
if not self.model_info:
try:
self.model_info = litellm.get_model_info(
self.config.model.split('/')[-1]
)
# noinspection PyBroadException
except Exception:
pass
from openhands.core.utils import json
logger.debug(f'Model info: {json.dumps(self.model_info, indent=2)}')
if self.config.model.startswith('huggingface'):
# HF doesn't support the OpenAI default value for top_p (1)
logger.debug(
f'Setting top_p to 0.9 for Hugging Face model: {self.config.model}'
)
self.config.top_p = 0.9 if self.config.top_p == 1 else self.config.top_p
# Set the max tokens in an LM-specific way if not set
if self.config.max_input_tokens is None:
if (
self.model_info is not None
and 'max_input_tokens' in self.model_info
and isinstance(self.model_info['max_input_tokens'], int)
):
self.config.max_input_tokens = self.model_info['max_input_tokens']
else:
# Safe fallback for any potentially viable model
self.config.max_input_tokens = 4096
if self.config.max_output_tokens is None:
# Safe default for any potentially viable model
self.config.max_output_tokens = 4096
if self.model_info is not None:
# max_output_tokens has precedence over max_tokens, if either exists.
# litellm has models with both, one or none of these 2 parameters!
if 'max_output_tokens' in self.model_info and isinstance(
self.model_info['max_output_tokens'], int
):
self.config.max_output_tokens = self.model_info['max_output_tokens']
elif 'max_tokens' in self.model_info and isinstance(
self.model_info['max_tokens'], int
):
self.config.max_output_tokens = self.model_info['max_tokens']
def vision_is_active(self) -> bool:
with warnings.catch_warnings():
warnings.simplefilter('ignore')
return not self.config.disable_vision and self._supports_vision()
def _supports_vision(self) -> bool:
"""Acquire from litellm if model is vision capable.
Returns:
bool: True if model is vision capable. Return False if model not supported by litellm.
"""
# litellm.supports_vision currently returns False for 'openai/gpt-...' or 'anthropic/claude-...' (with prefixes)
# but model_info will have the correct value for some reason.
# we can go with it, but we will need to keep an eye if model_info is correct for Vertex or other providers
# remove when litellm is updated to fix https://github.com/BerriAI/litellm/issues/5608
# Check both the full model name and the name after proxy prefix for vision support
return (
litellm.supports_vision(self.config.model)
or litellm.supports_vision(self.config.model.split('/')[-1])
or (
self.model_info is not None
and self.model_info.get('supports_vision', False)
)
)
def is_caching_prompt_active(self) -> bool:
"""Check if prompt caching is supported and enabled for current model.
Returns:
boolean: True if prompt caching is supported and enabled for the given model.
"""
return (
self.config.caching_prompt is True
and (
self.config.model in CACHE_PROMPT_SUPPORTED_MODELS
or self.config.model.split('/')[-1] in CACHE_PROMPT_SUPPORTED_MODELS
)
# We don't need to look-up model_info, because only Anthropic models needs the explicit caching breakpoint
)
def is_function_calling_active(self) -> bool:
# Check if model name is in our supported list
model_name_supported = (
self.config.model in FUNCTION_CALLING_SUPPORTED_MODELS
or self.config.model.split('/')[-1] in FUNCTION_CALLING_SUPPORTED_MODELS
or any(m in self.config.model for m in FUNCTION_CALLING_SUPPORTED_MODELS)
)
# Handle native_tool_calling user-defined configuration
if self.config.native_tool_calling is None:
return model_name_supported
elif self.config.native_tool_calling is False:
return False
else:
# try to enable native tool calling if supported by the model
supports_fn_call = litellm.supports_function_calling(
model=self.config.model
)
return supports_fn_call
def _post_completion(self, response: ModelResponse) -> float:
"""Post-process the completion response.
Logs the cost and usage stats of the completion call.
"""
try:
cur_cost = self._completion_cost(response)
except Exception:
cur_cost = 0
stats = ''
if self.cost_metric_supported:
# keep track of the cost
stats = 'Cost: %.2f USD | Accumulated Cost: %.2f USD\n' % (
cur_cost,
self.metrics.accumulated_cost,
)
# Add latency to stats if available
if self.metrics.response_latencies:
latest_latency = self.metrics.response_latencies[-1]
stats += 'Response Latency: %.3f seconds\n' % latest_latency.latency
usage: Usage | None = response.get('usage')
if usage:
# keep track of the input and output tokens
input_tokens = usage.get('prompt_tokens')
output_tokens = usage.get('completion_tokens')
if input_tokens:
stats += 'Input tokens: ' + str(input_tokens)
if output_tokens:
stats += (
(' | ' if input_tokens else '')
+ 'Output tokens: '
+ str(output_tokens)
+ '\n'
)
# read the prompt cache hit, if any
prompt_tokens_details: PromptTokensDetails = usage.get(
'prompt_tokens_details'
)
cache_hit_tokens = (
prompt_tokens_details.cached_tokens if prompt_tokens_details else None
)
if cache_hit_tokens:
stats += 'Input tokens (cache hit): ' + str(cache_hit_tokens) + '\n'
# For Anthropic, the cache writes have a different cost than regular input tokens
# but litellm doesn't separate them in the usage stats
# so we can read it from the provider-specific extra field
model_extra = usage.get('model_extra', {})
cache_write_tokens = model_extra.get('cache_creation_input_tokens')
if cache_write_tokens:
stats += 'Input tokens (cache write): ' + str(cache_write_tokens) + '\n'
# log the stats
if stats:
logger.debug(stats)
return cur_cost
def get_token_count(self, messages: list[dict] | list[Message]) -> int:
"""Get the number of tokens in a list of messages. Use dicts for better token counting.
