|
import asyncio
|
|
import json
|
|
import os
|
|
from typing import Any
|
|
|
|
import browsergym.webarena
|
|
import gymnasium as gym
|
|
import pandas as pd
|
|
|
|
from evaluation.utils.shared import (
|
|
EvalMetadata,
|
|
EvalOutput,
|
|
compatibility_for_eval_history_pairs,
|
|
make_metadata,
|
|
prepare_dataset,
|
|
reset_logger_for_multiprocessing,
|
|
run_evaluation,
|
|
)
|
|
from openhands.controller.state.state import State
|
|
from openhands.core.config import (
|
|
AppConfig,
|
|
SandboxConfig,
|
|
get_llm_config_arg,
|
|
parse_arguments,
|
|
)
|
|
from openhands.core.logger import openhands_logger as logger
|
|
from openhands.core.main import create_runtime, run_controller
|
|
from openhands.events.action import (
|
|
BrowseInteractiveAction,
|
|
CmdRunAction,
|
|
MessageAction,
|
|
)
|
|
from openhands.events.observation import CmdOutputObservation
|
|
from openhands.runtime.base import Runtime
|
|
from openhands.runtime.browser.browser_env import (
|
|
BROWSER_EVAL_GET_GOAL_ACTION,
|
|
BROWSER_EVAL_GET_REWARDS_ACTION,
|
|
)
|
|
from openhands.utils.async_utils import call_async_from_sync
|
|
|
|
SUPPORTED_AGENT_CLS = {'BrowsingAgent'}
|
|
|
|
|
|
def get_config(
|
|
metadata: EvalMetadata,
|
|
env_id: str,
|
|
) -> AppConfig:
|
|
base_url = os.environ.get('WEBARENA_BASE_URL', None)
|
|
openai_api_key = os.environ.get('OPENAI_API_KEY', None)
|
|
assert base_url is not None, 'WEBARENA_BASE_URL must be set'
|
|
assert openai_api_key is not None, 'OPENAI_API_KEY must be set'
|
|
|
|
config = AppConfig(
|
|
default_agent=metadata.agent_class,
|
|
run_as_openhands=False,
|
|
runtime='docker',
|
|
max_iterations=metadata.max_iterations,
|
|
sandbox=SandboxConfig(
|
|
base_container_image='python:3.12-bookworm',
|
|
enable_auto_lint=True,
|
|
use_host_network=False,
|
|
browsergym_eval_env=env_id,
|
|
runtime_startup_env_vars={
|
|
'BASE_URL': base_url,
|
|
'OPENAI_API_KEY': openai_api_key,
|
|
'SHOPPING': f'{base_url}:7770/',
|
|
'SHOPPING_ADMIN': f'{base_url}:7780/admin',
|
|
'REDDIT': f'{base_url}:9999',
|
|
'GITLAB': f'{base_url}:8023',
|
|
'WIKIPEDIA': f'{base_url}:8888/wikipedia_en_all_maxi_2022-05/A/User:The_other_Kiwix_guy/Landing',
|
|
'MAP': f'{base_url}:3000',
|
|
'HOMEPAGE': f'{base_url}:4399',
|
|
},
|
|
),
|
|
|
|
workspace_base=None,
|
|
workspace_mount_path=None,
|
|
)
|
|
config.set_llm_config(metadata.llm_config)
|
|
agent_config = config.get_agent_config(metadata.agent_class)
|
|
agent_config.enable_prompt_extensions = False
|
|
return config
|
|
|
|
|
|
def initialize_runtime(
|
|
runtime: Runtime,
|
|
) -> dict:
|
|
"""Initialize the runtime for the agent.
|
|
|
|
This function is called before the runtime is used to run the agent.
|
|
"""
|
|
logger.info(f"{'-' * 50} BEGIN Runtime Initialization Fn {'-' * 50}")
|
|
obs: CmdOutputObservation
|
|
|
|
|
|
action = CmdRunAction(command='mkdir -p /workspace')
|
|
logger.info(action, extra={'msg_type': 'ACTION'})
|
|
obs = runtime.run_action(action)
|
|
assert obs.exit_code == 0
|
|
|
|
action = BrowseInteractiveAction(browser_actions=BROWSER_EVAL_GET_GOAL_ACTION)
|
|
logger.info(action, extra={'msg_type': 'ACTION'})
|
|
obs = runtime.run_action(action)
|
|
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
|
|
goal = obs.content
|
|
|
|
logger.info(f"{'-' * 50} END Runtime Initialization Fn {'-' * 50}")
|
|
return goal
|
|
|
|
|
|
def complete_runtime(
|
|
runtime: Runtime,
|
|
) -> dict[str, Any]:
|
|
"""Complete the runtime for the agent.
