"""Bash-related tests for the EventStreamRuntime, which connects to the ActionExecutor running in the sandbox.""" import asyncio import os import tempfile from unittest.mock import MagicMock import pandas as pd import pytest from conftest import TEST_IN_CI from evaluation.utils.shared import ( EvalException, EvalMetadata, EvalOutput, assert_and_raise, codeact_user_response, make_metadata, prepare_dataset, reset_logger_for_multiprocessing, run_evaluation, ) from openhands.agenthub import Agent from openhands.controller.state.state import State from openhands.core.config import ( AgentConfig, AppConfig, LLMConfig, SandboxConfig, ) from openhands.core.logger import openhands_logger as logger from openhands.core.main import create_runtime, run_controller from openhands.events.action import CmdRunAction, MessageAction from openhands.events.observation import CmdOutputObservation from openhands.events.serialization.event import event_to_dict from openhands.llm import LLM from openhands.runtime.base import Runtime from openhands.utils.async_utils import call_async_from_sync AGENT_CLS_TO_FAKE_USER_RESPONSE_FN = { 'CodeActAgent': codeact_user_response, } def get_config( metadata: EvalMetadata, ) -> AppConfig: assert ( os.environ.get('SANDBOX_REMOTE_RUNTIME_API_URL') is not None ), 'SANDBOX_REMOTE_RUNTIME_API_URL must be set.' assert ( os.environ.get('ALLHANDS_API_KEY') is not None ), 'ALLHANDS_API_KEY must be set.' config = AppConfig( default_agent=metadata.agent_class, run_as_openhands=False, max_iterations=metadata.max_iterations, runtime='remote', sandbox=SandboxConfig( base_container_image='python:3.11-bookworm', enable_auto_lint=True, use_host_network=False, # large enough timeout, since some testcases take very long to run timeout=300, api_key=os.environ.get('ALLHANDS_API_KEY', None), remote_runtime_api_url=os.environ.get('SANDBOX_REMOTE_RUNTIME_API_URL'), keep_runtime_alive=False, ), # do not mount workspace workspace_base=None, workspace_mount_path=None, ) agent_config = AgentConfig( codeact_enable_jupyter=False, codeact_enable_browsing=False, codeact_enable_llm_editor=False, ) config.set_agent_config(agent_config) return config def initialize_runtime( runtime: Runtime, ): """Initialize the runtime for the agent. This function is called before the runtime is used to run the agent. """ logger.info('-' * 30) logger.info('BEGIN Runtime Initialization Fn') logger.info('-' * 30) obs: CmdOutputObservation action = CmdRunAction(command="""export USER=$(whoami); echo USER=${USER} """) action.set_hard_timeout(600) logger.info(action, extra={'msg_type': 'ACTION'}) obs = runtime.run_action(action) logger.info(obs, extra={'msg_type': 'OBSERVATION'}) assert_and_raise(obs.exit_code == 0, f'Failed to export USER: {str(obs)}') action = CmdRunAction(command='mkdir -p /dummy_dir') action.set_hard_timeout(600) logger.info(action, extra={'msg_type': 'ACTION'}) obs = runtime.run_action(action) logger.info(obs, extra={'msg_type': 'OBSERVATION'}) assert_and_raise( obs.exit_code == 0, f'Failed to create /dummy_dir: {str(obs)}', ) with tempfile.TemporaryDirectory() as temp_dir: # Construct the full path for the desired file name within the temporary directory temp_file_path = os.path.join(temp_dir, 'dummy_file') # Write to the file with the desired name within the temporary directory with open(temp_file_path, 'w') as f: f.write('dummy content') # Copy the file to the desired location runtime.copy_to(temp_file_path, '/dummy_dir/') logger.info('-' * 30) logger.info('END Runtime Initialization Fn') logger.info('-' * 30) def process_instance( instance: pd.Series, metadata: EvalMetadata, reset_logger: bool = True, ) -> EvalOutput: config = get_config(metadata) # Setup the logger properly, so you can run multi-processing to parallelize the evaluation if reset_logger: log_dir = os.path.join(metadata.eval_output_dir, 'infer_logs') reset_logger_for_multiprocessing(logger, instance.instance_id, log_dir) else: logger.info(f'Starting evaluation for instance {instance.instance_id}.') runtime = create_runtime(config, headless_mode=False) call_async_from_sync(runtime.connect) try: initialize_runtime(runtime) instruction = 'dummy instruction' agent = Agent.get_cls(metadata.agent_class)( llm=LLM(config=metadata.llm_config), config=config.get_agent_config(metadata.agent_class), ) def next_command(*args, **kwargs): return CmdRunAction(command='ls -lah') agent.step = MagicMock(side_effect=next_command) # Here's how you can run the agent (similar to the `main` function) and get the final task state state: State | None = asyncio.run( run_controller( config=config, initial_user_action=MessageAction(content=instruction), runtime=runtime, fake_user_response_fn=AGENT_CLS_TO_FAKE_USER_RESPONSE_FN[ metadata.agent_class ], agent=agent, ) ) # if fatal error, throw EvalError to trigger re-run if ( state.last_error and 'fatal error during agent execution' in state.last_error and 'stuck in a loop' not in state.last_error ): raise EvalException('Fatal error detected: ' + state.last_error) finally: runtime.close() test_result = {} if state is None: raise ValueError('State should not be None.') histories = [event_to_dict(event) for event in state.history] metrics = state.metrics.get() if state.metrics else None # Save the output output = EvalOutput( instance_id=instance.instance_id, instruction=instruction, instance=instance.to_dict(), # SWE Bench specific test_result=test_result, metadata=metadata, history=histories, metrics=metrics, error=state.last_error if state and state.last_error else None, ) return output @pytest.mark.skipif( TEST_IN_CI, reason='This test should only be run locally, not in CI.', ) def test_stress_remote_runtime(n_eval_workers: int = 64): """Mimic evaluation setting to test remote runtime in a multi-processing setting.""" llm_config = LLMConfig() metadata = make_metadata( llm_config, 'dummy_dataset_descrption', 'CodeActAgent', max_iterations=10, eval_note='dummy_eval_note', eval_output_dir='./dummy_eval_output_dir', details={}, ) # generate 300 random dummy instances dummy_instance = pd.DataFrame( { 'instance_id': [f'dummy_instance_{i}' for i in range(300)], } ) output_file = os.path.join(metadata.eval_output_dir, 'output.jsonl') instances = prepare_dataset( dummy_instance, output_file, eval_n_limit=len(dummy_instance) ) run_evaluation(instances, metadata, output_file, n_eval_workers, process_instance)