Args:
messages (list): A list of messages, either as a list of dicts or as a list of Message objects.
Returns:
int: The number of tokens.
"""
# attempt to convert Message objects to dicts, litellm expects dicts
if (
isinstance(messages, list)
and len(messages) > 0
and isinstance(messages[0], Message)
):
logger.info(
'Message objects now include serialized tool calls in token counting'
)
messages = self.format_messages_for_llm(messages) # type: ignore
# try to get the token count with the default litellm tokenizers
# or the custom tokenizer if set for this LLM configuration
try:
return litellm.token_counter(
model=self.config.model,
messages=messages,
custom_tokenizer=self.tokenizer,
)
except Exception as e:
# limit logspam in case token count is not supported
logger.error(
f'Error getting token count for\n model {self.config.model}\n{e}'
+ (
f'\ncustom_tokenizer: {self.config.custom_tokenizer}'
if self.config.custom_tokenizer is not None
else ''
)
)
return 0
def _is_local(self) -> bool:
"""Determines if the system is using a locally running LLM.
Returns:
boolean: True if executing a local model.
"""
if self.config.base_url is not None:
for substring in ['localhost', '127.0.0.1' '0.0.0.0']:
if substring in self.config.base_url:
return True
elif self.config.model is not None:
if self.config.model.startswith('ollama'):
return True
return False
def _completion_cost(self, response) -> float:
"""Calculate the cost of a completion response based on the model. Local models are treated as free.
Add the current cost into total cost in metrics.
Args:
response: A response from a model invocation.
Returns:
number: The cost of the response.
"""
if not self.cost_metric_supported:
return 0.0
extra_kwargs = {}
if (
self.config.input_cost_per_token is not None
and self.config.output_cost_per_token is not None
):
cost_per_token = CostPerToken(
input_cost_per_token=self.config.input_cost_per_token,
output_cost_per_token=self.config.output_cost_per_token,
)
logger.debug(f'Using custom cost per token: {cost_per_token}')
extra_kwargs['custom_cost_per_token'] = cost_per_token
# try directly get response_cost from response
_hidden_params = getattr(response, '_hidden_params', {})
cost = _hidden_params.get('additional_headers', {}).get(
'llm_provider-x-litellm-response-cost', None
)
if cost is not None:
cost = float(cost)
logger.debug(f'Got response_cost from response: {cost}')
try:
if cost is None:
try:
cost = litellm_completion_cost(
completion_response=response, **extra_kwargs
)
except Exception as e:
logger.error(f'Error getting cost from litellm: {e}')
if cost is None:
_model_name = '/'.join(self.config.model.split('/')[1:])
cost = litellm_completion_cost(
completion_response=response, model=_model_name, **extra_kwargs
)
logger.debug(
f'Using fallback model name {_model_name} to get cost: {cost}'
)
self.metrics.add_cost(cost)
return cost
except Exception:
self.cost_metric_supported = False
logger.debug('Cost calculation not supported for this model.')
return 0.0
def __str__(self):
if self.config.api_version:
return f'LLM(model={self.config.model}, api_version={self.config.api_version}, base_url={self.config.base_url})'
elif self.config.base_url:
return f'LLM(model={self.config.model}, base_url={self.config.base_url})'
return f'LLM(model={self.config.model})'
def __repr__(self):
return str(self)
def reset(self) -> None:
self.metrics.reset()
def format_messages_for_llm(self, messages: Message | list[Message]) -> list[dict]:
if isinstance(messages, Message):
messages = [messages]
# set flags to know how to serialize the messages
for message in messages:
message.cache_enabled = self.is_caching_prompt_active()
message.vision_enabled = self.vision_is_active()
message.function_calling_enabled = self.is_function_calling_active()
if 'deepseek' in self.config.model:
message.force_string_serializer = True
# let pydantic handle the serialization
return [message.model_dump() for message in messages]
|