|
|
|
|
This function is called before the runtime is used to run the agent.
|
|
If you need to do something in the sandbox to get the correctness metric after
|
|
the agent has run, modify this function.
|
|
"""
|
|
logger.info(f"{'-' * 50} BEGIN Runtime Completion Fn {'-' * 50}")
|
|
obs: CmdOutputObservation
|
|
|
|
action = BrowseInteractiveAction(browser_actions=BROWSER_EVAL_GET_REWARDS_ACTION)
|
|
logger.info(action, extra={'msg_type': 'ACTION'})
|
|
obs = runtime.run_action(action)
|
|
logger.info(obs, extra={'msg_type': 'OBSERVATION'})
|
|
|
|
logger.info(f"{'-' * 50} END Runtime Completion Fn {'-' * 50}")
|
|
return {
|
|
'rewards': json.loads(obs.content),
|
|
}
|
|
|
|
|
|
def process_instance(
|
|
instance: pd.Series,
|
|
metadata: EvalMetadata,
|
|
reset_logger: bool = True,
|
|
):
|
|
env_id = instance.instance_id
|
|
config = get_config(metadata, env_id)
|
|
|
|
|
|
if reset_logger:
|
|
log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs')
|
|
reset_logger_for_multiprocessing(logger, env_id, log_dir)
|
|
else:
|
|
logger.info(f'Starting evaluation for instance {env_id}.')
|
|
|
|
runtime = create_runtime(config)
|
|
call_async_from_sync(runtime.connect)
|
|
task_str = initialize_runtime(runtime)
|
|
|
|
state: State | None = asyncio.run(
|
|
run_controller(
|
|
config=config,
|
|
initial_user_action=MessageAction(content=task_str),
|
|
runtime=runtime,
|
|
)
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
if state is None:
|
|
raise ValueError('State should not be None.')
|
|
|
|
metrics = state.metrics.get() if state.metrics else None
|
|
|
|
|
|
instruction = ''
|
|
for event in state.history:
|
|
if isinstance(event, MessageAction):
|
|
instruction = event.content
|
|
break
|
|
|
|
return_val = complete_runtime(runtime)
|
|
logger.info(f'Return value from complete_runtime: {return_val}')
|
|
reward = max(return_val['rewards'])
|
|
|
|
|
|
|
|
|
|
histories = compatibility_for_eval_history_pairs(state.history)
|
|
|
|
|
|
output = EvalOutput(
|
|
instance_id=env_id,
|
|
instruction=instruction,
|
|
metadata=metadata,
|
|
history=histories,
|
|
metrics=metrics,
|
|
error=state.last_error if state and state.last_error else None,
|
|
test_result={
|
|
'reward': reward,
|
|
},
|
|
)
|
|
return output
|
|
|
|
|
|
if __name__ == '__main__':
|
|
args = parse_arguments()
|
|
|
|
dataset = pd.DataFrame(
|
|
{
|
|
'instance_id': [
|
|
id
|
|
for id in gym.envs.registry.keys()
|
|
if id.startswith('browsergym/webarena')
|
|
]
|
|
}
|
|
)
|
|
|
|
llm_config = None
|
|
if args.llm_config:
|
|
llm_config = get_llm_config_arg(args.llm_config)
|
|
|
|
llm_config.modify_params = False
|
|
if llm_config is None:
|
|
raise ValueError(f'Could not find LLM config: --llm_config {args.llm_config}')
|
|
|
|
metadata = make_metadata(
|
|
llm_config,
|
|
args.dataset_name,
|
|
args.agent_cls,
|
|
args.max_iterations,
|
|
args.eval_note,
|
|
args.eval_output_dir,
|
|
)
|
|
output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl')
|
|
instances = prepare_dataset(dataset, output_file, args.eval_n_limit)
|
|
|
|
run_evaluation(
|
|
instances,
|
|
metadata,
|
|
output_file,
|
|
args.eval_num_workers,
|
|
process_instance,
|
|
)
|
|
|